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ABSTRACT In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless
activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can
be resource-intensive and prone to printing issues. This research introduces a digital twin-based system that
employs the innovative ensemble 3D-AmplifAI algorithm for fault monitoring in 3D printers. The system
continuously monitors real-time temperature values and detects faults to prevent potential damage to the
printer. Through an ensemble method, the 3D-AmplifAI algorithm combines multiple machine learning
models to enhance fault detection in 3D printers. The digital twin environment, developed using Unity, serves
as the bridge connecting the physical printer to the virtual world. Comparative evaluations against state-of-
the-art algorithms, including Ridge Regression, XGBoost, InceptionTime, Time Series Transformer (TST),
Rocket Ridge, Logistic Regression, Rocket XGBoost, ResNet, and Rocket Ridge Regression, demonstrate
the superior performance of the 3D-AmplifAI algorithm in terms of accuracy, precision, recall, and F1-score.

INDEX TERMS Additive manufacturing, digital twin, ensemble algorithm, fault monitoring.

I. INTRODUCTION
Additive manufacturing, also known as 3D printing, has
transformed the process of developing tangible components
and prototypes. This technology enables the creation of
three-dimensional objects by depositing successive layers of
material based on digital models. Its impact spans across
various industries, from healthcare to aerospace, revolution-
izing the way engineers design, prototype, and manufacture
products [1], [2], [3]. As a result, 3D printing is increasingly
adopted in new fields, with experts predicting its continuous
influence on the future of manufacturing, engineering, and
design. The global shipment of 3D printers reached 2.2 mil-
lion units in 2021, and it is projected to grow to 21.5 million
units by 2030 [4]. However, the rise of additivemanufacturing
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technology has also brought about challenges, particularly in
terms of surface quality.

As additive manufacturing technology advances, it
becomes evident that the process presents various challenges,
with error handling being one of the most significant. Errors
can arise from factors such as incorrect machine settings,
flawed designs, and material defects [5], [6]. Identifying and
rectifying these errors during the manufacturing process is
crucial to avoid the production of non-functional or unsafe
parts. Consequently, there is an increasing need for effective
error-handling strategies capable of real-time error detection
and correction, minimizing the risk of defective parts and
ensuring the overall quality of the final product [7], [8]. In this
context, researchers and industry professionals are actively
exploring new approaches to error handling that can address
the unique challenges of additive manufacturing and unlock
its full potential.
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Currently, most research on monitoring additive manu-
facturing devices relies on image and sensor-based moni-
toring [9]. The objective of monitoring is to identify and
detect irregularities that may lead to printing failures. Print-
ing failure refers to the rejection of output by the additive
manufacturing device due to surface imperfections. The irreg-
ularities being detected involve obscure parameters related to
the operational conditions of the printer, such as overheating
printer heads, excessive vibration, excessive noise, and under-
heated materials [10], [11]. Prior studies have implemented
machine learning-based solutions to understand the measured
values for determining the conditions of various printer parts.

However, there is still a significant research gap to be
addressed by simulating test values in a controlled setting,
as conducting experiments on actual 3D printers can be costly
and time-consuming. Limited studies have explored the use
of virtual 3D printers to enhance the simulation process.
Therefore, the development of a digital twin-enabled moni-
toring device becomes crucial to address this issue.

Digital twin technology has emerged as a powerful tool
for simulation and analysis in various industries, ranging
from aerospace and automotive to healthcare and energy [12].
Essentially, a digital twin is a virtual replica of a physical
object or system that enables real-time monitoring, analysis,
and optimization of its performance [13]. In the context of
additive manufacturing, digital twin technology holds the
potential to revolutionize error handling by creating virtual
replicas of the printing process that can be continuously mon-
itored for faults and defects [14]. By comparing the digital
twin with the physical process in real-time, manufacturers
can identify and rectify errors before they result in defective
parts, thereby reducing waste and improving efficiency. Con-
sequently, there is a growing interest in applying digital twin
technology to fault monitoring in additive manufacturing,
prompting researchers and industry professionals to explore
new approaches to unlock the full potential of this innovative
technology [15].

The general objective of this research is to develop a digital
twin-enabled 3D printer monitor capable of simulating and
detecting possible errors in a 3D printer. The specific objec-
tives include: (i) developing a digital twin of a 3D printer for
monitoring and (ii) applying machine learning-based algo-
rithms to the measurements collected from sensors attached
to a 3D printer and test values set on the digital twin to detect
potential faults. By implementing digital twin technology,
it becomes possible to experiment with 3D printers through
simulation while maintaining a connection with the physical
counterpart. The major contributions of this research are
detailed as follows:

• Designing a digital twin environment for smart additive
manufacturing using an FDM 3D printer that accurately
simulates the physical component and performs print
actions.

• Proposing the ensemble 3D-AmplifAI model, which
combines multiple machine learning models to achieve
enhanced accuracy in detecting early fault conditions in
the 3D printer.

• Conducting an extensive performance evaluation of
various machine learning models with the proposed
3D-AmplifAI system, demonstrating its robustness
through the use of numerous performance metrics.

• Integrating the machine learning model with the digi-
tal twin environment, enables the proposed system to
mitigate faults in both the physical and virtual domains
effectively.

The proposed system will provide 3D printer operators
with a more graphical view of the monitoring process,
enabling quick identification of error sources compared to
other monitoring systems. This improved visualization will
facilitate a more in-depth analysis of the root causes of issues.
Furthermore, this study will lay the groundwork for further
research in fault monitoring for 3D printers.

The study is organized into seven distinct sections. The first
section introduces the topic and provides an overview of the
subsequent chapters. Section II explores related works and
reviews the literature on fault monitoring systems, machine
learning algorithms, and virtual environments. Section III
covers the various machine learning algorithms employed
in this work and the development details of the digital
twin-based fault monitoring system, which includes the
design, implementation, and features of a virtual printer
environment. The digital twin-based technique for prediction
and simulation is detailed in Section IV. Section V outlines
the experimental setup, dataset collection, and preprocessing
techniques employed. Section VI presents the performance
evaluation of the entire system, discussing its accuracy, effi-
ciency, and effectiveness. Finally, the last section concludes
the manuscript, summarizing the findings, and discussing
future research directions in the field.

II. LITERATURE REVIEW
This section explains the previous works of researchers that
proposed different methodologies to address the issue of
fault monitoring in additive manufacturing, specifically for
smart factories. Artificial intelligence is one of the emerg-
ing technologies in focus today, and researchers explore the
application of various machine learning and deep learning
approaches to monitor for faults.

A. FAULT MONITORING FOR INDUSTRY 4.0
Fault monitoring plays a crucial role in Industry 4.0 and
smart factories, as highlighted by various studies. Kalsoom
et al. emphasize the importance of advanced low-cost sensor
technologies in data collection for effective performance by
manufacturing companies and supply chains [16]. Differ-
ent sensor technologies used in smart factories underscore
the need for data-driven decision-making in a factory’s
operations, optimizing efficiency by knowing the overall con-
ditions of the various machines.

Augmented Reality (AR) has been proposed as a concept
to present information to human operators in an intuitive
way in several studies. Tzimas et al. proposed AR appli-
cations for industrial guidance and training, demonstrating
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the technical aspects of AR application development, includ-
ing interfacing distance sensors, scenario structuring, and
techniques ensuring expansibility, flexibility, and ease of
authoring such applications [17]. Meanwhile, Longo et al.
proposed a human-centric and knowledge-driven approach
to Industry 4.0 initiatives, emphasizing the importance of
ubiquitous knowledge about the manufacturing system that
is intuitively accessed and used by manufacturing employ-
ees. Their service-oriented digital twin prototype leverages a
flexible ontology-oriented knowledge structure and AR com-
bined with a vocal interaction system for intuitive knowledge
retrieval and fruition. The study shows that a human-centric
and knowledge-driven approach can drive the performance of
Industry 4.0 initiatives and lead a smart factory toward its full
potential [18].

These studies demonstrate that fault monitoring is critical
in Industry 4.0 and smart factories. Integrating Industrial
Internet of Things (IoT) concepts with additive manufac-
turing techniques benefit industries and material manufac-
turers [19]. Data-driven analysis and constant monitoring
through technology are required for Industry 4.0 tech-
nologies, particularly for additive manufacturing. Advanced
low-cost sensor technologies, AR applications, human-
centric and knowledge-driven approaches, and IoT additive
manufacturing integrated techniques can improve perfor-
mance, reduce waste, and fulfill customer specifications.

Various research has been conducted to enhance the effi-
ciency of smart manufacturing through the utilization of
machine learning. For instance, Agron et al. investigated the
nozzle of a fused deposition modeling printer and employed
a temporal neural network with a two-stage sliding window
strategy (TCN-TS-SW) to predict future thermal values of the
nozzle tip [20]. Zhang et al. utilized a deep hybrid state net-
work with feature reinforcement, leveraging data collected by
an attitude sensor attached to a printer, to diagnose faults [21].
Belikovetsky et al. used digital audio signatures to analyze
the sound produced by a 3D printer’s stepper motors and
identify irregularities that could lead to faults [22]. Liu et
al. performed image analysis-based diagnosis on the captured
image of the surface of the output to analyze the output of a
3D printer [23]. Similarly, a study by [24] explored efficient
fault detection based on an image dataset using a multi-block
Convolutional Neural Network (CNN)-based model, outper-
forming various pre-trained networks. Furthermore, Deepraj
et al. proposed XAI-3DP, which presents a data-driven
approach for fault diagnosis in 3D printers. They collected
data for three scenarios, including healthy conditions, bed
failure, and arm failure, and implemented an ensemble learn-
ing model of Random Forest and XGBoost [25].

B. DIGITAL TWIN-BASED FAULT MONITORING
Various researchers have explored the possibility of imple-
menting a digital twin on additive manufacturing technology,
but only on a conceptual level. Knapp et al. highlights
the need to apply digital twin technology to additive

manufacturing to minimize waste and improve the efficiency
of the process [26]. The accurate prediction of the physical
properties of the different parts of a 3D printer using digital
twin technology is a critical benefit that can help to minimize
waste and optimize the process.

Debroy et al. discuss the technicalities surrounding the
application of digital twin technology in additive manufac-
turing [27]. They stress the importance of considering the
application of laws in physics, such as heat transfer equa-
tions, mechanics of materials, and solidification modeling,
when implementing digital twin technology. In addition, they
emphasize the need to integrate data modeling algorithms
further to understand a printer’s behavior and future behav-
ior. This allows for a more accurate prediction of the parts’
physical properties, which can help optimize the additive
manufacturing process and minimize waste.

Stavropoulos et al. and Kabaldin et al. explore the develop-
ment of a digital twin for controlling a 3D printer [28], [29].
They develop a system model that integrates physics and
systematics-based modeling, uncertainty quantification, and
capability tracking to create a digital twin-based controller
for 3D printers. Using such technology optimizes the addi-
tive manufacturing process, as a data-driven approach allows
errors to be minimized. Furthermore, digital twin technology
allows for a rapid response to issues, and issues in additive
manufacturing may be easily mitigated.

Overall, the application of digital twin technology in addi-
tive manufacturing has the potential to improve the efficiency
of the process and minimize waste significantly. By accu-
rately predicting the physical properties of the parts being
produced, errors can be minimized, and the process can be
optimized. Developing a digital twin-based controller for 3D
printers is a promising area of research, and we will likely see
further results in this field in the coming years. To the best of
our knowledge, no research has investigated the implementa-
tion of a fault detection system using an ensemble algorithm
in a digital-twin system. Therefore, this study aims to provide
insight into such a system’s implementation to improve the
efficiency of 3D printers in additive manufacturing.

III. PROPOSED SYSTEM
The problem that this study aims to address is the production
waste in the process of additivemanufacturing. Additiveman-
ufacturing is a rapidly growing field with immense potential,
but it is challenging. One of the major challenges faced in the
additive manufacturing process is the need for a monitoring
system that can diagnose issues on a 3D printer and predict
its behavior in a machine learning-based approach.

Traditional methods of identifying and addressing issues
during manufacturing involve extensive trial-and-error test-
ing. This approach can be time-consuming and expensive and
may not always yield the desired results. Additionally, due to
the systems’ complexity, it can take time to identify the root
cause of issues that arise during manufacturing. As a result,
there is a need for a more effective and efficient approach to
addressing issues in additive manufacturing.
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Figure 1. The conceptual framework of this research is based on the
development of a fault monitoring system for additive manufacturing
using a digital twin. The framework includes the integration of hardware,
software, and machine learning algorithms to create a virtual replica of
the manufacturing process that enables real-time fault monitoring,
diagnosis, and corrective action by the operator.

To gain a better understanding of the problems that lie
beneath the diagnostic aspects of 3D printing, fieldwork
was conducted in mid-year 2020. An additive manufacturing
company was examined, and the processes used in error mit-
igation were analyzed. It was found that the lack of real-time
monitoring and predictive capabilities in 3D printing was a
significant factor contributing to production waste.

Various related works by other researchers were examined,
revealing that the problem of production waste in additive
manufacturing is not unique to this study. Several other
researchers have highlighted the need for a more efficient and
practical approach to addressing issues in additive manufac-
turing.

Furthermore, the adoption of a digital twin-based sys-
tem shows promise in minimizing the trial-and-error process
before the actual printing process is conducted to obtain the
best possible configuration, thus reducing the possibility of
wasted printing materials.

A. MODEL CONSIDERATIONS
This case study focuses on developing a digital twin for
diagnosing the operational conditions of a 3D printer and
predicting its future behavior. The difficulties of a manual
process have been identified in various disciplines, partic-
ularly in engineering. Additionally, older printers tend to
behave abnormally over time. The stochastic behavior of
printers, particularly in terms of temperature stability, can
pose a problem in the printing process.

A review of comprehensive literature on the diagnosis of
a 3D printer reveals a need for a conceptual framework for
finding a solution that provides an in-depth analysis of the
condition of a 3D printer on a digital twin-enabled system.
Currently, several proposed solutions explore the applica-
tion of machine learning algorithms for fault detection using
sensor-based and image-based monitoring. Despite the var-
ious solutions presented, none use digital twin technology,
which is essential in enabling a smart industrial system [30].

An analysis of this conceptual framework for the process
of applying digital twin technology in diagnosing the future
behavior of a 3D printer will not only provide vital informa-
tion on the subject matter but also shed light on a concrete
solution that can help machine operators mitigate the damage
caused by errors.

Figure 1 shows the conceptual framework of the research.
The research aims to obtain input from the different embed-
ded sensors of a 3D printer for monitoring possible faults of a

Figure 2. The system architecture of the digital twin-based fault
monitoring system is comprised of three primary components: the
physical printer, the digital twin, and the monitoring system. The
monitoring system utilizes data from both the physical printer and the
digital twin to identify and diagnose faults in real-time.

printer. From the collected data, ensemble machine learning
methods were applied to anticipate possible faults given the
historical data from the sensors and a dataset of sensor values
collected over a period of 1000 milliseconds.

The utilization of the digital twin system provides notable
benefits compared to solely relying on physical sensing infor-
mation. Through the capture and analysis of supplementary
data and parameters, the digital twin system enables a more
extensive and precise comprehension of the behavior of the
physical system. This augmented dataset empowers the train-
ing of machine learning models that possess an enhanced
ability to understand and predict the dynamics of the system,
resulting in improved performance, advanced monitoring
capabilities, and well-informed decision-making.

B. MODEL DEVELOPMENT
The proposed digital twin-based fault monitoring system con-
sists of threemain components: (i) the physical 3D printer, (ii)
the virtual printer, and (iii) the machine learning algorithms
used for fault monitoring and behavior prediction. Figure 2
depicts the data flow between the printer and the digital twin
platform proposed in this work, with the monitoring system
situated on the host PC. The proposed monitoring system
utilizes information from both physical and digital printers
to assess the presence of faults.

The physical 3D printer is the actual machine that produces
physical parts. It is equipped with embedded sensors that
collect temperature data, which is periodically transmitted
to the cloud server and stored in Google Firebase using the
OctoPrint API installed on the Raspberry Pi connected to the
printer.

The virtual printer is a digital replica of the physical printer.
It simulates the printing process and behavior of the physical
printer based on the data collected from the sensors. It obtains
the data from Google Firebase and processes it on the host
PC. Using machine learning algorithms, the digital twin can
predict potential faults and diagnose any issues that may arise
during printing.
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The machine learning algorithms are responsible for ana-
lyzing the data collected from both the physical and virtual
printers. The algorithms use this data to detect patterns and
anomalies in the printing process that may indicate a fault.
They can also predict potential faults and diagnose any issues
that may arise during printing. Failure prediction algorithms
act as fail-safe mechanisms that give operators time to miti-
gate errors by evaluating the operational conditions of a 3D
printer and taking action accordingly [31]. In this research,
the future time step of the sensor reading is predicted to
anticipate any anomalies in machine operations. The sen-
sors connected to the printer input measurement readings
from time t − 4 to t , which are then processed using a
regression model to output the prediction at time t + 1.
In total, five historical data were used as input to the machine
learning model. Below are the different regression models
used and how they compare in predicting the future time
step.

Choosing the appropriate machine learning model for a
monitoring system can be a daunting task due to the large
number of algorithms available. The process usually involves
identifying the problem statement, analyzing the data, and
choosing the most appropriate model that suits the system’s
requirements. In this case, the algorithms selected were ridge
regression, XGBoost, Inception Time, Xception Time, Time
Series Transformer (TST), Rocket Ridge, Logistic Regres-
sion, Rocket XGBoost, and ResNet.

The first step in choosing an appropriate machine learning
model for a monitoring system is to understand the problem
statement and the data. This involves collecting and prepro-
cessing the data, identifying the variables, and defining the
problem statement. Once this is done, the second step is
to identify the most appropriate algorithm for the system’s
requirements.

The third step is to train and evaluate each of the models.
This involves splitting the data into training and testing sets,
training the models on the training set, and evaluating their
performance on the testing set. Each model is evaluated
based on accuracy, precision, recall, F1-score, and compu-
tation time. The top-performing models are then selected for
ensembling. Based on the results discussed in the following
subsections, the top four performing models are TST, Xcep-
tion Time, ResNet, and Rocket+Ridge.

The design and modeling of a digital twin is critical in
developing a fault monitoring system for additive manu-
facturing. A digital twin is a virtual representation of a
physical object or system designed to mimic its behavior
in the real world. In additive manufacturing, a digital twin
can simulate the printing process and predict potential faults
or defects [32]. This section provides an overview of the
design and modeling process for a digital twin-based fault
monitoring system, including the selection of modeling tools
and the incorporation of real-world data. By leveraging the
power of digital twins, manufacturers can improve their
production processes and reduce the likelihood of faulty
prints [33].

Figure 3. The ensemble technique employed a stacking approach, where
the predictions of the top four performing algorithms served as inputs to
a meta-model. The meta-model was trained to generate the final output
by leveraging the predictions of the base models. This ensembling
method effectively enhanced the overall performance of the individual
models and culminated in the creation of the 3D-AmplifAI algorithm.

C. 3D-AMPLIFAI ALGORITHM
Various algorithms were employed to address a fault-
monitoring problem, including Ridge regression, XG Boost,
InceptionTime, TST, Rocket Ridge, Logistic Regression,
Rocket XGBoost, ResNet, and Rocket Ridge regression.
These algorithms were applied to identify mechanical faults
in equipment, and their performances were compared based
on metrics such as true positive, false negative, false positive,
and true negative. Among these algorithms, TST, Xcep-
tion Time, ResNet, and Rocket XGBoosting demonstrated
superior performance and were combined to create a new
algorithm called 3D-AmplifAI. The 3D-AmplifAI algorithm
leveraged the strengths of these top-performing algorithms to
enhance fault diagnosis accuracy.

To develop the ensemble algorithm, the four models were
trained using a large dataset of temperature sensor data
from an FDM printer. The performance of the 3D-AmplifAI
algorithm was evaluated on a separate test dataset and sur-
passed the individual models, achieving higher accuracy and
reducing false positives and false negatives. This highlights
the potential of ensemble techniques in enhancing the per-
formance of machine learning models for complex tasks
like fault monitoring. Figure 3 illustrates the process of
model ensembling in the development of the 3D-AmplifAI
algorithm.

The overall pseudocode of the proposed 3D-AmplifAI is
presented in Algorithm 1. Firstly, the dataset is loaded and
preprocessed using Z-score and MinMaxScaler. It is then
divided into three sets: testing, validation, and test. Secondly,
the model is loaded, and a grid search is conducted for
hyperparameter optimization. The best-performing model is
selected and stored as the reference model for evaluating the
test data.

Lastly, to ensure the reproducibility of the proposed 3D-
AmplifAI, detailed configurations for each machine learning
algorithm are provided as follows:
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Algorithm 1 3D-AmplifAI Pseudocode
1 Input: Historical sensor data.
2 Output: Best ML model performance.
3 Initialize: ML model, list of epochs, and list of learning
rate.

4 #Dataset Preparation.
5 Load dataset.
6 Calculate outlier using Z-score.
7 Normalize the dataset using MinMaxScaler.
8 Divide dataset into train:70%, val:10%, and test:20%.

9 #Model Initialization.
10 Model = Sequential ().
11 Model.add (TimeSeriesTransformerModel).
12 Model.add (Xception Time).
13 Model.add (ResNet).
14 Model.add (Rocket XGBoost).
15 Model.add (Dense).

16 #Model Training with Hyperparameter Tuning.
17 For epoch in epochs:
18 For lr in learning rate:
19 Train Model (epoch, lr) using train & val data.
20 If result > best:
21 Store result as best_conFigure

22 #Model Test.
23 Test Model (epoch, lr) using test data.
24 Calculate Accuracy, Precision, Recall, F1-Score,

Computing Time, and Confusion Matrix.
25 Plot results using Matplotlib.

• TST is equipped with two layers, using a dropout rate
of 0.1. It was trained for 100 epochs with a learning rate
of 0.1.

• XceptionTime is designedwith a kernel size of 50. It was
trained for 100 epochs with a learning rate of 0.1.

• ResNet is trained with a depth of 18, referred to as
ResNet18. It was trained for 100 epochs with a learning
rate of 0.1.

• Rocket+XGBoost is initialized with a kernel size of
50 and a random state configuration of 111.

D. DIGITAL TWIN ENVIRONMENT
In developing the digital twin, a virtual environment for the
3D printer was designed. The digital twin design detailed
in [34] was followed. The digital twin environment designed
in this work consists of both physical and cyber spaces.
Communication between the physical and virtual spaces is
established using lightweight channels, specifically through
the use of sockets. Unity software was used to model this
environment and the printer laboratory itself. Unity is a popu-
lar game engine increasingly used in various fields, including
digital twin development [35]. Unity offers several advan-
tages that make it suitable for developing digital twin-based
systems. For instance, Unity has a user-friendly interface that
allows developers to create 3D models of systems, which
can accurately simulate real-world behavior. Additionally,
Unity has a rich library of resources, such as pre-built assets,

textures, and shaders, which make the development process
more efficient.

In the context of digital twin-based systems, Unity can
create an interactive virtual environment that simulates the
behavior of the physical system. The virtual environment is
constructed using 3D models, textures, and animations that
mimic the real-world scenario. Unity enables developers to
create custom physics engines that accurately replicate the
behavior of the physical system. This feature is particularly
useful in digital twin-based systems as it allows users to test
different scenarios and evaluate the impact of various factors
on the behavior of the physical system. Another advantage of
Unity in digital twin-based systems is its compatibility with
various sensors and data acquisition devices. Unity supports
several programming languages, such as C#, C++, and Java,
which can interface with different hardware and software
components. This enables developers to integrate sensors
and data acquisition devices into the virtual environment,
facilitating real-time monitoring and analysis of the physical
system.

Moreover, Unity supports machine learning algorithms
that can be used to develop predictive models forecasting the
behavior of the physical system [36], [37]. Machine learn-
ing algorithms can be trained using historical data collected
from the physical system, and the resulting models can be
used to optimize the system’s performance. In a digital twin-
based system, machine learning models can predict faults
and develop corrective actions that minimize downtime and
improve efficiency.

In addition to modeling the physical components of the
printer and its environment, it is also essential to consider the
physics and mechanics involved in the 3D printing process.
The behavior of the printer components, such as the extruder
and print bed, must be accurately simulated to ensure that the
virtual world behaves like the physical world. This can be
achieved using physics engines and modeling software, such
as Unity’s built-in physics engine or external physics engines
like Bullet or PhysX. Python is a programming language that
can be used to create scripts to control and interact with the
digital twin system, but it is not typically used for physics
simulation in Unity.

Once the virtual world is created and the 3D printer is mod-
eled, the next step is integrating the digital twin system with
the physical 3D printer. This involves connecting the virtual
world to the physical world through sensors and actuators.
The sensors collect data from the physical printer, which is
then used to update the virtual world. The virtual world can
also control the physical printer by sending commands to
the actuators. Figure 4 shows the environment of the virtual
laboratory where the user may go around and inspect the
different printers.

E. SENSOR DATA ACQUISITION AND INTEGRATION
Data collection from the 3D printer is a vital component of
the fault monitoring system based on digital twins. Octoprint,
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Figure 4. The virtual laboratory replicates a smart factory with various
FDM printers that operate simultaneously.

an open-source program, monitors and controls 3D printers
remotely. It allows real-time data gathering from the 3D
printer’s embedded sensors, such as the print temperature,
bed temperature, print speed, and layer height. To collect data
from the printer using Octoprint, the software is first installed
on a Raspberry Pi. The Raspberry Pi is then connected to the
3D printer’s control board via USB, allowing it to communi-
cate with the printer and collect data on various parameters.
By combining Octoprint with the device, real-time data can
be gathered from the 3D printer and sent to the digital twin.
This data is crucial for defect monitoring as it sheds light on
the printer’s actions during printing. Using this data, machine
learning models can then be trained to find flaws and forecast
future behavior.

Integrating the physical and virtual worlds is a crucial
aspect of digital twin technology. It connects physical assets,
such as machines or equipment, to virtual counterparts in a
digital twin environment. This integration enables the digital
twin to receive real-time data from the physical asset and
use it to create a dynamic model that represents the current
state of the asset. The integration process is accomplished
by using sensors attached to the physical asset and collecting
various data types, such as temperature, pressure, speed, and
vibration. The collected data is transmitted to the digital twin
environment through a communication network. Ensuring
that the digital twin environment accurately reflects the phys-
ical asset is essential to achieve seamless integration between
the physical and virtual worlds. This requires a thorough
understanding of the physical asset and its behavior and the
ability to model it accurately in the digital twin environment.

F. DATA PREPROCESSING
Preprocessing the data from Octoprint is essential in building
an effective fault monitoring system for the 3D printer. The
collected data is often raw and unorganized and requires pro-
cessing to extract meaningful features andmake it suitable for
analysis. Preprocessing steps typically include data cleaning,
normalization, and feature extraction.

Data cleaning involves identifying and handling missing,
erroneous and removing any noise or outliers that may impact
the accuracy of the analysis. In 3D printing, this could include
removing data points outside the normal range of printer
operations. In this work, we utilize the Z-score to determine

outliers, which is calculated using Equation (1):

Z =
x − µ

σ
(1)

where x represents the data point, and µ and σ represent the
mean and standard deviation of the data, respectively. If the
Z-score equals or exceeds 2, the corresponding data point is
excluded from the dataset.

Initially, the dataset contained a total of 56,750 instances
before undergoing preprocessing. Following the data clearing
process, 56,100 instances were filtered and used for training,
validation, and testing the model. The data were then normal-
ized using MinMax scaling, which can be calculated using
Equation (2):

xnorm =
x − min(x)

max(x) − min(x)
(2)

in this context, xnorm denotes the normalized value of the data,
while x represents the current value. min(x) and max(x) refer
to the minimum and maximum values of x in the dataset,
respectively. Through the MinMax normalization process,
the range of all features is adjusted to span from 0 to 1.
The dataset was partitioned with 70% of instances used for
training, 10% for validation, and 20% for testing purposes.

Furthermore, normalization involves scaling the data to
ensure all variables are on a similar scale, which is essential
when using machine learning algorithms to analyze the data.
Feature extraction involves identifying the relevant features
or attributes from the data that used for analysis. In the context
of 3D printing, these could include print speed, temperature,
filament usage, and other printer settings. Feature extraction
is crucial because it reduces the complexity of the data,
making it easier to analyze and more efficient for machine
learning algorithms to process.

G. DATA TRANSMISSION
A cloud-based platform called Google Firebase provides
tools for building and growing mobile and online appli-
cations. It enables the creation of real-time apps, data
synchronization across numerous devices, and user authen-
tication using social media or email services.

Google Firebase can be used as a data-passing platform in
the context of a digital twin system for 3D printing to transfer
data from the actual 3D printer to the virtual environment
made in Unity. On the Raspberry Pi linked to the 3D printer,
the Octoprint plugin can be installed to accomplish this. The
plugin enables the communication between the Raspberry Pi
andOctoPrint and data transmission to the Firebase Real-time
Database.

Google Firebase keeps synchronized updates between con-
nected clients in real-time and saves data in JSON format.
Once the information is transferred to the Firebase Real-time
Database, it is accessible from any location with an internet
connection, including the Unity-created virtual world.

A script can be created to periodically get information from
the Firebase Real-time Database and update the virtual 3D
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Figure 5. The 3D printers may be accessed and the different parameters
of the printer are displayed.

printer model accordingly in the virtual environment. For
instance, if the extrusion temperature in the real-world 3D
printer grows, the extruder temperature in Unity will similarly
rise in real-time, accurately simulating the real-world printer
in the virtual one.

Firebase can be used to transfer information the other way,
from the virtual setting to the physical printer. For instance,
if the virtual environment notices a problem or error while
printing, it can send a notification to the Firebase Real-
time Database, which then causes the actual printer to take
some action, like halting printing or modifying the extruder’s
temperature.

IV. PREDICTION AND SIMULATION
Prediction and simulation are crucial components of a digital
twin-based system. The ability to forecast future behavior
and simulate potential outcomes can aid in decision-making
processes and enhance system performance. This section
detailed the techniques and methods used for prediction and
simulation in the context of fault monitoring in additive
manufacturing using a digital twin-based system. The use
of machine learning algorithms and simulation models to
predict future behavior and simulate potential outcomes of
the physical system was explained. The results of these pre-
dictions and simulations can then be used to inform decisions
and optimize the system’s performance.

A. BEHAVIOUR PREDICTION
In a digital twin system, machine learning algorithms can
be used to predict the future behavior of a 3D printer. This
involves collecting and preprocessing data from the physical
printer using technologies such as OctoPrint and Firebase,
as discussed in previous sections.

As part of the system development, historical data is fed
into machine learning algorithms to enable them to recognize
patterns and correlations in the data, which helps in predicting
future behavior and detecting and classifying faults. Figure 5
shows how a 3D printer within the virtual laboratory may be
inspected.

Table 1. The 3D printer experimental conditions.

The Python-based programming language is used to write
scripts that process data collected from the 3D printer through
OctoPrint and to train machine learning models to predict
future behavior. These scripts are then imported into Unity
as custom assets and used to create the logic that drives the
digital twin simulation.

B. FAULT DIAGNOSIS
Oneway that Octoprint aids in fault mitigation is by providing
real-time information about the printer’s temperature, extru-
sion rate, and other parameters. This information can be used
to identify issues such as clogs in the extruder or inconsis-
tencies in the temperature, which can then be corrected. For
example, if the extruder’s temperature is too high, Octoprint
can reduce the temperature to the appropriate level.

C. FAULT MITIGATION
Fault mitigation is a critical aspect of 3D printing as it
involves identifying and resolving errors or issues that may
arise during printing [38]. Once anomalies in the predicted
temperature readings of the printer occur, controlling the 3D
printer with Octoprint can aid in fault mitigation. The printing
process can be stopped immediately, and the issue can be
addressed. This can be particularly useful when the printer
is located in a different room or building, as it allows for
immediate action to be taken without having to access the
printer physically.

Controlling the 3D printer with Octoprint canmitigate fault
by providing real-time information, additional functionality
through plugins, and remote control capabilities. Using Octo-
print, errors can be identified and corrected quickly, ensuring
that printing is completed successfully and with minimal
issues.

V. EXPERIMENTAL SETUP
The experimental setup for the proposed system was applied
to a Creality Ender 5 FDM printer, with the parameters dis-
played in Table 1. The proposed approach is divided into
two parts: monitoring and prognosis. For in-situ monitoring,
an embedded temperature sensor collects the nozzle temper-
ature values (Te) and serves as input data for the machine
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Figure 6. Sample prints of the STL file (left) produced both high-quality
(center) and faulty output (right).

learning model. The proposed schemes are responsible for
predicting sensor values at a future timestep t+ 1 and detect-
ing any possible anomalies that may occur. By anticipating
any abnormalities, the system can prepare and avoid potential
errors.

The 3D printer’s embedded sensors were used for printer
monitoring. These sensors were accessed using a Raspberry
Pi running the OctoPi operating system that runs OctoPrint.
The experimental setup was designed to collect data from the
printer’s sensors and develop a machine learning algorithm
that can accurately predict normal and abnormal operating
conditions. The collected data was used to train and test
the machine learning algorithm developed using Python and
TensorFlow. The algorithm utilized the collected sensor data
to predict potential failures in the printing process, such as
nozzle clogs or filament jams, with high accuracy.

To monitor the behavior of a 3D printer, data is collected
from the printer during a printing job. This data is collected
every 1000 milliseconds and includes various parameters
such as extruder temperature, bed temperature, and environ-
ment temperature. The extruder temperature indicates the
temperature of the printer’s hot end, which is responsible
for melting the plastic filament used to create the 3D object.
The bed temperature refers to the temperature of the printing
bed, which is essential for ensuring proper adhesion of the
printed object to the bed. The environment temperature refers
to the temperature of the surrounding environment, which
can impact the printer’s performance. It is worth mentioning
that collecting data every 1000 milliseconds allows for the
detection of changes that may occur on shorter timescales.
Furthermore, collecting data over multiple printing jobs pro-
vides a more comprehensive view of the printer’s behavior
over time, which enables more accurate predictions of future
behavior.

A test file was printed 114 times to generate data, with
53 prints resulting in faulty output labeled as ‘‘error’’ and
61 prints of good quality labeled as ‘‘fine’’. To simulate the
errors produced by faulty printers, theGCode of the 3Dmodel
was created to force errors using a randomizer that allowed
printer parameters to fluctuate and replicate scenarios where
the printer malfunctions. Error prints include blowouts, sep-
aration, gaps between layers, and stringy. On the other hand,
quality prints are those with minimal to no surface issues.
Figure 6 shows what the STL file looks like, as well as an
example of a quality print and a defective print.

Table 2. Digital twin experimental implementation details.

Another significant aspect of digital twin development,
as discussed in this article, is the implementation settings of
the virtual environment. Table 2 provides detailed informa-
tion on the overall configuration used to design the digital
twin for 3D fault detection in this study. The digital twin
system was developed by dividing physical and cyber space,
following the concept of a digital twin manufacturing cell.
The digital twin environment is designed using the Unity
game engine within a Windows 10 environment. To facilitate
3Dmodeling of the printer, Blender was utilized to create and
export the model. The exported model was then incorporated
into Unity to design a laboratory environment, as depicted
in Figure 4. The virtual printer was designed to mimic the
functionality of the physical printer and also includes the
implementation of a machine learning model.

Regarding data transmission requirements within the digi-
tal twin, a low-overhead communication channel called Sock-
etIO was employed for efficient communication between the
server and the client. With this design, the digital twin of the
physical 3D printer has been established and can be utilized
for print simulation purposes. It is worth mentioning that
the design of the digital twin can be implemented in smart
manufacturing, especially for FDM 3D printer configura-
tions, as the 3D and machine learning models are specifically
designed for the plastic printer.

VI. PERFORMANCE EVALUATION
This section covers the model hyperparameter tuning to
obtain the best parameter, specifically the learning rate for the
proposed model. The best-performing learning rate was used
to compare the performance of other machine learning-based
approaches for fault prediction in 3D printers for additive
manufacturing.

A. MODEL HYPERPARAMETERS
To get the optimum performance, a number of hyperpa-
rameters are tuned and optimized during the training of
deep learning models. The learning rate, which regulates the
magnitude of the updates to the model’s parameters during
training, is one of the essential hyperparameters. If the learn-
ing rate is too high, themodel could overshoot the ideal values
and produce unstable training. However, a low learning rate
might lead to slower convergence and more extended training
periods.
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Figure 7. The validation accuracy of the 3D-AmplifAI model is evaluated
across different learning rates and epochs.

Another crucial hyperparameter to consider is the num-
ber of epochs, representing the iterations of the model over
the complete training dataset. The influence of epochs on
overfitting is contingent upon several factors, including the
complexity of the model, the size and diversity of the dataset,
and the utilization of regularization techniques. It is essential
to regulate the number of epochs appropriately to avoid the
risk of overfitting, where the model memorizes the training
data rather than acquiring general patterns applicable to new
data.

After performing a grid search, it was found that the
best-performing models were obtained with a learning rate
of 0.1 and 100 epochs, as shown in Figure 7. However,
it is important to note that the optimal hyperparameters
may vary depending on the specific dataset and problem
being addressed. Therefore, it is recommended to conduct a
comprehensive hyperparameter tuning process for each new
dataset in order to achieve optimal results.

B. COMPARATIVE ANALYSIS
After obtaining the best hyperparameter configuration, those
settings are used to evaluate the proposed ensemble model
and variousmachine learning algorithms. The test data is used
to evaluate the accuracy of each model. Figure 8 illustrates
the performance of the evaluated models ranging from 0 to 1.
The closer the accuracy is to 1, the better the model’s per-
formance in predicting the 3D printer fault condition. The
highest-performing model was obtained using the proposed
3D-AmplifAI model with an accuracy of 0.8235. Xception
Time, XGBoost, and TST were also able to achieve an
accuracy of 0.7647. In addition, the lowest performance was
produced by the Rocket+XGBoost model with an accuracy
of 0.667. Based on these results, the proposed model is able
to enhance the fault detection performance up to 7.689% due
to its capability to combine multiple results from different
machine learning models using an ensemble approach.

The next performance metric evaluated in this paper is
the confusion matrix that can be used to evaluate the fault

Figure 8. The comparison of various machine learning models in terms of
accuracy using test data.

classification model that has been constructed. These cate-
gories are true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) in the matrix. The number
of positive cases the model correctly predicts is the TP.
(i.e., faults correctly identified by the model). The number
of negative occurrences the model correctly predicts is TN.
(i.e., non-faults correctly identified by the model). FPs are
occurrences of non-faults that are mistakenly categorized as
faults. The number of faults mistakenly labeled as non-faults
is known as an FN.

The generated model’s efficiency at correctly identifying
defects can be assessed using performance metrics like preci-
sion, recall, accuracy, and F1-score, which can be calculated
using the confusion matrix. Precision is the proportion of
actual positive instances to all expected positive ones. The
recall is the proportion of real positives to all real positive
cases. The proportion of occurrences that were correctly clas-
sified to all of the instances is called accuracy. The harmonic
mean of recall and precision is the F1-score.

The developed model’s effectiveness in accurately identi-
fying faults can be determined by analyzing the confusion
matrix and calculating these performance metrics. The results
can also help identify areas for improvement in the model
development process.

Table 3 display the different values obtained after testing
the dataset on all machine learning models and Figure 9
illustrates the confusion matrix of the proposed 3D-AmplifAI
model. Based on the results, the model with the highest
number of TPs is Xception Time, with 4,620. This means that
the model correctly identified 4,620 instances of mechanical
faults. The model with the second-highest number of TPs is
TST, with 3,300.

On the other hand, the model with the lowest number of
TPs is Ridge Regression, with only 1,980. This means the
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Table 3. Confusion matrix summary.

Figure 9. Confusion matrix of the proposed 3D-AmplifAI ensemble
model.

model identified only 1,980 mechanical faults, much lower
than the other models. In terms of FNs, the model with the
lowest number is ResNet, which only missed 3,960 instances
of mechanical faults. In contrast, the model with the high-
est number of FNs is Rocket Ridge, which missed 5,940
instances. Themodel with the lowest number of FPs is Rocket
Ridge, with only 660. This means that the model wrongly
identified only 660 instances as mechanical faults. In con-
trast, the model with the highest number of FPs is Inception
Time with 1980. Overall, the Xception Time model seems
the best-performing model based on the highest number of
TPs. However, further analysis is required to determine which
model is the most appropriate for this specific use case.

Several factors may contribute to the values in the table.
First, the precision, accuracy, recall, and F1-score are all
measures of the performance of the variousmodels used in the
study. These metrics have a range from 0 to 1, where the clos-
est performance to 1 indicates the better model performance.
These metrics are commonly used to evaluate the perfor-
mance ofmachine learningmodels in classification problems.
Therefore, the detailed performance of eachmachine learning
model is shown in Table 4.

The 3D-AmplifAI model performed the best in preci-
sion, accuracy, recall, and F1- score, achieving scores of
0.8571, 0.8235, 0.7500, and 0.8000, respectively. This may
be due to the fact that it is an ensemble model combining
the strengths of multiple algorithms (TST, Xception Time,
ResNet, and Rocket XGBoost) to achieve better performance.
Additionally, it had the longest training time of all themodels,
suggesting that it could learn more complex patterns in the
data.

Xception Time and Inception Time models also performed
relatively well in accuracy, recall, and F1- score, achieving
scores above 0.7 for each metric. These models are based on
deep learning architectures that are specifically designed for
time series data, which contributed to their good performance
on this problem. Rocket+Ridge, Rocket+XGBoost, Logistic
Regression, and Ridge Regression models performed rela-
tively poorly compared to the other models, achieving F1-
scores below 0.7. These models are all based on linear or
logistic regression algorithms, which may not be able to
capture the complex patterns present in the data as effectively
as the other models.

Finally, it is worth noting that the computation time for
each model varies widely, with the fastest model (XGBoost)
taking only 0.0034 seconds to compute. In comparison, the
slowest model (3D-AmplifAI) took over 200 times longer at
0.2155 seconds. The choice of the model may also depend on
the computational resources available and the speed at which
predictions need to be made.

C. MODEL EFFICIENCY ANALYSIS
The final performance metric investigated in this article is
model efficiency. In this case, the computing time required
to perform the prediction is calculated. To achieve this,
a timestamp is set before the prediction process is conducted.
After the prediction process is completed, the new times-
tamp is determined, and the time difference between the
two timestamps is divided by the total prediction samples
to represent the processing time of each model to generate
a single prediction. Figure 10 shows the various computa-
tion times of the proposed 3D-AmplifAI model and other
machine learning models. The results indicate that the pro-
posed ensemble model achieves the longest prediction time
among the other models, with 215.5ms. On the other hand,
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Figure 10. The comparison of various machine learning models in terms
of computing time to generate a single prediction.

Table 4. Summary of precision, recall and F1-score from various machine
learning algorithms investigated in this work.

theXGBoostmodel is the fastest in conducting the prediction,
with a processing time of 3.4ms, which is significantly fast.
However, when comparing the trade-off between XGBoost
and the proposed 3D-AmplifAI in terms of model effi-
ciency and performance, the proposed ensemble model is
able to achieve significantly better performance compared
to XGBoost. Additionally, the computing time of 215.5ms
is still considerably fast to detect any faults in a real-time
system.

VII. CONCLUSION AND FUTURE WORKS
The study developed a digital twin-based system for monitor-
ing faults in a 3D printer using the 3D-AmplifAI algorithm.
The results showed that the 3D-AmplifAI algorithm had the
highest accuracy (82.35%), precision (85.71%), and F1-score
(80%) among the nine algorithms tested, making it a practical
approach for fault monitoring in 3D printing applications.
Compared to the other algorithms, including XGBoost and
Rocket Ridge, the 3D-AmplifAI algorithm demonstrated
superior accuracy, precision, and F1-score values. Also, the
performance trade-off between the proposed 3D-AmplifAI
is better compared to other machine learning-based models

presented in Section VI. The study suggests that integrating
this system into a 3D printer could improve its efficiency and
reliability.

The recommendations for future work include incorporat-
ing more sensors to capture additional variables, integrating
other machine learning techniques, developing real-time
decision-making capabilities, expanding the system to cover
other additivemanufacturing processes, deploying the system
on the cloud for remote access and monitoring, incorporat-
ing feedback mechanisms, and collaborating with industry
partners to validate the system’s effectiveness in real-world
scenarios. These future work suggestions aim to improve
the system’s accuracy, versatility, and applicability in various
manufacturing industries and enhance its effectiveness in
mitigating faults. Additionally, applying a federated learn-
ing approach could potentially reduce the communication
cost required for updating the machine learning model, par-
ticularly when combined with an effective client selection
mechanism [39].
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