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ABSTRACT Complex deep convolutional networks are typically designed to achieve state-of-the-art results.
Such networks require powerful computing resources and cannot work efficiently on resource-constrained
devices particularly for real-time use. To address these challenges, this study introduces resource-efficient
lightweight approaches for segmentation, localization, super-resolution, and classification tasks. On this
basis, we propose two novel lightweight architectures named: Lite-UNet and Lite-SRGAN.We validated the
effectiveness of our proposed networks using the large publicly available Plant Village dataset. Lite-UNet
network is used for performing segmentation and localization tasks, while Lite-SRGAN network is used for
performing the super-resolution task. The proposed Lite-UNet outperforms U-Net with slight gains of 0.06%
and 0.12% for dice coefficient and Intersection over Union (IoU) respectively while achieving significant
reductions of 15.9x, 25x, and 6.6x in terms of parameters, floating-point operations per second (FLOPs),
and inference time respectively. In addition, the proposed Lite-SRGAN achieves comparable qualitative
and quantitative results compared to SRGAN with significant reductions of 7.5x, 7.8x, and 2.7x in terms
of parameters, FLOPs, and inference time respectively when upsampling the low-resolution images from
64 × 64 to 256 × 256 (4x upscaling). Similarly, it achieves a reduction of 7.1x, 11.2x, and 1.9x when
upsampling from 128×128 to 256×256 (2x upscaling). For classification purposes, a two-stage classification
approach is introduced, in which the crop species and their leaf diseases are recognized respectively. Different
models are utilized in both stages including MobileNetV3, DenseNet121, and ConvNeXt. The best accuracy
obtained on the testing set is 99.76% when using the proposed methods together, which outperforms several
other related studies. Source code is available at https://github.com/hosamsherif/LiteSRGAN-and-LiteUNet

INDEX TERMS Lightweight networks, super resolution, generative adversarial networks (GANs), object
localization, segmentation, convolutional neural networks.

I. INTRODUCTION
Plant and crop diseases are considered one of the major
diseases that can threaten people’s life, as the crops is
one of the main foods that people rely on in their daily
lifestyle [1], [2], [3]. Automatic detection of plant diseases
in its early stages can lessen its harmful effects [4], [5].

Significantly so far, deep convolutional networks have
been designed to be complex, comprising an increased
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number of learnable parameters to achieve a higher accu-
racy. However, these powerful deep convolutional networks
require higher computational resources and come at high
latency and cost. Thus, these complex networks cannot
work efficiently on mobile and embedded devices partic-
ularly for real-time use. This study focuses on building
robust lightweight approaches for performing segmentation,
localization, super-resolution, and enhancing classification.
To achieve this purpose, two novel efficient lightweight
architectures, named Lite-UNet and Lite-SRGAN are intro-
duced. Both architectures are designed to work efficiently

67498 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0006-7783-8137
https://orcid.org/0000-0001-5001-5452
https://orcid.org/0000-0003-3104-6418
https://orcid.org/0000-0003-0874-7793


H. S. El-Assiouti et al.: Lite-SRGAN and Lite-UNet

in real-time environments with minimal possible latency and
low complexity especially for resource-constrained devices
while achieving promising results.

The proposed Lite-UNet network is used to perform the
segmentation task.Moreover, it is utilized to localize the plant
leaves in the images with the help of the contour detection
algorithm [6]. The resulting masks from the segmentation
step are used to crop the plant leaves from the input images
to neglect the effect of the surrounding background that
does not contain any relevant features. Cropping the region
of interest helps the classification model to focus more on
the discriminative features and reduce the convergence time
needed for training. However, training a Convolutional Neu-
ral Network (CNN) classification model typically requires
input images with a fixed resolution. Consequently, the
cropped leaves from the input images are mapped to a unified
resolution before being fed into the classification network.
Since the use of basic interpolation techniques (e.g., bicubic,
bilinear, and nearest neighbor) for enlarging images leads
to unsatisfactory recovery of textures and high-frequency
details in the resulting interpolated image, especially when
the cropped image resolution is relatively small. Thus, a novel
accurate, lightweight super-resolution architecture (Lite-
SRGAN) is introduced to efficiently map the low-resolution
cropped image to the required resolution while preserving the
texture and high-frequency details. The segmentation, super-
resolution, and classification experiments are conducted
and evaluated on the large publicly available Plant Village
dataset [4], [7].

To analyze the efficacy of the Lite-UNet architecture, it is
compared to the U-Net network [8] in terms of performance
(i.e., dice coefficient, IOU, accuracy), model complexity
(i.e., parameters, FLOPs), and latency (i.e., inference time).
Lite-UNet generates accurate segmentation masks with slight
increases of 0.06% and 0.12% for the dice coefficient and
IOU respectively compared to U-Net. However, Lite-UNet
achieves a significant improvement in terms of complexity
and latency with 15.9x fewer parameters than U-Net as well
as 25x fewer FLOPs. In addition, our model shows faster
inference compared to U-Net with an inference speed-up of
6.6x and 1.6x on CPU and GPU respectively.

Lite-SRGAN is also compared to one of the state-of-
the-art perception-based super-resolution models which is
SRGAN [9]. The proposed novel Lite-SRGAN generates
high quality super-resolved images with a noticeable reduc-
tion in terms of parameters, FLOPs, and inference time, while
achieving comparable qualitative and quantitative results
with SRGAN. In this study, two versions of the proposed
Lite-SRGAN are introduced. The first version upscales the
low-resolution image (LR) by a factor of 4 (i.e., 64 × 64 to
256 × 256), whereas the second version upscales the LR
image by a factor of 2 (i.e., 128 × 128 to 256 × 256). The
first version of Lite-SRGAN achieves a 7.5x, 7.8x, 2.7x, and
1.2x reduction in terms of parameters, FLOPs, CPU inference
time, and GPU inference time compared to the corresponding
SRGAN version. On the other hand, the second version of

Lite-SRGAN achieves a 7.1x, 11.2x, 1.9x, and 1.5x reduction
in terms of parameters, FLOPs, CPU inference time and
GPU inference time compared to the corresponding SRGAN
version. It is noteworthy to mention that the proposed Lite-
UNet and Lite-SRGAN models can be applied to any other
task or application where real-time segmentation and super-
resolution are crucial.

Finally, a two-stage hierarchical classification approach is
introduced, where the first stage classifies the given input
image into one of the 9 plant leaf species, and the second stage
classifies the input image into one of the classes that belongs
to the determined category from the first stage. Different
state-of-the-art pre-trained CNN networks are used in both
stages including MobileNetV3 [10], DenseNet121 [11], and
ConvNeXt [12]. These models achieved high comparable
results, however, MobileNetV3 is considered the most
suitable one for the proposed full lightweight approach due
to its low computational cost and fast inference.

The main contributions in this paper can be summarized as
follows:

1. A novel lightweight architecture for segmentation
named Lite-UNet is proposed, which take advantage of
achieving superior results with significantly fewer parame-
ters, low complexity, and high-speed inference.

2. A novel lightweight architecture for super-resolution
named Lite-SRGAN is proposed. It efficiently maps a
given low-resolution image to a high-resolution one with
a significant reduction in terms of the parameters, FLOPs,
and latency. We also demonstrate the effect of combining
different loss functions and how they contribute to the proper
reconstruction of the super-resolved images.

3. Localizing the plant leaves in the given input image by
utilizing the segmentation masks obtained by the Lite-UNet
network along with the contour detection algorithm.

4. A two-stage hierarchal classification approach is pro-
posed, where the crop species and their diseases are classified
respectively.

5. Extensive experiments were conducted to demonstrate
the efficiency of each proposed method on its own and
how these methods can be combined to form a superior
methodology.

The rest of this paper is organized as follows: Related
work is discussed in Section II. The proposed methods and
the overall approach are discussed in detail in Section III.
Experimental results and extensive analysis for each method
are presented in Section IV. Finally, Section V provides the
conclusions and future work.

II. RELATED WORK
Automatic classification and detection of different plant dis-
eases have gained significant interest from many researchers
over the past few years. Advances in image processing,
machine learning and deep learning techniques have played a
vital role for developing different approaches and innovative
solutions for classifying and detecting different plant diseases
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in the early stages. This section discusses some recent state-
of-the-art studies related to our proposed work.

Harakannanavar et al. [13] introduced an approach for leaf
disease identification based on machine learning and image
processing algorithms. This study considered 6 different
tomato leaf disorders extracted from the Plant Village dataset.

Histogram equalization and k-means clustering were used
for the preprocessing step. Different feature extractions
algorithms are utilized for extracting features from the
images, including DiscreteWavelet Transform (DWT), Gray-
level Co-occurrence Matrix (GLCM), and Principal Com-
ponent Analysis (PCA). Finally, different models including
K-Nearest Neighbor (KNN), Support Vector Machines
(SVM), and CNN, are used to classify the extracted features.
Their proposed method achieved an accuracy of 99.09%
by utilizing DWT+PCA+GLCM as feature extraction tech-
niques and custom CNN as their classifier.

Abbas et al. [14] proposed a deep learning method for
identifying different tomato diseases. Conditional generative
adversarial network (cGAN) was utilized as an augmentation
technique for extending the training set with new synthetic
samples. A pre-trained DenseNet121 model is trained on
tomato leaf images extracted from the Plant Village dataset
and the synthetic samples generated by cGAN. This method
was carried out on 3 different number of classes including
5 classes, 7 classes, and 10 classes, achieving accuracies of
99.51%, 98.65%, and 97.11% respectively.

In [15], Bedi and Gole proposed a hybrid model based
on convolutional neural network (CNN) and convolutional
autoencoder (CAE). Their proposed method considered
detecting bacterial diseases in peach leaf images extracted
from plant village dataset. The extracted peach dataset
consisted of 2 classes including healthy and bacterial spot
disease with 4457 total number of images. The convolutional
auto encoder network reduces the dimensionality of the
input images by compressing the domain representations of
the images while maintaining the most important features.
Thereafter, the compressed representations of peach leaf
images were fed into a CNN architecture to classify whether
the leaf is healthy or has a bacterial spot disease. This
method achieved an accuracy of 99.35% on the training set
and 98.38% accuracy on the testing set with only 9,914
trainable parameters. In [16], Alatawi et al. utilized a VGG-
16 model pre-trained on the ImageNet dataset with 3 custom
dense layers to classify different plant diseases. 19 differ-
ent classes including apple, corn, tomato, grape diseases
as well as healthy classes are considered. This method
achieved an accuracy of 95.2% using the Plant Village
dataset.

Hassan and Maji [17] introduced a robust lightweight
CNN approach based on inception building block and
residual connections for plant disease classification. Standard
convolution layers in the inception block are replaced with
depth-wise separable convolution, and thus reducing the total
number of parameters by a margin of 70%. This model was
trained and evaluated on 3 different plant disease datasets.

The testing accuracy obtained on the rice disease dataset
was 99.66%, and on the Plant Village dataset when using
17 different classes for corn, potato, and tomato diseases was
99.36%. Finally, the testing accuracy achieved on the cassava
dataset was 76.59%.

A novel approach for automatic and reliable leaf disease
detection based on the Modified U-Net and EfficientNet was
proposed by Chowdhury et al. [18]. Their experiments were
conducted on different tomato leaf diseases from the Plant
Village dataset. The introduced Modified U-Net segments
the leaf region from the given image, whereas EfficientNet
classifies the segmented images obtained from the Modified
U-Net. Different preprocessing techniques were applied
to the images including data rescaling and normalization.
In addition, different augmentation techniques have been
applied to balance the dataset including image translation,
rotation, and scaling. The modified U-Net achieved a Dice
coefficient of 98.73%. Moreover, EfficientNet-B7 achieved
accuracies of 99.95% and 99.12% for classifying 2 classes
and 6 classes respectively. Finally, EfficientNet-B4 achieved
99.89% accuracy for classifying 10 different classes.

Tuncer [19] proposed a novel approach for plant leaf
disease detection using a hybrid cost-optimized CNN. The
proposed hybrid model is based on inception network and
depth-wise separable convolution, resulting in a significant
reduction in the model parameters. This hybrid model was
trained and tested on 30 different classes extracted from the
Plant Village dataset, achieving an accuracy of 99.27% with
a reduction of 75% in the total number of parameters.

In [20], Zhao et al. introduced a novel two-stageGenerative
Adversarial Network called Double-GAN. It consists of two
stages. The first stage utilizes the Wasserstein generative
adversarial network (WGAN) to generate unhealthy leaves
with a resolution of 64 × 64, while in the second stage
a super-resolution generative adversarial network (SRGAN)
was used to obtain high-quality images with a resolution of
224 × 224 while preserving the image quality as much
as possible. The DoubleGAN-based method was utilized
to balance the dataset classes by increasing the number
of instances for the minor classes. They also introduced
a two-stage classification approach. where the plant type
is classified in the first stage into one of the 5 different
classes extracted from the Plant Village dataset (apple, corn,
grape, potato, and tomato) using three different classifiers
(VGG16, ResNet50, and DenseNet121). Subsequently, the
second stage classifies the given image into one of the
10 tomato leaf categories using the same three classifiers used
in the first stage. This method achieved accuracies of 99.74%
and 99.53% for the first and the second stages respectively.

III. METHODOLOGY & PROPOSED WORK
The proposed methods for segmentation, localization, super-
resolution, and multi-stage classification are discussed in
this section. The following subsections provide a detailed
description of each method, as well as the overall proposed
methodology.
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A. SEGMENTATION
MobileNets is one of the most famous CNNs introduced by
a team of Google researchers [21]. MobileNet architecture
mainly focuses on reducing the number of operations
and trainable parameters to match the limited design
requirements for mobile vision applications while retaining
high classification accuracy compared to the state-of-the-
art architectures. This is achieved by replacing the high
computation regular convolution operations with depth-
wise separable convolution operations. Different versions of
MobileNets were recently released [10], [21], [22], we used
MobileNetV2 [22] because of its high performance, fast
computation and because it is well-suited for our whole
segmentation proposed architecture.

MobileNetV2 architecture introduces an inverted residual
structure consisting of two types of inverted bottleneck
blocks: one with stride=1 and the other with stride=2
for downsampling the feature map resolution with a factor
of 2. The block with stride=1 has a residual connection,
whereas the block with stride=2 does not have a residual
connection as shown in Figure 1. Both blocks consist
of three consecutive layers. The first layer consists of
three consecutive operations: 1 × 1 convolution (i.e.,
expansion convolution), batch normalization, and ReLU6
activation function, whereas the second layer consists of
3×3 depth-wise convolution followed by batch normalization
and ReLU6 activation. Finally, the third layer consists a of
1 × 1 convolution (i.e., projection convolution) followed by
batch normalization without a non-linear activation function.

FIGURE 1. MobileNetV2 blocks.

U-Net architecture [8] is a well-known CNN that was
released in 2015. Since then, it has shown promising results in
many different tasks such as biomedical image segmentation,
satellite image segmentation, image generation, and image
inpainting [23], [24], [25]. The main structure of U-Net

consists of an encoder and a decoder and skip connections
connecting them together to form a U-shaped architecture.

The proposed Lite-UNet model main building blocks is
inspired from both theU-Net andMobileNetV2 architectures.
Similar to U-Net, the Lite-UNet model consists of two
paths: a contracting path (encoder network) followed by
an expansive path (decoder network). The encoder part is
mainly based on the MobileNetV2 network. Moreover, the
MobileNetV2 encoder network is pre-trained on the Ima-
geNet dataset [26]. The proposed architecture took advantage
of using a pre-trained encoder to help the segmentation model
converge faster and learn better feature representations. The
encoder part encodes high-level semantic features from the
given input image through a sequence of encoder blocks of
the MobileNetV2 architecture, shown in Figure 1. To build
a smaller and faster encoder with a reduced number of
parameters, the width multiplier of MobileNetV2 is set to
0.35. The decoder part takes the high-level semantic features
obtained from the encoder and generates a segmentationmask
that corresponds to the given input image. Skip connections
are used to concatenate the feature maps in the encoder
part with their corresponding feature maps in the decoder
part, to transfer the information from the earlier layers in
the encoder path to the later layers in the decoder path, and
thus allowing the recovery of the spatial information lost
during downsampling, and enabling the segmentation model
to produce more accurate masks.

As shown in Figure 2, the input image, and layers
(4,10,19,40) are extracted from the encoder part and con-
catenated with their corresponding feature maps in the
decoder part via skip connections to refine the details in the
decoding stage. The feature maps that are extracted from
the encoder part to be concatenated with the decoder part
are those produced from the 1 × 1 expansion convolution
layers (i.e., after the ReLU activation function) as they
are the deeper feature maps in the MobileNetV2 encoder.
Thus, we can preserve as much information as possible
from the earlier layers in the encoder part. Each step in
the decoding (expansive) path includes an upsampling layer
which doubles the resolution of the previous feature map,
a concatenation with the corresponding feature map in the
encoder path, followed by 2 convolution layers, where each
convolutional layer uses a 3 × 3 kernel size followed by
a batch normalization layer and ReLU activation function.
Finally, a 1 × 1 convolution layer is applied with only one
kernel, followed by a sigmoid activation function to produce
the desired segmentation mask with the same resolution of
the given input image.

The Dice loss function is used to optimize the proposed
Lite-UNet architecture. The Dice coefficient has been
considered in many research papers as a main metric
for evaluating the performance of different segmentation
networks. Thereafter, it was adapted by Milletari et al. [27]
to be used as a loss function for optimizing segmentation
networks. The relationship between the Dice coefficient and
Dice loss is inversely proportional. Thus, when the Dice
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FIGURE 2. The proposed Lite-UNet architecture.

coefficient value increases, the more intersection occurs
between the predicted mask and the ground truth mask, and
the Dice loss value approaches zero. On the other hand,
when the Dice coefficient value decreases, the Dice loss value
approaches one. The Dice loss function is given by equation
(1) and (2):

ldice = 1 − dice_coefficent (1)

ldice = 1 −
2yŷ+ ϵ

y+ ŷ+ ϵ
(2)

where y refers to the ground truth mask, ŷ refers to the
segmentation mask generated by the network and ϵ term is
a very small value added to the equation to avoid division by
zero issue when y = ŷ = 0.

B. SUPER RESOLUTION
Super-resolution has attracted significant interest over the
last decades. Super-resolution is widely used in various
applications such as improving the resolution of medi-
cal, ariel and satellite images, as well as video stream-
ing [28], [29], [30]. Many deep-learning-based approaches
have been released over the past few years and have attracted
much popularity due to their efficiency in mapping a low-
resolution image into a higher one. Some perceptual-oriented
approaches focused on improving the quality of super-
resolved images [9], [31], [32], [33], while other studies

focused on building a lightweight super-resolution model for
real time image enhancement [34], [35], [36], [37].

One of the aims of this study is to build a robust,
lightweight, and resource-efficient super-resolution network
with a significantly fewer number of parameters and faster
inference time. Thus, enabling our model to work smoothly
in a real-time environment for either enhancing images or
videos. On the other hand, we focus on improving the
perceptual quality of the super-resolved images. In this
section, the proposed Lite-SRGAN architecture is discussed
in detail as well as the loss functions used to optimize the
generator and discriminator networks.

1) LITE-SRGAN ARCHITECTURE
The main purpose of the introduced Lite-SRGAN network
is to obtain a super-resolved image (SR image) from a given
low-resolution image (LR image) in a very short inference
time. This enables its deployment on mobile devices for real-
time applications. In addition, the proposed Lite-SRGAN
also focuses on estimating a good-looking super-resolved
image where the clarity of the obtained super-resolved image
details surpasses many state-of-the-art recent studies that
address the same problem but with much less inference
time and fewer trainable parameters. The generator training
process is done by feeding a low-resolution image as an input
to the generator network. Subsequently, the generator predicts
a super-resolved image. The total generator loss is then
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FIGURE 3. The proposed Lite-SRGAN architecture.

calculated based on the original high-resolution (HR) image
and the super-resolved (SR) image, where the generator
network is optimized to generate a SR image with realistic
textures and minimal visual distortion so it can fool the
discriminator.

The generator architecture blocks are inspired from
the inverted residual blocks in the MobileNetV2 archi-
tecture, [22] which was previously depicted in Figure 1.
These blocks focus on substituting high computation standard
convolution with separable depth-wise convolution, and thus
the total number of parameters of the generator network is
reduced. As shown in Figure 3, the generator network consists
of B identical blocks (B= 12), where each block consists of a
1×1 convolution layer (i.e., expansion convolution) followed
by a batch normalization (BN) layer and a ReLU activation
function, then a 3 × 3 depth-wise convolution layer takes
place followed by a BN layer and a ReLU activation function.
Finally, another 1 × 1 convolution layer (i.e., projection
convolution) takes place followed by a BN layer and an
element-wise sum layer to sum the output of the previous
block (i-1) with the output of the current block (i). The role
of these B blocks is to obtain high level semantic features.
Following the B blocks there exist upsampling blocks that
are responsible for increasing the resolution of the LR image,
where each upsampling block consists of an upsampling layer
followed by 3 × 3 convolution layer and a PReLU activation
function [38]. At the end, we have a convolution layer with
3 kernels each of size 3× 3, and a tanh activation function to
generate a 3-channel super-resolved image that has a range of
values from -1 to 1 due to the tanh activation function.

Two different versions of the generator are used in this
study depending on the dimensionality of the input LR image:
one uses only one upsampling block to increase the resolution
of the given LR image by a factor of 2, while the other version
uses two upsampling blocks to increase the resolution of the
given LR image by a factor of 4.

The discriminator network is simply a classifier that
tries to distinguish between the high-resolution images
coming from the real data and the super-resolved images
obtained by the generator network. Both generator and
discriminator networks are competing against each other
during training which is the general idea of any GANs based
architecture [39]. The discriminator network is optimized
during training to get better each time at distinguishing
between real samples and generated super-resolved samples,
whereas the generator is optimized based on how well
the generated samples deceive the discriminator, so both
are improving depending on each other. The discriminator
architecture is shown in Figure 3. It consists of 8 blocks,
those used blocks are inspired from the blocks used in the
SRGAN discriminator, but the main modification is that each
convolution layer is replaced with a depth-wise separable
convolution layer, and hence leading to much fewer trainable
parameters and less training time. The depth-wise separable
convolution layer consists of a 3 × 3 depth-wise convolution
followed by a 1 × 1 convolution (pointwise convolution).

Each discriminator block consists of a depth-wise separa-
ble convolution layer followed by a BN layer and a leaky
ReLU activation function (α = 0.2), except for the first block,
it does not contain a BN layer. Four of these eight blocks
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use a strided convolution to downsample the resolution of the
feature map by a factor of 2. The number of filters is doubled
every two blocks to increase the depth of the resulting feature
map. The 64 features obtained from the last layer are then
fed to a dense layer followed by a leaky ReLU activation
function (α = 0.2) and a sigmoid activation function is used
in the last layer for classification purposes. The discriminator
network is optimized using the binary cross-entropy (BCE)
loss function.

2) LOSS FUNCTIONS
a: PERCEPTUAL LOSS
Perceptual loss [40], [41] is mainly used to increase the
perceptual similarity between the original image and the
generated one by optimizing the network in the content
(feature) space to focus on retaining the content of the original
image while generating a new one, rather than optimizing
the network in the image (pixel) space. Perceptual loss is
simply defined by first finding the content features (high-
level features) for the original HR image and the generated SR
image, and then calculating the mean square error between
these extracted features. The ith convolutional layer in the pre-
trained VGG19 network [42] is utilized to extract the content
features. Since CNNs’ early convolution layers extract low-
level features, while later convolutional layers capture more
information regarding the content of the image. Therefore,
the last convolutional layer (before ReLU activation) is used
to define our perceptual loss function. The perceptual loss
function is defined as follows:

lperceptual =
1

WiHiCi

∑
x,y,c

(φi
(
ISR

)
x,y,c

− φi

(
IHR

)
x,y,c

)
2

(3)

where φi refers to the feature map extracted from the ith

convolutional layer within the network;Wi,Hi, and Ci refers
to the feature map dimensions, IHR refers to the original HR
image; and ISR refers to the reconstructed SR image obtained
by the generator network.

b: ADVERSARIAL LOSS
The adversarial loss role is to fool the discriminator,
so the generator is optimized to deceive the discriminator.
The adversarial loss function contributes to optimizing the
generator learning process by penalizing the generator if the
discriminator figures out that the generated image is not real-
istic with some probability. Adversarial loss was introduced
in the original GAN paper by Goodfellow et al. [39] and then
updated by the researchers [9] for improving the gradient
behavior to be defined by the following equation:

ladv = − log
(
DθD

(
ISR

))
(4)

where θD is the parameters of the discriminator network,
and DθD

(
ISR

)
is the probability of how the generated SR

image looks like a realistic HR image from the discriminator
perspective.

c: PER-PIXEL LOSS
The Per-Pixel loss simply finds the mean absolute difference
(L1 loss) between each pixel in the original image and
the corresponding pixel in the generated image, it gives a
better visual appearance for the generated image by slightly
smoothing it towards high frequency noise, but on the other
hand it sometimes lessens the proper reconstruction of high
frequency content details. It works well beside the perceptual
loss, as the perceptual loss focuses mainly on retaining the
content of the original image, and the per-pixel loss slightly
smooths the reconstructed image; thus, its contribution to the
total generator loss should be carefully weighted. The Per-
Pixel loss function is defined as follows:

lMSE =
1

WHC

∑
x,y,c

∣∣∣ISRx,y,c − IHRx,y,c
∣∣∣ (5)

where W, H, and C refer to dimensions of the image;
IHR refers to the original HR image; and ISR refers to the
reconstructed SR image obtained by the generator network.

d: STYLE LOSS
Style loss is similar to the perceptual loss, but it measures
the square of the differences between the gram matrix of
high-resolution image features and the gram matrix of super-
resolved image features, [40], [43] where the gram matrix
represents the amount of correlation between feature maps
resulting from a given convolutional layer in the network.
The feature maps obtained by a given convolutional layer l
in a CNN network should have dimensions of Nl × Hl ×

Wl , where Nl refers to the number of feature maps obtained
at layer l and Hl,Wl refer to the dimensions of each feature
map at layer l. This can be reshaped into a matrix with
dimensions of Nl rows and HlWl columns, so the final
features matrix is given by shape Nl × Ml where Ml is a
vectorized representation of Hl × Wl . Therefore, the feature
matrix at layer l is denoted as F l ∈ RNl×Ml , where F li,k (I )
refers to the activation map at layer l of the ith feature at
position kwhen image (I ) is passed as an input to the network.

The correlations between feature maps at layer l are given
by Gram matrix Gl ∈ RNl×Nl , where Gli,j is computed as the
inner product between the vectorized feature maps i and j
in layer l normalized by the spatial dimension of the feature
matrix at layer l

Gli,j(I ) =
1

M lN l

∑
k

F li,k(I )F
l
j,k (I ) (6)

The style loss at layer l is defined as the mean square of the
differences between the gram matrices of the high-resolution
image features and the super-resolved image features, those
features are obtained by passing the high-resolution and
super-resolved images to a pre-trained VGG16 network. [42]

El =
1

N lN l

∑
i,j

(Gli,j
(
IHR

)
− Gli,j(I

SR))
2

(7)

where Gl
(
IHR

)
refers to the gram matrix at layer l given

a high-resolution image, while Gl
(
ISR

)
refers to the gram
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FIGURE 4. The process of localization and cropping the region of interest object.

matrix at layer l given a super-resolved image obtained by
the generator. The network is optimized by minimizing the
style loss across multiple layers, so the final equation of the
style loss is defined by:

lstyle =

L∑
l=0

wlEl (8)

where wl are the weighting factors that control the contribu-
tion of each layer to the total style loss function.

e: TOTAL LOSS
The final loss function used to optimize our generator
network is a weighted combination of the 4 sub-loss
functions and is given by equation (9). Where λ ′s are the
weighting parameters used to balance the contribution of each
loss term.

ltotal = λ 1lperceptual + λ2ladv + λ3lMSE + λ4lstyle (9)

C. PREPROCESSING AND LOCALIZATION
Figure 4 shows the steps for localizing and cropping the
region of interest (i.e., plant leaf area). The input leaf image is
fed into the proposed Lite-UNet architecture to obtain the cor-
responding segmentation mask. Thereafter, we superimpose
the original image with the predicted segmentation mask to
obtain the segmented leaf. Since most of the images contain a
large background area, which may reduce the performance of
the classifier and slow its convergence process [44]. Thus, the
undesired surrounding background is neglected by cropping
only the region of interest. Moreover, the segmentation
step is also very important in the proposed methodology,

as we localize the leaf beside classifying it. The cropping
process is done by first obtaining the segmentation mask by
applying the proposed Lite-UNet on the input images. Then
a set of erosion operations followed by dilation operations
(morphological opening) are performed on the predicted
segmentation mask to remove any existing noise that may
result due to the segmentation step. Afterwards, each object
contour is grabbed from the segmentation mask using the
contour detection algorithm, [6] and the extreme points of
each object are calculated accordingly. Finally, the calculated
extreme points are used to crop the object. The coordinates
of these calculated extreme points are also projected onto the
original image and connected to perform the localization task
prior doing the classification task.

After obtaining the cropped leaf images from the given
input images as shown in Figure 4, we need to get a unified
resolution for all the training images to train a classifier. Each
cropped image is upsampled based on its resolution using
three different ways as depicted in Figure 5; If both the width
and height of the cropped image are less than 64, then resize
with padding technique is applied on the cropped image to
obtain an image of resolution 64× 64, then the Lite-SRGAN
generator with 2 upsampling blocks is used to increase the
image resolution by a factor of 4 to obtain a super-resolved
image with a resolution of 256 × 256. However, if the given
cropped image width and height are less than 128, then resize
with padding technique is applied to obtain an image of
resolution 128 × 128, then the Lite-SRGAN generator with
1 upsampling block is used to increase the image resolution
by a factor of 2 to obtain a super-resolved image with a
resolution of 256 × 256. Otherwise, if either the width or
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FIGURE 5. The process of obtaining a super-resolved image based on the given cropped image resolution.

FIGURE 6. An example illustrating how resize with padding technique is applied to the cropped region of interest.

height is greater than 128, then resize with padding technique
is applied to obtain a 256 × 256 upsampled image.
The idea behind utilizing the resize with padding technique

instead of resizing the cropped image to a fixed size directly
without padding, is to preserve the aspect ratio of the
cropped object, as changing the original object shape may
lead to undesired results in classification beside undesired
visual distortion of the appearance of the object. Resize with
padding technique idea is to simply resize an image to a
fixed resolution without changing the aspect ratio of the
object shape. As shown in the example in Figure 6, resize
with padding technique works by first resizing the given
image while preserving the aspect ratio, followed by padding
the smaller dimension with zeros to match the requested
dimensions.

D. TWO-STAGE CLASSIFICATION HIERARCHICAL
APPROACH
In this work, a two-stage hierarchical classification approach
is proposed, as depicted in Figure 7. The first stage classifies
the input image into one of the nine different plant types,
whereas the second stage identifies the diagnosis of the
determined plant type whether, it is healthy or diseased and
the type of disease if exists.

E. FULL METHODOLOGY
The full pipeline of the whole proposed method is shown
in Figure 8. First, the input image is fed into the proposed
Lite-UNet network to obtain the corresponding segmentation
mask that highlights the exact location of the plant leaf.
Afterwards, the obtained mask is superimposed with the
original input image to obtain the segmented leaf only.
Thereafter, we focus on cropping the region of interest, which
is the plant leaf in our case, to neglect the effect of the
background and to make it easier for the classifier network
to learn the relevant features only related to the foreground
object of interest, thereby enhancing the performance of the
classifier network, and reducing its convergence time. On the
other hand, segmentation is a crucial step in the proposed
work, as it enables us to localize the plant leaf by finding
the object contour with the help of the contour detection
algorithm. The extreme points of the obtained contours are
calculated accordingly. These extreme points represent the
coordinates of the object boundary, which are subsequently
projected onto the original input image to perform the
localization task. In addition, these extreme points are used to
crop the object of interest out of the entire image. Resize with
padding technique is then applied to the cropped image based
on the conditions defined in Figure 5. If the dimension of the
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FIGURE 7. The proposed two stage classification hierarchical approach.

FIGURE 8. The pipeline for the whole proposed methodology.

VOLUME 11, 2023 67507



H. S. El-Assiouti et al.: Lite-SRGAN and Lite-UNet

resulting image after using the resize with padding technique
is either 64 × 64 or 128 × 128, then it is fed into the trained
generator of Lite-SRGAN to obtain a high-quality super-
resolved image instead of using other traditional upscaling
techniques such as bicubic and bilinear. as these techniques
will lead to image distortion when enlarging the image,
especially if the dimension of the image is relatively small.
Finally, the super-resolved image is fed into the first stage
classifier to identify the plant leaf type. After that, the second
stage classifier identifies the diagnosis of the given plant leaf
image. Moreover, as depicted in Figure 8, we project the
coordinates of the leaf boundaries on the original input image
to perform the localization task beside classification.

IV. EXPERIMENTAL RESULTS
All experiments in this work were conducted on Nvidia Tesla
T4 GPU. This section provides a detailed description for
the 1) dataset 2) evaluation metrics 3) segmentation results
4) super-resolution results & analysis and 5) results of the
two-stage hierarchical classification approach.

A. DATASET
The plant village dataset [4] is the largest and most popular
open-source dataset for different plant leaf diseases utilized
by many researchers in the last few years for training and
testing purposes. It is mainly used to classify different
leaf crop diseases. The dataset consists of 54303 healthy
and diseased leaf images divided into 38 categories from
different 14 plant crop species with a fixed resolution
(i.e., 256 × 256). In this research 9 different crop species
are selected, belonging to 33 different categories. These
categories are extracted from the plant village dataset and
their corresponding masks are obtained from an open-source
leaf mask dataset [7] for segmentation purposes.

The 9 different plant species are selected so we can
make a multi-stage classification network. The first stage is
responsible for identifying the plant leaf type, whereas the
second stage is responsible for identifying the leaf diagnosis.
Each type of plant leaf from the 9 types considered contains
one healthy class and one or more diseased classes. Table 1
lists the categories belonging to each plant crop type and the
number of training and testing images used for each category.
The number of training and testing images varies from one
category to another depending on the number of images in
each category; the percentage of the training set used is 80%,
while the remaining 20% of the data are used for testing
purposes.

B. EVALUATION METRICS
The evaluation metrics used for assessing the performance of
the considered classification models in this study are defined
in equations (10) – (13).

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(10)

Precision =
TP

TP+ FP
(11)

Sensitivity(Recall) =
TP

TP+ FN
(12)

Specificity =
TN

TN + FP
(13)

The evaluation metrics used to assess the performance of
the proposed segmentation model in addition to accuracy are
defined in equations (14) and (15):

IoU (Jaccard index) =
TP

TP+ FP+ FN
(14)

Dice Coefficient =
2xTP

(TP+ FP) + (TP+ FN )
(15)

where true positive (TP) refers to the number of samples from
a given class that are correctly classified, false positive (FP)
is the number of samples that are incorrectly classified to a
given class while belonging to other classes, false negative
(FN) is the number of samples that are misclassified to other
classes, and true negative (TN) is the number of samples that
are correctly classified to other classes.

C. SEGMENTATION RESULTS
This section presents in detail the training configurations
and results obtained using the proposed Lite-UNet model.
The model is trained and evaluated on the plant village
dataset and its corresponding leaf mask dataset. The proposed
segmentation method is mainly designed to work on mobile
and low computing devices by using a lightweight encoder,
and thus reducing the network latency and enabling it to work
smoothly in a real time environment.

To illustrate the efficiency of the proposed Lite-UNet,
we compared its obtained results with U-Net network.
We trained the U-Net network on the same training samples
used to train our proposed Lite-UNet network, and fairly
evaluated both networks on the same test set based on
the evaluation metrics stated in equations (14) and (15).
Moreover, both models were compared in terms of complex-
ity (parameters and FLOPs) and latency (inference time),
as shown in Table 3. It is demonstrated from Table 3 that
the proposed Lite-UNet surpasses the U-Net network in
all evaluation aspects, which reveals the efficiency of the
proposed Lite-UNet model. The configurations used to train
both models are listed in Table 2. Figure 9 shows some
random test samples for the plant leaf images and their
corresponding ground truth masks, as well as the predicted
mask generated by the proposed Lite-UNet network, and the
segmented region of interest obtained by superimposing the
original image with the obtained predicted mask.

Where LR reduce patience refers to the number of training
epochs with no improvement, after which the learning rate
will be decreased by the given reduce factor.

D. SUPER-RESOLUTION RESULTS & ANALYSIS
1) TRAINING DETAILS FOR LITE-SRGAN
All the experiments regarding super-resolution were per-
formed on a 10,000 random sample from the plant village
dataset. Two different versions of the proposed Lite-SRGAN
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TABLE 1. Distribution of the training and testing samples for each category.

TABLE 2. Training parameters configurations of the proposed Lite-UNet
model.

are utilized, the first version uses two upsampling layers,
while the second version uses only one upsampling layer.
For data preparation purposes, the LR images (64 × 64) are
obtained by downsampling the HR images (256 × 256) with

a scaling factor of 4 using the bicubic interpolation function
in the first version. However, in the second version the LR
images (128 × 128) are obtained by downsampling the HR
images with a scaling factor of 2.

The training process is divided into two steps. Similar to
the PSNR oriented models, in the first step, the generator is
pre-trained slightly with L1 loss for 105 update iterations to
avoid getting stuck in the localminima.Moreover, pretraining
the generator enables the network to produce a well-looking
super-resolved image, and thus allowing the discriminator to
receive good super-resolved images in the initial iterations
instead of extremely fake ones, which makes its task harder
by focusing more on discriminating texture details. After
that, the pre-trained model weights act as an initialization
for the proposed Lite-SRGAN generator network. Secondly,
we train both the generator and discriminator networks
simultaneously. The loss function used to train the generator
network is given by equation (9) where λ1 = 4x10−4,
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TABLE 3. Comparison of model performance (accuracy, Dice score, IoU), model complexity (Params, FLOPs) and latency (averaged inference time) for
U-Net and the proposed Lite-UNet.

FIGURE 9. Random plant leaf samples (1st column), corresponding
ground truth masks (2nd column), predicted masks generated by the
proposed network (3rd column), corresponding segmented leaf (4th

column).

λ2 = 1x10−3, λ3 = 0.2, λ4 = 2x10−7. For optimizing the
proposed Lite-SRGAN, we used the Adam optimizer [45] for
both the generator and discriminator networks, where both
the generator and discriminator learning rates are initialized
with 1x10−4 and decayed by a factor of 2 every 105 mini-
batch updates. The mini-batch size is set to 8.

2) QUANTITATIVE AND QUALITATIVE RESULTS
To fairly evaluate the effectiveness of the proposed Lite-
SRGAN, it is compared to one of the state-of-the-art
perception-driven super-resolution models SRGAN. Both the
proposedmodel and SRGANmodel are trained and evaluated
using the same training and testing sets from plant village
dataset. Since there is no unified and effective metric for
evaluating the performance of super-resolution models. Thus,
some visual qualitative results are shown in Figure 10.

In addition, some quantitative metrics are also considered
for evaluation i.e., Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM) [46] (evaluated
on the Y channel of the YCbCr color space), and Perceptual

Index (PI). where higher value for PSNR and SSIM
are better, while lower perceptual index indicates better
perceptual quality and is defined as a combination of two
non-reference quantitative measures: NIQE [47] and Ma’s
score [48] where PI=(NIQE+(10-Ma))/2. PSNR and SSIM
tend to have better (higher) values with PSNR-oriented
models as they produce smoothed results with less focus
on texture and details which is somehow inconsistent with
the human evaluation perspective, unlike perception-driven
models, which focus more on reconstructing high-frequency
details and textures in the super-resolved image. PI is
considered a better choice when evaluating perception-
driven approaches including SRGAN and the proposed
Lite-SRGAN. It is also worth mentioning that the PI metric
cannot be entirely relied upon as a superior metric for
evaluating super-resolution models. As shown in Tables 4
and 5, it is illogical that the average PI for some methods is
even better than the ground truth HR images.

Table 4 and Table 5 show the average of the three discussed
quantitative metrics for each method on 500 random samples
from the plant village dataset when using two upsampling
layer (4x upscaling) and when using one upsampling layer
(2x upscaling). Since our focus is also to build a lightweight
network that can work smoothly in a real-time environment
with a minimal desired latency, we also compared both
models in terms of complexity (parameters and FLOPs) and
latency (inference time) as shown in Table 6. Moreover,
Figure 10 depicts some qualitative results from different cat-

TABLE 4. Quantitative results on 500 random samples from plant village
dataset when upsampling from (64 to 256).

TABLE 5. Quantitative results on 500 random samples from plant village
dataset when upsampling from (128 to 256).
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FIGURE 10. Qualitative results of different methods (Zoom in for the best view), x4 (indicates upsampling the image from 64 × 64 to
256 × 256). However, x2 (indicates upsampling the image from 128 × 128 to 256 × 256).
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TABLE 6. Comparison of generator trainable parameters, FLOPs, and averaged inference time between SRGAN and the proposed Lite-SRGAN.

FIGURE 11. Visual comparison of combining different loss functions together (Zoom in for the best view), Each column represents a different experiment.
The red sign indicates the added loss function in each experiment.

egories and states their PSNR, SSIM, and PI. Although, these
metrics are calculated based on the whole super-resolved
images, but we only show a batch from the image for better
clarification of the visual impact when using each method.

From Table 4 and Table 5, it can be concluded that bicubic
method has the highest PSNR and SSIM values due to
the over-smoothed results obtained when using the bicubic
interpolation technique. However, the perceptual index is

low and comparable for both the SRGAN and Lite-SRGAN
models and high for the Bicubic method, as it has less focus
on reconstructing image textures and details. Furthermore,
the qualitative results shown in Figure 10 demonstrate that the
proposed Lite-SRGAN can reconstruct a superior SR image
like SRGAN while being capable of producing sharper and
enhanced textures in some images. In addition, the proposed
model is optimized for real-time use due to its obvious
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TABLE 7. Stage 1 results using the three pre-trained CNN models on the test set.

TABLE 8. Stage 2 results using the three pre-trained CNN models on the test set.

superiority in terms of complexity and latency compared to
SRGAN, as depicted in Table 6.

3) EFFECT OF LOSS FUNCTIONS
To study the effect and contribution of each loss function
used in the proposed Lite-SRGAN, we conducted different
experiments when combining the used loss functions together
as depicted visually in Figure 11. The first column represents

the 1st experiment when using the adversarial loss along with
the perceptual loss, which are the loss functions commonly
used to optimize most of the recent perceptual driven super-
resolution approaches, while the 2nd experiment shows
the effect of adding per-pixel loss (L1 loss), and the 3rd

experiment shows the effect of adding style loss. Finally, the
4th experiment shows the effect of using all loss functions
together.
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TABLE 9. Average accuracy, precision, sensitivity, and specificity for each model in stage 2.

TABLE 10. Comparison of plant diseases classification results with related works on plant village dataset.

In this work, it is concluded from the conducted exper-
iments that the main contribution of per-pixel loss is that
it helps to reduce the undesired high-frequency noise and
visual artifacts that may result in the super-resolved image,
while the main contribution of style loss is that it produces
more realistic and informative textures in the resulting image.
However, the drawback of per-pixel loss is that it somehow
smooths the high-frequency details, as shown in the 2nd

experiment so its contribution to the total loss function should
be carefully weighted. Based on our experiments, combining
the four loss functions with appropriate weights is the best
choice as it provides a better visual appearance for super-
resolved images with less artifacts and good textures.

E. RESULTS OF THE PROPOSED TWO-STAGE
HIERARCHICAL APPROACH
This section discusses the results obtained using the multi-
stage classification approach according to the proposed pre-
processing techniques. Since the proposed models used for
preprocessing follow a lightweight design to gain the ability
to work smoothly in a real-time environment. Thus, different
pre-trained lightweight models are applied for classifica-
tion, including: MobileNetV3 [10] and DenseNet121 [11].
In addition, the recent state-of-the-art ConvNeXt model [12]

is experimented which is a pure convolutional neural network
inspired by the design of vision transformers. These models
are pre-trained on the ImageNet dataset [26]. For each model,
we replaced the flatten layer with a global average pooling
layer [49] to reduce the number of trainable parameters as
well as overfitting. Following the global average pooling
layer, two fully connected layers (dense layers) are added
with 256 and 128 neurons respectively. Dropout regulariza-
tion [50] is also added after each fully connected layer with a
keep probability of 0.5. Finally, a softmax layer is used as an
output layer with (n) neurons where n varies according to the
number of classes.

For training purposes, Adam optimizer [45] is used to
optimize the MobileNetV3 and DenseNet121 networks,
while the ConvNeXt network is optimized using AdamW
optimizer [51] as proposed by its authors. The training and
testing sets are randomly selected according to the data
splits listed in Table 1. The considered performance metrics
used for evaluating the used models are accuracy, precision,
sensitivity, and specificity which are given in equations
(10) – (13). Tables 7 and 8 show the detailed results for both
stages 1 and 2 respectively on the testing set.

It can be deduced from Table 7 that MobileNetV3 achieves
the best performance for stage 1 with an overall accuracy of
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99.96% on the test set, whereas ConvNeXt achieves the best
performance for stage 2 with an average accuracy of 99.82%,
as listed in Table 9. The three models achieved very high and
comparable results in both stages.

It is also worthmentioning thatMobileNetV3 is considered
the lighter model among them due to its few trainable param-
eters. Although, the ConvNeXt performance is slightly better
than MobileNetV3 and DenseNet121. However, ConvNeXt
has much higher trainable parameters than both of them.
Thus, MobileNetV3 is the best choice for the entire proposed
lightweight approach due to its low complexity and its high
achieved performance.

F. COMPARISON OF THE PROPOSED WORK
CLASSIFICATION RESULTS WITH RELATED WORKS
The comparison between the proposed work and other studies
is given in Table 10. The overall accuracy of the proposed
two-stage classification approach is calculated based on the
total misclassification in both stages. It is observed from
Table 10 that our proposed work outperforms other studies
while taking advantage of introducing a fully lightweight
approach that is adequate for real-time use.

V. CONCLUSION
To facilitate the employment of deep convolutional networks
on mobile, embedded, and resource-constrained devices
particularly for real-time use. In this study, we focus on
introducing a fully lightweight approach for performing
different tasks, including segmentation, localization, super-
resolution, and classificationwith low computational cost and
minimal possible latency. To achieve this purpose, this paper
introduces two novel lightweight-based architectures named
Lite-UNet and Lite-SRGAN. All experiments in this study
are conducted using the large publicly Plant Village dataset.

The full proposed approach can be described in the
following manner. First, the Lite-UNet network is utilized
to obtain the segmentation masks for the input plant leaf
images. In addition, the obtained segmentation masks are
used to crop the plant leaves from the given images to
neglect the effect of the background area that does not contain
any relevant features and thus, enhancing the classification
results and enabling the classification model to converge
faster. Thereafter, the cropped images are upsampled to a
unified resolution. The proposed Lite-SRGAN is used to
reconstruct a high-quality HR image from the given cropped
LR image when the cropped image resolution is relatively
small. In such case, it is used instead of basic interpolation
techniques to preserve the texture and details of the enlarged
image and avoid over-smoothed results. Finally, a two-stage
classification approach is introduced, where the crop category
is identified in the first stage, and its corresponding leaf
disease is recognized in the second stage.

The proposed Lite-UNet allows memory-efficient infer-
ence with a significant reduction in parameters and FLOPs,
while achieving promising results compared to U-Net.
Moreover, the proposed Lite-SRGAN achieves comparable

visual results with SRGAN, while outperforming it by a
significant margin in terms of parameters, FLOPs, and
inference time.

For classification purposes, three different pre-trained
models are used in both stages including MobileNetV3,
DenseNet121, and ConvNeXt. The extensive experiments
conducted in this study demonstrates the efficiency of the
proposed techniques for segmentation, localization, super-
resolution, and classification. Considering the classification
results obtained, it is concluded that the proposed work
surpasses other related studies, which reveals the superiority
of the overall proposed methodology.

In the future, we will consider experimenting the
proposed Lite-UNet and Lite-SRGAN on other popular
datasets.
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