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ABSTRACT Various vision-based tasks suffer from inaccurate navigation and poor performance due to
inevitable problems, such as adverse weather conditions like haze, fog, rain, snow, and clouds affecting
ground and aerial navigation, as well as underwater images being degraded with blue-green tones and
mud affecting marine navigation. Existing techniques in the literature typically focus on restoring specific
degradations using separate models, leading to computational inefficiency. To address this, an all-in-one
Multidomain Attention-based Conditional Generative Adversarial Network (MACGAN) is proposed to
improve scene visibility for optimal ground, aerial, and marine navigation, using the same set of parameters
across all domains. The MACGAN is a lightweight network with four encoder and decoder blocks and
multiple attention blocks in between, which enhances the image restoration process by focusing on the
most important features. To evaluate the effectiveness of MACGAN, extensive qualitative and quantitative
comparisons are conducted with state-of-the-art image-to-image translation models, all-in-one adverse
weather removal models, and single-effect removal models. The results highlight the superior performance
of MACGAN in terms of scene visibility improvement and restoration quality. Additionally, MACGAN is
tested on real-world unseen image domains, including smog, dust, fog, rain, snow, and lightning, further
validating its generalizability and robustness. Furthermore, an ablation study is conducted to analyze the
contributions of the discriminator and attention blocks within the MACGAN architecture. The results
confirm that both components play significant roles in the effectiveness ofMACGAN, with the discriminator
ensuring adversarial training and the attention blocks effectively capturing and enhancing important image
features.

INDEX TERMS Restoration, multidomain, adverse weather, navigation, aerial, marine, generative networks,
attention mechanism.

I. INTRODUCTION
Various high-level vision-based tasks like object detection
[1], [2], recognition, tracking [3], classification, localization,
segmentation [4], scene understanding, analysis, manipula-
tion, and many others have a high dependence on clear
images for its optimal performance, due to which intensive
research in the field of image restoration [5], [6], [7], [8], [9]
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can be found in the literature. Some naturally occurring
causes of image degradations include adverse weather such as
haze, fog, rain, snow, cloud, and blue-green color distortion
problem in underwater images, the muddy water also hinders
the scene visibility.

Weather effects such as fog and mist are usually caused
by moisture in the air forming a layer that hinders the scene
visibility. The light absorption and scattering of tiny particles
in the polluted air cause haze degrading the color and contrast
of what we perceive. Fog and smog last longer than haze, and

70482 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-8384-182X
https://orcid.org/0000-0003-2336-0490
https://orcid.org/0000-0001-5922-1674
https://orcid.org/0000-0003-3837-5775
https://orcid.org/0000-0003-1790-8640


M. Siddiqua et al.: MACGAN: An All-in-One Image Restoration Under Adverse Conditions

the scene is almost invisible in extreme weather conditions.
The haze and fog are modeled as shown in (1):

Z = A
(
1 − e−βd

)
+ Ie−βd (1)

where Z is the hazy or foggy image, A represents the
atmospheric light, β is the atmospheric scattering coefficient,
d denotes the distance of an object from the camera, and
I represents the effect-free image.
Rain streaks and snowflakes obscure the scene, making it

difficult for vision-based applications to perform their tasks
efficiently, such as object detection and tracking. The model
for rain is shown in (2):

Z = I (1 − R) + bR (2)

where Z is the rainy image, I is the rain-free image,
R represents the rain mask, and b denotes the image blur.

Similarly, snow is modeled as shown in (3):

Z = I (1 − S) + cS (3)

where Z is the snowy image, I is the snow-free image,
S represents the snow mask, and c denotes the chromatic
aberration map.

On the other hand, the images captured underwater are
affected by a blue-green tone as water absorbs the red light
and scatters the blue light. The dust particles present in water
form a brownish layer, reducing the perceptual quality of
images andmaking it challenging to explore themarine world
to its full potential.

Autonomous vehicles perceive the scene through the
camera but when the environment is degraded by these
effects their performance decreases significantly resulting
in poor decision-making. When the vehicle is navigating
on ground level, haze [10], [11], fog [12], [13], [14], [15],
rain [16], [17], and snow [18], [19] are the main causes of its
poor performance. In aerial navigation, the drones [20], [21]
are affected by fog [22], [23], [24], rain [25], [26],
snow [27], [28], and the cloud reduces the scene visibility
while the satellite [29] is remotely sensing the ground level
information. The robots designed for marine navigation
function inefficiently when the scene is affected by the mud
and the blue-green color distortion [30], [31], [32], [33].
Vision-based tasks involve working with images; therefore,
better image quality and proper scene visibility are crucial
for their optimal performance.

In literature, there exist many techniques to remove
the image degradations such as model-based in which the
effect process is physically modeled, a transmission map is
estimated, and then a reverse process of effect is performed
to achieve the effect-free image. Model-based methods are
outdated and do not provide up-to-the-mark outcomes as
their performance highly depends on the correct transmission
map estimation which is quite challenging in severely
degraded conditions. Recently, with the advent of deep neural
networks, the focus of research is shifted toward it. The deep
learning-based methods are data-driven in which the data is
passed to the deep network, the features are automatically

extracted and then the model restores the degraded images.
For better image restoration, the attention mechanism is
widely used as it puts attention in the form of weights
to those features which are crucial for generating better-
restored images. Some of the noticeable works based on
attention-based deep neural networks are described in the
next sections.

A. HAZE REMOVAL
Due to haze, the image contrast and color are highly degraded.
Yun et al. [34], [35], [36] developed a nighttime haze removal
model by first adding various degradations within the hazy
images, divided them into reflectance, illumination, and noise
components, then improved the illumination using the prior-
based method, improved reflectance contrast in the gradient
domain, and finally combined them to get dehazed images.
Zhao et al. [37] presented a dehazing model consisting
of three parts namely global, local, and adaptive weighted
network. In a global network, the image semantic context
is captured. The local network preserves the local details
of the image by embedding a boosted attention mechanism
within it, finally, the global and local networks are adaptively
assigned weights based on their significance in dehazing.
Yongli et al. [38] incorporated channel and domain attention
mechanisms into the cycleGAN model to preserve image
contrast and color. The channel attention keeps or rejects
channels based on the importance of different features; the
channels selected are then passed to the domain attention
block where only those feature maps survive where the haze
is present. Xiaoqin et al. [39] restored the hazy images
by progressively applying attention to different channel
scales keeping the trade-off between the low and high-
level features to preserve the structure and color. Similarly,
Nian et al. [40] extracted local and global features recurrently
to enhance feature representation while paying attention to
dense hazy regions. Most of the models do not treat spatial
and channel attention separately due to which the degradation
is not properly restored. This problem was solved by
Shibai et al. [41] using spatial and channel attention blocks
in parallel to highlight significant feature positions and the
correlation of features within channels, respectively. Yitong
et al. [42] proposed an unsupervised cycleGAN model
embedded with attention-guided modules and total variation
loss to limit the noise caused by sea waves for dehazing
remote sensing images. Zixuan et al. [43] boosted the dehaz-
ing performance of the network by using detail-enhancing
convolution and content-guided attention blocks within
the encoder block to increase the generalization capacity.
Recently, Gang et al. [44] optimized the haze removal process
by introducing a UNet model with different level feature
fusion based on attention-dense residual learning to preserve
local and global features required for better dehazing.

B. FOG REMOVAL
Images degraded by dense fog make the scene hard to
visualize, resulting in poor performance of vision-based
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tasks such as object detection, tracking, and segmentation.
For defogging, Yan et al. [45] introduced a model that first
extracts features, then an attention layer is used to keep
significant features by assigning more weight to it and
rejecting the rest, the atmospheric light and transmission
map is computed using an estimating module with unified
parameters, after that a restoration module is added which
removes the fog based on the atmospheric scattering equation
to get the better-defogged results at the end. Qingyi et al. [46]
used an attention network in GAN, first the foggy image is
passed to the attention network consisting of residual blocks,
LSTM, and convolution layers to generate an attention map
with the most discriminating features. The attention map is
then passed to a convolutional autoencoder for generating
a fog-free image. Similarly, the attention map is used in
the discriminator as well, to enhance its performance for
guessing whether the generated image is real or fake. With
the help of an attention map, the most promising features
are considered, thereby lowering the computational resources
and generating better-defogged images. Zhiqin et al. [47]
proposed an autoencoder that first extracts the shape and
edge level features using residual octave convolution, then a
dual self-attention module is used to enhance the extracted
features, and finally, the features are fused with the decoding
layers to reconstruct optimal defogged images.Wei et al. [48]
developed an unsupervised cyclic GAN to generate fog to
fog-free images and vice versa by fusing three separate
modules in it namely, fog removal, color texture recovery,
and fog synthetic. The fog removal module is an autoencoder
that generates fog-free images, the fog-free image is then
passed to the color texture recovery module which restores
its color and texture based on its multiple derived inputs.
To complete the cycle, the fog-free image is converted
into a foggy image using a fog synthetic module which
adds fog into it using the atmospheric scattering model.
Du et al. [49] constructed a global defogging model by
combining multiscale convolution and local residual layers
along with a feature attention mechanism that consists
of channel and pixel attention. Shengmin et al. [50] solved
the problem of uneven distribution of fog by using an
attention mechanism with an atmospheric scattering model
to distinguish thick fog from light fog and assign attention
according to the fog density, by doing so, the defogging is
handled properly.

C. RAIN REMOVAL
Removing rain is a challenging task as the distribution of rain
streaks is not uniform and can severely degrade the scene’s
visibility. Most of the methods focus on removing the rain
streaks ignoring the background recovery. Xiao et al. [51] put
forward a model capable of removing the rain streaks by
identifying and assigning attention to significant low-level
features such as shape and edges, the background is
recovered by a network focused on contextual information.
Qiang et al. [52] proposed a deraining model which extracts
and applies attention to features by finding similarities from

coarse to fine levels on multiple scales, finally the rain-free
image is constructed. Similarly, Kui et al. [53] explored the
feature similarity across multiple scales of rainy images and
used the attention mechanisms for feature fusion according
to their correlation and weighted attention to get rain-
free images. Haitao et al. [54] introduced a multiscale UNet
architecture with attention in attention technique which
extracts features progressively by applying dynamic weights
generated by exploiting the channel and spatial information.
To remove rain streaks and restore the background details
properly, Yeachan et. al [55] used a UNet architecture with
multi-level features of encoder retrieved via channel-wise
attention connected to every decoding block recursively and
divided the images into wide horizontal patches to explore
better rain-free background details. Chih-Yang et al. [56]
presented an effective deraining model consisting of three
modules connected sequentially namely the residual dense
block which extracts the features, the sequential dual
attention block which retains the most significant spatial and
channel-wise features, and the multiscale feature aggregation
module which combines the features for the reconstruction
of rain-free images. Likewise, Pengcheng et al. [57] used
residual dense blocks for extracting multiscale features
which were refined by the attention mechanism and the
depth-wise separable convolution of different receptive fields
with different scales to reconstruct clean background images.

D. SNOW REMOVAL
Removing snowflakes is essential in many applications like
object tracking and surveillance. Ting et al. [58] modified
the UNet architecture by combining the self-attention trans-
former block with residue spatial attention along with residue
channel loss to preserve global and local semantic infor-
mation required for better snow removal. Aiwen et al. [59]
removed snow from images by embedding an attention
module in GAN which shortlists and encodes significant
features required for decoding images without degradation.
Sixiang et al. [19] introduced an efficient multi-head cross-
attention mechanism that performs local-global context
interaction between scale-aware snow queries and local patch
embeddings to restore snowy images. Bodong et al. [60]
proposed an efficient snow removal model consisting of
three modules namely mask-net which has self-pixel and
cross-pixel attention to capture significant features and
their accurate location to predict the snow mask, guidance-
fusion network which adaptively guides the model for snow
removal, and finally, the reconstruct-net which removes the
snow and generates a snow-free image. Junhong et al. [61]
presented a lightweight model that first generates a coarse
snow mask, then snow is removed from it using an encoder-
decoder. Sixiang et al. [62] designed a desnowing model
which understands various snow degradation features in a
multi-path manner, a local capture module is connected in
parallel to consider local details, and using self-attention the
scene context information is integrated for generating a clean
image.
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E. CLOUD REMOVAL
When sensing information remotely by satellite, the images
suffer from poor scene visibility due to the clouds.
Peiyang et al. [63] presented a cloud removal method that
uses convolution in the initial layers to extract simple features
and self-attention with local positional encoding in the
later layers to extract complex features at large with differ-
ent position encodings for different inputs. Hao et al. [64]
integrated spatial details in a sentinel-2 clean image with
spectral patterns in the sentinel-3 image as spatiotemporal
guidance to generate missing regions in the cloudy sentinel-2
image by introducing a spatiotemporal attention network
consisting of self-attention mechanism, residual learning,
and high-pass filters to enhance feature extraction from
the multisource data. Xue et al. [65] combined channel
attention with residual learning constructing an encoder-
decoder-based residual channel attention network for cloud
removal. Meng et al. [66] used an attentive recurrent net-
work to extract feature maps of the cloudy images, then
reconstructed the clean image by feeding those feature
maps to the attentive residual network. Runhan et al. [67]
improved the performance by using ghost convolution in the
multi-head self-attention module to eliminate the redundant
feature maps decreasing the computational cost. Further,
a feature fusion module is used to combine high and
low-level features to extract enough features for better cloud
removal. Ran et al. [68] removed the cloud by adding a
spatial attention mechanism in the unsupervised cycleGAN.
Linjian et al. [69] proposed a two-stage generative network
for cloud removal, the first stage uses an attention block to
get a cloud mask, and the second stage uses an autoencoder
conditioned by partial convolution to denoise and in-paint the
occluded image patches.

F. UNDERWATER IMAGE ENHANCEMENT
Color distortion is a major problem in marine images, and
if the water is murky then the visibility is further degraded
making the exploration and exploitation of the marine
world difficult. Zhen et al. [70] proposed an encoder-decoder
consisting of a channel and shifted pixel-based self-attention
transformer for enhancing the local and global texture and
color details. Jing et al. [71] used class-conditioned GAN
having channel and spatial attention block. The channel
attention block aggregates the feature maps across the
channels of all layers whereas, the spatial attention block
combines the feature maps pixel-wise from the initial to final
layers. Yang et al. [72] presented a multi-scale grid CNN that
aggregates the multiple kernels with different scales to boost
the receptive field for attentive maps, it adaptively focuses
on the feature maps of degraded regions to enhance the
underwater image patches consistently. Claudio et al. [73]
put forward a self-supervised learning model which uses
an attention mechanism to focus on saturated areas to
avoid color channel imbalances. Shiben et al. [74] utilized
the adaptive learning strategy by using three modules namely
a multiscale fusion block to combine different spatial details,

a parallel attention module focusing on the channel and
pixel-wise attention, and finally, an adaptive learning module
to dynamically learn the significant features for enhancing
the degraded images. To bring diversity in the receptive
fields, Xiaohong et al. [75] used an attention-guided dynamic
multi-branch network having dynamic feature selection and
a multiscale channel module. The features are selected
dynamically and then weighted accordingly. Bo et al. [76]
introduced a residual two-fold attention network with
non-local and channel attention combined to enhance the
features required for proper denoising and color correction.

G. ALL-IN-ONE IMAGE RESTORATION
Some noticeable works focusing on the restoration of
multiple degradations using a single model can be found
in the literature. Ruoteng et al. [77] proposed an all-in-one
model for fog, rain, and snow removal using a neural archi-
tectural search technique, they designed domain-specific
encoders to handle each type of degradation which increased
the number of parameters and computational cost. Simi-
larly, Jeya et al. [78] introduced a transformer-based single
encoder and decoder model to remove fog, rain, and
snow from the images. The encoder consists of intra-patch
transformer blocks that work on small patches to remove
small degradations. Ashutosh et al. [79] presented a much
lighter transformer-based model for the removal of haze,
rain, and snow. Their model consists of two parallel modules
for restoration: first original resolution transformer for
extracting fine-level features from the original size of the
input, second multi-level feature aggregation for extracting
features of variable sizes, then finally reconstructed the clean
images. Recently, Ozan et al. [80] used a denoising diffusion
probabilistic model for snow, combined rain and haze, and
raindrop removal. First, the noise is added gradually into the
images and then the model is designed to denoise the image
until the degradation is completely removed. For the removal
of haze, rain, and snow, Wei-ting et al. [81] proposed a
two-stage knowledge learning-based model that uses student
and teacher networks, where the student networks learn the
effect removing ability from the teacher networks trained on
specific weather effects. All these works perform well but
are confined to the removal of few weather effects, contrary
to MACGAN which can restore seven different types of
degradations using a single model.

In the literature, no model can be found that restores
ground and aerial-level weather-degraded images, and
color-distorted and mud-affected marine images using a
single model. The block diagram of the proposed work can
be seen in Fig. 2.

H. CONTRIBUTION
Considering this research gap, an all-in-one Multidomain
Attention-based Conditional Generative Adversarial Net-
work (MACGAN) is introduced in this paper, which is
capable to improve scene visibility using a single model with
the same set of parameters across the adverse domains.
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FIGURE 1. Given a degraded image, our all-in-one unified model MACGAN generates its corresponding restored image.

FIGURE 2. Block diagram of the proposed work.

MACGAN is a supervised learning-based conditional
autoencoder that takes a degraded image along with its cor-
responding clean image to generate outcomes similar to the
ground truth image with minimal reconstruction error. The
addition of three attention blocks between the lightweight
four-block encoder-decoder is responsible for generating
optimal quality results. The degraded areas are assigned more
attention so that the degradation is completely removed with
improved scene visibility. Our all-in-one proposed model can
restore seven different degraded domains such as haze, fog,
rain streaks, snowflakes, thin and thick clouds, underwater
and muddy underwater. A synthetic dataset with adverse
scenes is created for training and testing MACGAN. The
proposed model is quantitatively and qualitatively compared
with various state-of-the-art models and tested on a few real
unseen domains to check its generalizability and the results
proved the success of our model. Moreover, an ablation study
is also carried out to check the significance of discriminator
and attention blocks in MACGAN architecture.

In short, the main contribution of this paper can be stated
as:

1. An all-in-one multidomain restoration model is intro-
duced capable of removing seven adverse degradations
from images for facilitating ground, aerial, and marine
navigation.

2. Synthetic fog, rain, snow, and cloud effect datasets are
prepared for ground and aerial images.

3. Novelty in encoder-decoder architecture with the
addition of three attention blocks.

4. Quantitative and qualitative comparison of MACGAN
with various image-to-image translation models, all-in-
one adverse weather removal models, and single-effect
removal models are carried out confirming the optimal
performance of MACGAN.

5. Checked the generalizability of MACGAN by testing
it on real unseen domains such as smog, dust, fog, rain,
snow, and lightning.

6. Carried out ablation study to further validate the
outclass performance of the proposedMACGANarchi-
tecture with and without discriminator and multiple
attention blocks.

The remaining paper is organized as follows: a compre-
hensive explanation of our proposed architecture is provided
in section II. In section III, the detailed quantitative and
qualitative experimental results are reported. Section IV
includes the ablation study. Finally, the paper is concluded
with a brief discussion of the proposed work along with its
future scope.

II. METHODOLOGY
The objective of this paper is to restore images degraded
under adverse conditions such as haze, fog, rain, snow, cloud,
underwater, and muddy underwater for better ground, aerial,
and marine navigation as shown in Fig. 1. As the input and
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FIGURE 3. Proposed generator architecture with multiple attention blocks.

output both are images, it is considered as an image-to-image
translation task, where the degraded images are mapped to
the effect-free domain. One such model found in literature is
GAN which gets a mapping from the noise vector Z to the
final generated image I as G : Z → I .

LGAN (G,D) = Ex∼pdata(x) [log (D (x))]

+ EZ∼pZ (Z ) [log (1 − D (G (Z )))] (4)

Here, x is the real image, pdata is the data distribution,D(x) is
the discriminator output, pZ is the distribution of Z , andG(Z )
is the generator output.

In this paper, conditional GAN is used that learns a
mapping frommultiple degraded image domains Z to a single
effect-free domain J generating a restored image I as G :

{Z , J} → I .

LcGAN (G,D) = EJ ,I∼pdata(J ,I )[logD(J , I )]

+ EJ∼pdata(J),Z∼pZ (Z )

× [log(1 − D (J ,G (J ,Z )))] (5)

The addition of the ground truth image at input along with the
degraded image helps the model to generate better results.

It learns the mapping irrespective of the degradation due to
the constraint imposed on the model. Instead of learning a
degradation-specific mapping function, the model learns a
general mapping function. Let’s say Z is the cloudy satellite
image and J is its corresponding clean image, then generator
G finds a mapping from effect domain Z to clean domain J ,
generating the restored effect-free image I . The discriminator
D is tasked to guess whether the generated image is effect-
free (real) or restored (fake). To fool the discriminator, the
generator must output an image similar to the ground truth.

A. PROPOSED MODEL
The two main networks of MACGAN are the generator and
discriminator. The generator is a conditional autoencoder that
takes both the degraded and its corresponding ground truth
images to generate a restored image. The ground truth acts
as a constraint on the model so that the generated image is
like the ground truth and not a degraded image. The generated
images are input to the discriminator, which validates whether
the generated image is restored or ground truth. Ideally, the
generator output should be similar to the ground truth so that
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FIGURE 4. Discriminator architecture.

the discriminator gets confused and regards it as an original
image with no degradation.

The MACGAN architecture is unified with one set of
parameters valid for all input domains. It takes an image
with any of the adverse conditions such as haze, fog, rain
snow, cloud, underwater, or muddy underwater, and outputs
a restored image free of any degradation.

1) GENERATOR
The generator is tasked to generate restored images using
an encoder-decoder network with multiple attention blocks
in between as shown in Fig. 3. The encoder compresses
the image by extracting significant features with each
successive block of convolution and activation layer. The
compressed feature maps are given to the attention blocks
for progressively identifying the degradation. Each attention
block consists of three attention residual blocks with an
attention module connected in parallel. The attention module
generates the feature attention maps in two rounds and four
directions (left, right, up, and down). In the first round,
the local contextual information of pixels in four directions
is encoded and in the second round, the global feature
attention map is generated. The feature map generation in
four directions results in the complete encoding of contextual
and structural details. The attention map generated from the
attention module is a two-dimensional matrix of continuous
values, where the larger values indicate that more attention
in the form of weights should be assigned to that pixel.
The attention maps then guide the attention residual blocks
in removing the degradation. The degradation is identified
and removed progressively using three attention blocks, and
then the image is decompressed using the deconvolutional
layers until the image is upsized equal to the size of
the input image. The addition of three attention blocks
increased the reconstruction accuracy significantly. These
blocks thoroughly learn the features and context of each input
domain concisely by putting attention to the most significant
features. As a result, the decoded images are free from each
degradation and have minimum reconstruction error. Without
attention blocks, the model is unable to properly remove the
degradations from the images.

Several attempts were carried out to decide the optimal
setting of architecture with and without multiple attention

blocks. From the ablation study given in section IV, it is
validated that the model generates better results with three
attention blocks.

2) DISCRIMINATOR
The discriminator is a simple classifier consisting of con-
volutional, batch normalization, and leaky Rectified Linear
Unit (ReLU) layers. The restored images generated by the
generator are input to the discriminator which classifies
whether the input image is real (ground truth image) or
fake (restored image) as shown in Fig. 4. There is an
adversary between the generator and the discriminator, each
trying to outperform the other. The generator tries to fool
the discriminator by generating an image similar to its
corresponding ground truth image, and the discriminator is
tasked to guess whether the generated image is real or fake.
Better restored images are generated when the discriminator
calls the restored image real. The discriminator’s feedback
in the form of a guess to the generator is crucial for the
optimal restoration of the degraded images as validated by
the ablation study in section IV.

The overall flow of the work is shown in Fig. 5.

3) LOSS FUNCTION
The loss function of MACGAN consists of three loss
functions as shown in (6):

LMACGAN = argmin
G

max
D

LcGAN (G,D)+LL1(G) + LAtt

(6)

First is the conditional GAN loss as shown in (7):

min
G

max
D

LcGAN (G,D)

= EJ ,I∼pdata(J ,I )[logD(J , I )]

+EJ∼pdata(J),Z∼pZ (Z )[log(1 − D (J ,G (J ,Z )))] (7)

Here, generator G and discriminator D play a min-max
game, where G tries to minimize the above function and D
maximizes it creating an adversary.

Second, is the L1 loss which minimizes the difference
between the ground truth and the restored image as shown
in (8):

LL1(G)

=
1

CHW

∑C

c=1

∑H

v=1

∑W

u=1
λC

∣∣∣I (u,v,c)gt − G(Iin)(u,v,c)
∣∣∣
1
(8)

Here, C , W , and H represent the channel, width, and height
respectively. λC is the weight of each channel’s contribution
to the loss, it is set to 1. Igt is the ground truth image and
G(I in) is the restored image generated by the generator.

Third is the attention loss which minimizes the difference
between the attention map and the binary image of the
degradation as shown in (9):

LAtt = ∥A− B∥
2
2 (9)
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FIGURE 5. The overall flow of the work.

Here, A is the attention map generated by the attention
module and B is the binary image calculated by the difference
between the affected and effect-free image.

The standard conditional GAN loss function along with
L1 and attention loss combines the individual loss func-
tions for each domain into a single objective function
allowing the model to learn to perform well on all
domains at the same time, rather than optimizing each
domain separately. This helped in improving the overall
performance and efficiency of the model by minimizing
the difference between the restored and its corresponding
ground truth images. This unified loss function is appro-
priate as the proposed model is unified and capable of
restoring multiple degraded domains with the same set of
parameters.

III. EXPERIMENTS
Detailed experiments are carried out for each input domain
with five state-of-the-art image-to-image translation models:
UNIT [82], pix2pix [83], cycle transformer [84], cycle-
GAN [85], CUT [86]; three all-in-one adverse weather
removal models: UMWTransformer [79], Wei-Ting et al.
[81], Transweather [78]; and six single-effect removal
models: FFA-Net [87], Yeying et al. [88], MPRNet [89],
DDMSNet [27], GLF-CR [90], and DGD-cGAN [91].
Their quantitative and qualitative results are provided in
subsections C and D, respectively.

A. DATASET
In this work, six different image datasets as mentioned in
Table 1 are used for ten input domains. The dataset consists of
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TABLE 1. Dataset details.

28, 780 images divided equally into degraded domain A and
clean domainB. The dataset is split into approximately 80 and
20 percent ratios for training and test images, respectively.

MACGAN and pix2pix are supervised models that utilize
paired images from domain A only, whereas, the other models
are unsupervised that are trained using both unpaired domains
A and B. For a fair comparison, all the models are trained and
tested on the same dataset.

Boyi et al. [92] introduced a uniform random haze
generation process by adding atmospheric light within the
range of [0.7, 1.0], alongwith a scattering coefficient between
[0.6, 1.8]. To synthesize fog, rain, snow, and cloud effects in
ground and aerial images, an image augmentation library [98]
was utilized to randomly apply these effects. Fog images
were created with a mean intensity range of [190, 255] and
density range of [1, 0.1]. Cloud images were synthesized with
densities ranging from [0.5, 1.5]. Rain streaks were added at
various angles, with raindrop sizes ranging from (0.2, 0.5) and
speeds between (0.01, 0.30). Snowflakes were added at dif-
ferent angles within the range of [-30, 30], with sizes varying
between (0.70, 0.95) and speeds ranging from (0.001, 0.020).
Md et al. [96] employed seven different cameras to capture
underwater images, preparing unpaired images based on
human perceptual preference and generating paired images
using the cycleGAN model. Chongyi et al. [97] collected
underwater images from open sources and self-captured
videos, applying several underwater image enhancement
methods to obtain paired images. All images were resized to
256 × 256 pixels.

B. TRAINING DETAILS
All the models are implemented using the PyTorch frame-
work with GeForce GTX 1070 Ti GPU. The optimal
hyperparameters for training the models are selected using
grid search. Adam algorithmwas used with an initial learning

rate of 0.0004, momentum terms set to 0.5 and 0.999, weight
decay 0.00001, and batch size 1. The batch size is set to 1 so
that the weights are updated after each instance as multiple
images from adverse domains are present in the dataset. All
the models are trained up to 100 epochs until convergence.

C. QUANTITATIVE EVALUATION
For the quantitative evaluation of MACGAN, three perfor-
mance metrics are used: peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), and root mean
square error (RMSE).

A PSNR computes the ratio to which the restored image
is prone to get corrupted as shown in (10). A higher
score indicates that the restored images are accurate having
minimal noise.

PSNR = 10log10

(
(2n − 1)2

MSE

)
(10)

where n is the number of bits which is 8 for grayscale images,
and MSE is the mean squared error trying to minimize the
difference between the generated restored image I and the
ground truth image J as shown in (11):

MSE =
1

H ∗W

∑H

x=1

∑W

y=1
(I (x, y) − J (x, y))2 (11)

where H and W are the height and width of the images.
SSIM is a similarity comparison between the restored and

its corresponding ground truth images.When both images are
maximally similar in structure, a high SSIM score is achieved.
SSIM is a product of brightness l, contrast c, and structure s
as shown in (12):

SSIM = l (I , J) .c (I , J) .s (I , J) (12)

l (I , J) =
2µIµJ + C1

µ3
I + µ2

J + C1
(13)

c (I , J) =
2σIσJ + C2

σ 2
I + σ 2

J + C2
(14)

s (I , J) =
σIJ + C3

σIσJ + C3
(15)

where µ and σ are the mean and variance, and σIJ is the
covariance of the restored and its corresponding ground truth
image. C1, C2, and C3 are non-zero numerical constants to
avoid divide by zero error.

RMSEmeasures the root mean squared difference between
the restored image and its corresponding ground truth image
as shown in (16), as it is an error measure, so a lower score is
desirable.

RMSE =

√∑N
k=1 (I (k) − J (k))2

N
(16)

The PSNR, SSIM, and RMSE values of MACGAN are
compared with various image-to-image translation models
in Table 2.
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TABLE 2. MACGAN quantitative comparison of PSNR↑, SSIM ↑, and RMSE ↓ values with various image-to-image translation models.

TABLE 3. MACGAN quantitative comparison of PSNR↑, SSIM↑, and RMSE↓ values with various all-in-one adverse weather removal models.

UNIT [82] is an unsupervised image-to-image translation
model that utilizes a shared latent space based on coupled
GANs. Pix2pix [83] is a supervised image-to-image trans-
lation model based on conditional GAN. CycleGAN [85]
is an unsupervised cyclic image-to-image translation model
comprising of two generators and two discriminators. Cycle
transformer [84] is a transformer-based CycleGAN [85].
CUT [86] is an unsupervised contrastive learning-based
image-to-image translation model.

In comparison to other domains, the haze effect does
not significantly hinder scene visibility, resulting in optimal
haze metrics as demonstrated in Table 2. Our model
considers both thin and thick foggy and cloudy images
for restoration, achieving an average PSNR of 25, which

outperforms other models. Our model also exhibits the
second-best metrics for rain and snow. Additionally, it suc-
cessfully addresses the blue-green color distortion issue
in underwater images, attaining decent scores. Table 2
highlights that all other models underperform as they
lack the attention modules required for effective image
restoration. In contrast, our proposed model, MACGAN,
exhibits superior and consistent scores across all ten input
domains in comparison to other image-to-image translation
models.

To evaluate the performance of MACGAN in comparison
to other unified weather removal models, a comparative study
is conducted, and their quantitative values are presented in
Table 3.
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TABLE 4. MACGAN quantitative comparison of PSNR↑, SSIM↑, and
RMSE↓ values with various single-effect removal models.

From Table 3, it is evident that all models perform better in
the haze domain compared to other domains. However, when
it comes to the fog and cloud domain, the other models exhibit
poor performance as they struggle to restore scene details in
the presence of thick fog and cloud degradation. In terms of
rain scores, UMWTransformer [79] and Wei-Ting et al. [81]
achieve higher scores than Transweather [78]. PSNR values
for the snow domain surpass those of the rain domain.
Transweather [78] fails to deliver satisfactory results in
underwater image restoration, as it struggles to enhance
contrast and remove the muddy effect. Table 2 demonstrates
thatMACGANoutperforms other all-in-one weather removal
models, with higher scores reported across various domains.

UMWTransformer [79] and Transweather [78] are compu-
tationally intensive transformer-based models. On the other
hand,Wei-Ting et al. [81] adopts a student-teacher knowledge
transfer architecture. Our model, MACGAN, is lightweight,
comprising only four encoder and decoder blocks with three
attention blocks in between. The performance of MACGAN
is enhanced by the constraint imposed through ground truth
images and the inclusion of attention mechanisms.

Lastly, the performance of MACGAN is compared to
various single-effect removal models for haze, fog, rain,
snow, cloud, and underwater domains, and their quantitative
results are presented in Table 4.

FFA-Net [87] is a feature fusion attention network
designed for haze removal, which combines channel and
pixel features. Yeying et al. [88] introduced a structure rep-
resentation network with uncertainty feedback learning for
fog removal. MPRNet [89] is a multi-stage progressive
model specifically developed for restoring degraded rain
images. DDMSNet [27] is a deep dense multi-scale network
that utilizes semantic and depth priors for snow removal.
GLF-CR [90] is a global and local feature fusion network
tailored for cloud removal. DGD-cGAN [91] consists of a
dual generator-based conditional GAN model for improving
degraded underwater images.

Analyzing Table 4, it is evident that FFA-Net [87]
performs significantly worse than MACGAN in the haze

domain. Regarding fog removal, the model proposed by
Yeying et al. [88] struggles to properly remove fog, as illus-
trated in Fig. 10. MACGAN, on the other hand, successfully
eliminates rain streaks and achieves a higher score com-
pared to MPRNet [89]. Although DDMSNet [27] improves
scene visibility, there are still a few remaining snowflakes
visible in Fig. 10. GLF-CR [90] effectively removes thin
clouds but underperforms when it comes to thick cloud
removal. DGD-cGAN [91] manages to correct the blue-
green tone, but it generates blurry images, resulting in a
lower SSIM value. Instead of relying on a single-effect
removal model, employing MACGAN for image restoration
proves to be a better choice as it demonstrates optimal
performance across various degraded domains and can
handle multiple types of adverse degradations using a single
model.

To visualize the performance metrics, the values reported
in Tables 2, 3, and 4 are illustrated in the form of column
charts, as depicted in Fig. 6.
From Fig. 6, it can be seen that MACGAN has optimal

performance as compared to the various image-to-image
translation, unified, and single-effect removalmodels proving
its up-to-the-mark restoration performance quantitatively.

D. QUALITATIVE EVALUATION
The qualitative results ofMACGAN for all ten input domains,
each showcasing input, output, and ground truth images, are
displayed in Fig. 7.

MACGAN demonstrates remarkable success in removing
degradations across all ten input domains, as evident from
Fig. 7. In the case of haze, MACGAN effectively enhances
the color and contrast of the images, resulting in clear scenes.
Fog removal leads to improved visibility, while rain streaks
are completely eliminated. Snowflakes are not visible in the
output images, indicating successful snow removal. Thick
and thin clouds in satellite images are effectively removed,
allowing for easy visualization of the scene. MACGAN also
corrects the color of underwater images, eliminating the
murky effect and improving overall scene visibility. These
results demonstrate the proficiency of MACGAN in handling
various degradations, establishing its qualitative success.

For comparative study, MACGAN is first compared
qualitatively with various image-to-image translation models
as shown in Fig. 8.

It is evident from Fig. 8 that MACGAN outperforms
other models in restoring various degradations, producing
results that closely resemble the ground truth images. In the
case of haze, MACGAN achieves a better contrast that
closely matches the ground truth. Other models struggle to
completely remove fog, leaving remnants in their results.
Rain streaks are visible in the outputs of cycleGAN [85]
and CUT [86] models, indicating their failure in effectively
eliminating rain. Similarly, other models fail to adequately
inpaint regions occluded by snowflakes, resulting in their
visibility in the outputs. MACGAN, however, successfully
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FIGURE 6. Quantitative comparison of PSNR↑, SSIM↑, and RMSE↓ values of various models using column charts.

removes clouds from satellite images and corrects the
blue-green tone in underwater images, exhibiting scene
clarity similar to the ground truth.

UNIT [82], pix2pix [83], cycle transformer [84], cycle-
GAN [85], and CUT [86] models are trained until they reach
minimum error convergence, yet they still struggle to restore
images due to their lack of context encoding and effective
feature learning ability. These limitations are overcome by
MACGAN, which incorporates multiple attention blocks
focused on learning local and global features for each
degradation at precise pixel locations in all four directions.
This enables MACGAN to encode the best features and gen-
erate superior effect-free images with minimal reconstruction
error. The attention blocks play a vital role in MACGAN’s
optimal performance, while models like pix2pix [83], lacking
an attention mechanism, fail to improve visibility across
different input domains. The proposed MACGAN model’s
effectiveness lies in its ability to restore multiple degradations
using a single model.

Further, MACGAN is compared qualitatively with various
all-in-one adverse weather removal models as shown in
Fig. 9.

From Fig. 9, it is evident that UMWTransformer [79] and
Wei-Ting et al. [81] successfully remove the hazy effect
from the images, while Transweather [78] still retains some
patches of haze in certain regions. In the case of fog,
UMWTransformer [79] effectively restores the fog, while the
results of Wei-Ting et al. [81] and Transweather [78] appear
distorted. Transweather [78] also exhibits visible rain streaks
in its output. Wei-Ting et al. [81] and Transweather [78]
models struggle to completely remove snowflakes. Thick
clouds remain in the images generated by Transweather [78],
and even UMWTransformer [79] and Wei-Ting et al. [81]
show regions where restoration is not entirely successful.
UMWTransformer [79] manages to remove the blue-green
tone and enhance the contrast of muddy underwater images
to some extent, but the outputs are still not comparable
to the ground truth. There are minor changes in the
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FIGURE 7. MACGAN qualitative results across ten adverse domains.
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FIGURE 8. MACGAN qualitative comparison with various image-to-image translation models.

color and contrast of underwater images in the outputs of
Wei-Ting et al. [81].

In comparison, MACGAN excels in restoring images
across all domains. It successfully removes haze while
retaining the contrast similar to the ground truth. MACGAN
eliminates the distortion caused by fog, ensures rain streaks
are not visible in the output images, completely removes
snowflakes, properly restores images with thick cloud layers,
corrects the blue-green color distortion in underwater images,
eliminates the muddy effect, and enhances contrast. All
outputs generated by MACGAN are optimally restored
and closely resemble the ground truth images. Therefore,
it can be concluded that MACGAN demonstrates the highest
competence in removing multiple types of degradations,
unlike other models that may perform well only in one or two
specific domains.

Image features can be extracted locally and globally,
MACGAN uses two rounds for attention map generation,
the first round is utilized to capture local features in
four directions (left, right, up, down); the second round

captures the contextual, semantic, and textural features
globally in four directions resulting in the full encoding of
significant features, adding more rounds and eight directions
(up-right, down-left, etc) might improve the feature encoding
performance of our model but would make the model
computationally heavy with longer training time. To keep
a trade-off between the model complexity and accuracy,
we proposed a lightweight model having only four encoding
and decoding blocks with three attention blocks between
them, serving our purpose of image restoration for multiple
degraded domains using a single model.

Finally, the performance of MACGAN is qualitatively
compared with various single-effect removal models as
shown in Fig. 10.
In Fig. 10, it can be observed that MACGAN performs

optimally when the degradation is uniform, as seen in
the case of haze. Even as the thickness of the degrada-
tion increases in fog, MACGAN is still able to restore
the images effectively. MACGAN successfully removes
heavy rain streaks and numerous snowflakes, producing
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FIGURE 9. MACGAN qualitative comparison with various all-in-one adverse weather removal models.

clean, effect-free images. It demonstrates efficient removal
of both thin and thick clouds. MACGAN significantly
improves the visibility of underwater images by cor-
recting the blue-green color distortion and eliminating
the muddy effect. On the other hand, the outputs of
FFA-Net [87], Yeying et al. [88], MPRNet [89], DDMSNet
[27], GLF-CR [90], and DGD-cGAN [91] are not optimal,
most of them failed to restore the degradation properly,
whereas, MACGAN outputs showed up-to-the-mark restora-
tion performance. MACGAN is a better choice for image
restoration as it not only restores the single-effect degraded
images but multiple degraded images as well using a single
model.

To further ensure the effectiveness of MACGAN, its
generalizability is tested on real unseen domains such as
smog, dust, fog, rain, snow, and lightning. The 204 dust,
300 fog, 200 rain, and 323 snow images are taken from
DAWN dataset [99]. Few smog and lightning images
are taken from open sources. The qualitative outputs of
MACGAN on real test images are shown in Fig. 11. For each
input domain, the first row shows the input image, and the
next row shows its corresponding output image generated by
MACGAN.

Figure 11 reveals better-restored results on various real
unseen domains. Although smog, dust, and lightning domains
were not provided while training MACGAN, it still per-
formed well in removing them. The contrast and visibility of
fog and smog images are enhanced, the brownish dusty layer,

TABLE 5. NIQE↓ and PIQE↓ values of real test images.

snowflakes, lightning, and rain streaks are removed, thereby
improving the scene clarity.

For quantitative evaluation of real images, the natural
image quality evaluator (NIQE) and perception-based image
quality evaluator (PIQE) are calculated as shown in Table 5.

According to the scores reported in Table 5, the naturalness
and perception-based image quality are better for dust
images.

IV. ABLATION STUDY
To understand the significance of discriminator and attention
blocks in improving the overall performance of our proposed
model MACGAN, an ablation study is carried out in which
the model is trained without a discriminator network with
L1 and attention loss. By removing the discriminator, we are
left with a simple autoencoder. Variational autoencoders
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FIGURE 10. MACGAN qualitative comparison with various single-effect removal models.

were used before the advent of GANs but they had a
main drawback in that their outputs are blurred and lacked
significant image details.

Moreover, the optimal number of attention blocks is
selected by training and testing MACGAN with and with-
out multiple attention blocks. Without an attention block,
MACGAN was trained using conditional GAN and L1 loss.

Further, the number of attention blocks was progressively
increased for MACGAN performance evaluation. The quan-
titative analysis of the ablation study is given in Table 6.
From Table 6, it can be noticed that the performance

metrics forMACGANwithout discriminator are significantly
low. The main reason to add a discriminator is to improve the
performance of the generator, as they both work in adversary,
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FIGURE 11. MACGAN qualitative outputs on various real unseen domains.

the discriminator tries to differentiate the generated image
from the ground truth image, and the generator tries to fool the

discriminator by generating a fake (restored) image similar
to the ground truth image. The feedback in the form of a
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TABLE 6. Quantitative analysis of ablation study.

guess by the discriminator helps the generator to perform
well, without the discriminator the results are not up-to-the-
mark.

Further, the importance of attention blocks is studied
by training MACGAN with and without multiple attention
blocks. It is observed that when no attention block has been
used the score for all performance metrics is low. When
one attention block was added, the performance increased,
therefore, the number of attention blocks was increased and
tested till the optimal accuracy was achieved. When the
fourth attention block was added, the performance started to
decrease. After extensively testing the MACGAN variants,
it is concluded that the PSNR, SSIM, and RMSE values are
optimal when MACGAN is trained with a discriminator and
the generator has three attention blocks.

V. CONCLUSION
The paper proposes an all-in-one, lightweight multidomain
encoder-decoder architecture with multiple attention blocks
to restore degraded scene visibility under adverse weather
and underwater conditions. The addition of three attention
blocks is found to enhance the performance of MACGAN,
as demonstrated by the ablation study. MACGAN’s perfor-
mance is evaluated against various state-of-the-art image-to-
image translationmodels, all-in-one adverse weather removal
models, and single-effect removal models, with a detailed
comparative analysis validating its performance both quali-
tatively and quantitatively, with an average of 27.18 PSNR,
87.94 SSIM, and 0.043 RMSE. Furthermore, MACGAN
demonstrates exceptional generalizability to other real-world
unseen image domains, making it a universal restoration
model. The ablation study confirms the optimality of the
proposed architectural design. In conclusion, MACGAN’s

image restoration capabilities can improve ground, aerial,
and marine navigation, surveillance, traffic sign and lane
mark detection, and other vision-based areas for better scene
visualization.
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