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ABSTRACT In the study of multi-agent distributed control, the distributed containment control is an
important problem, which aims to make all the following agents enter the convex hull formed by the leader
agents. It has a wide application prospect in UAV information collection and robust control. In the practical
application of distributed containment control, agents usually experience unknown or uncertain working
environment and are needed to suppress or even eliminate the adverse effects of external disturbances.
In this paper, we study the robust containment control problem for second-order multi-agent systems with
fixed topology. Based on the second-order dynamics model, the distributed algorithm is designed, and
introduce the model transformation factor, and then transform the model. Based on Lyapunov stability
theory, we analyze the stability of multi-agent system by solving differential equations combined with
the comparison theorem. Then we minimize the maximum of the output multi-agent system under the
external disturbance, and improve the anti-interference performance of the system. Finally, we implement a
simulation example to illustrate theoretical results.

INDEX TERMS Containment control, fixed topology, second-order multi-agent systems, L2 − L∞ perfor-
mance index.

I. INTRODUCTION
Distributed consistency is an important research direction
in multi-agent systems, which aims to achieving consensus
among all agents in a certain state or all states through infor-
mation exchange between agents. As an important extension,
the distributed containment control has important practical
applications. Its main goal is to design a distributed con-
trol algorithm that makes all follower agents to enter the
convex hull formed by the leader agents. In general, there
are three types of consensus problems depending on the
number of leaders, namely consensus without leader [1],
consensus-based tracking with a separated leader [2], and
consensus-based containment with multiple leaders [3], [4].

The distributed containment control is an important exten-
sion of the consensus problem. In [3] a stop-go control
strategy was proposed for a first-order system and a fixed
undirected topology, which allows some follower agents to
move in an orderly manner into the convex hull formed by
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the leader agents of mobile robots. In [5] and [6], they studied
distributed containment control algorithms for a second-order
multi-agent system with a fixed directed topology based on
position measurement, and the containment control problem
of a first-order multi-agent systemwith a fixed directed topol-
ogy based on the sampling data protocol and gain parameter
respectively. Over a fixed directed graph, algorithms were
given in [6] to achieve containment control for multi-agent
systems with integrator dynamics. For the higher-order
multi-agent systems with a directed graph, an observer-type
dynamical output containment control protocol was devel-
oped in [7]. In [8] the adaptive containment control was
investigated for a class of fractional-order multi-agent sys-
tems with time-varying parameters and disturbances; and
in [9] they studied the asymptotic stability of the containment
control problem of high-order time-delayed linear stationary
systems with switching topologies and provided necessary
and sufficient conditions for the implement of containment
control. In [10] an observer was designed to estimate the
relative state of the agents and in [11] a double-state Markov
model was proposed for the first-order discrete multi-agent
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containment control problem, which used convexity and
LaSalle invariance principle to analyze the specific process
of implementing containment control. In [12] they studied
the containment control problem of a class of follower agents
converging to the convex hull formed by the leader agent’s
symmetric motion trajectories.

Although researchers have systematically studied the con-
tainment control problem, further research is needed in case
that external disturbances and parameter uncertainties exist.
Moreover, there are very few studies on the robust contain-
ment control problems. In [13], [14], and [15] they studied
the second-order and high-order distributed robust H∞ con-
sensus problem for the containment control problem, and [13]
provided sufficient conditions for all agents to achieve con-
sensus in a first-order multi-agent system under expected
robust H∞ performance. In [16] and [17] the robust H∞

consensus control was studied for multi-agent systems with
time delays or switching topologies. And the robust contain-
ment control problem was considered in [18] for a group
of agents with linear dynamics over Markovian switching
communication topologies.

In [19], a finite-time sliding-mode estimator was pro-
posed to obtain accurate estimation of the weighted average
of the accelerations, velocities, and positions of the lead-
ers.Although there have been significant progresses in the
field of containment control and robust control, however
external disturbances always exist in practical engineering
applications. Thus to make the research on containment con-
trol of multi-agent systems more practical, it is necessary
to use the L2 − L∞ robust control method to study the
performance changes under the influence of external distur-
bance factors, and improve the robustness of the containment
control. In [19], a finite-time sliding-mode estimator was pro-
posed to obtain accurate estimation of the weighted average
of the accelerations, velocities, and positions of the leaders.
But the designed algorithm cannot be directly applied in
robust L2 − L∞ containment control. In [20] they formulated
and solved the asynchronous tracking control problem of
multi-agent systems with input uncertainties on switching
signed digraphs. In [21] the containment control issue of
discrete-time general linear MASs was proposed and solved
under the asynchronous setting, in which the network topol-
ogy can be arbitrary. However, these two articles above both
studied the tracking control of asynchronous multiple agents
on the basis of the discrete control system research, which
only proposed the corresponding discrete control algorithm,
but did not investigate the system. Compared with these
results, this paper mainly studies the continuous control
system, proposes the corresponding control algorithm, and
focuses on the suppression of the disturbance of the system.

Differ from [19], [20], and [21], in this paper the con-
tainment control of multi-agent systems is further studied,
and the changes of system performance are analyzed under
the influence of external disturbances and uncertainty factors.
The paper focuses on the robust L2−L∞ containment control

problem for a second-order system with fixed topology. The
valuable contributions of this paper are as follows:

1) Based on existing robust control methods, this paper
studies the impact of external disturbances on the sys-
tem and designs a distributed control algorithm. The
negative velocity feedback, the information interaction
term between agents, and the projection distance term
are all considered in the algorithm.

2) A model transformation factor is introduced to trans-
form the original model. The nonlinear and coupling
terms are eliminated by transforming the model, which
facilitates the analysis of the system stability.

3) Based on the Lyapunov stability method and robust
control theory, the motion trajectory trend between
agents is analyzed. As shown by numerical simulations,
the maximum of the external disturbances output is
minimized for the multi-agent system. Thus designing
suitable distributed control algorithm can make all fol-
lower agents enter the convex hull formed by the leader
agent cluster and satisfy the L2 − L∞ performance
index.

II. MODEL AND PROBLEM STATEMENT
The multi-agent system studied in this paper is composed
by n + m second-order continuous-time multi-agents, i.e., n
follower agents together with m leader agents. Each agent
is represented by a node in the graph G, and Ni = {j ∈

V (G)|(j, i) ∈ E(G)} is denoted as the neighbor set of the node
i in G, i.e., all the agents where the i-th agent can receive
information from. All leader agents are assumed static, and
each agent updates its current states based on the information
it receives from its neighbor agents denoted by the neighbor
set described above. The follower and leader agent clusters
are denoted by F = {1, 2, · · · , n} and L = {n + 1, n +

2, · · · , n + m}. Then all follower agents and leader agents
can be expressed by f1, f2, · · · , fn and ln+1, ln+2, · · · , ln+m
respectively.

Consider the dynamics model of each second-order agent
in the following:

ẋi(t) = vi(t),

v̇i(t) = ui(t) + wi(t), (1)

where the follower agent i ∈ F = {1, 2, · · · , n}, and
xi(t), vi(t), ui(t) are denoted as the position state, velocity
state and control input of the i-th agent at time t respectively.
Moreover, wi(t) is denoted as the external perturbation corre-
sponding to the i-th agent at time t, where wi(t) ∈ L2[0, ∞).

Given a convex hull Y ⊆ Rn as the linear combination
of the position states xln+1 , xln+2 , · · · , xln+m of leader agents,
which can be expressed as below:

Y =

{ n+m∑
i=n+1

αixli
∣∣∣αi ≥ 0 ∪

n+m∑
i=n+1

αi = 1
}
. (2)
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Construct the following output function z(t) :

z(t) = c1max
i

∣∣∣∣ρi(t) − PY (ρi(t))
∣∣∣∣, (3)

which is a nonlinear expression and can be used to describe
the maximal distance from the position or velocity status
of the i-th agent in the multi-agent system to the nonempty
closed convex set Y . Here c1 is a given positive number
and PY (ρ) is the minimum projection of the vector ρ on the
nonempty closed convex set Y , i.e.,

PY (ρ) = argmin
y∈Y

∣∣∣∣ρ − y
∣∣∣∣.

While all follower agents enter the convex hull Y ⊆ Rn

formed by the leader agent cluster, the multi-agent system
need to satisfy the following L2 − L∞ performance indices:∣∣∣∣Tzw(t)∣∣∣∣L2−L∞

= sup
0 ̸=w(t)∈L2[0,∞)

||z(t)||∞
||w(t)||2

< γ, (4)

where γ is a given positive number, ||z(t)||∞ and ||w(t)||2 =( ∫
∞

0 |w(t)|2
)1/2 are the supremum of the input function z(t)

and the Euclidean norm of the vector w(t) respectively.
Our target in this paper is to design a distributed algorithm

based on information interaction between agents such that
the agents enter into the given convex hull Y ⊆ Rn in
both position and velocity states, moreover this realizes the
containment control satisfying the L2 − L∞ performance
indices above. Thus the distributed algorithm designed in this
paper is in the following:

ui(t) = −pivi(t) +

∑
j∈Ni(t)

aij(t)(xj(t) − xi(t))

− bi(t)[xi(t) − PY (xi(t))], (5)

where the agent i ∈ F = {1, · · · , n}, aij(t) denotes the weight
between the agent i and its neighbor agent j ∈ Ni(t), and bi(t)
denotes the projection weight between the follower agent i
and the target area.

For the convenience of the following analysis, the model
transformation factor is introduced to transform the original
system. The detailed form of the model transformation factor
is given in the following:

vi(t) = xi(t) +
vi(t)
ki

, (6)

where ki = bi + di and di denotes the maximum of
∑
j∈F

aij(t)

which represents all possible weights of the agent i with
respect to other agent j. Thus the multi-agent system (1) can
be transformed to the following:

ẋi(t) = kivi(t) − kixi(t),

v̇i(t) = (ki − pi)vi(t)

+

−ki + pi −
∑
j∈Ni(t)

aij(t)
ki

−
bi(t)
ki

 xi(t)

+

∑
j∈Ni(t)

aij(t)
ki

xj(t) +
bi(t)
ki

PY (xi(t)) +
wi(t)
ki

. (7)

Thus in the following analysis, wewill move to the distributed
algorithm (5) which makes the system (7) enter the con-
vex hull formed by the leader agent cluster and realizes the
containment control, moreover we will discuss whether the
system satisfies the L2 − L∞ performance indices.
Set the proportional factor qi(t) =

PY (xi(t))
xi(t)

then qi(t) ∈

[0, 1]. Then the system (7) can be transformed to the follow-
ing form:

ẋi(t) = kivi(t) − kixi(t),

v̇i(t) = (ki − pi)vi(t)

+

(
−ki + pi −

bi(t)
ki

+
bi(t)
ki

qi(t)
)
xi(t)

+

∑
j∈Ni(t)

aij(t)
ki

(xj(t) − xi(t)) +
wi(t)
ki

(8)

Set

λ(t) =



x1(t)
...

xn(t)
v1(t)

...

vn(t)


,w(t) =

w1(t)
...

wn(t)



For the convenience, we define following invariants:

31 = diag(k1, · · · , kn),

32 = diag(k1 − p1, · · · , kn − pn),

33 = diag(−
b1(t)
k1

+
b1(t)
k1

q1(t), · · · , −
bn(t)
kn

+
bn(t)
kn

qn(t)),

34 = diag(1/k1, · · · , 1/kn). (9)

By the invariants defined above, the system (8) can be trans-
formed to the following form:

λ̇(t) =

[
−31 31

33 − L34 − 32 32

]
λ(t) +

[
0 0
0 34

] [
0
w(t)

]
.

(10)

Recall that the proportional factor qi(t) =
PY (xi(t))
xi(t)

which
implies that xi(t) − PY (xi(t)) = (1 − qi(t))xi(t), combined
with the general form (3) of the output function, in fact we
can see that the output function z(t) can be expressed as the
following:

z(t) =

[
c1xIn 0
0 c1vIn

] [
In − Q(t) 0

0 In

]
λ(t), (11)

where
[
c1xIn 0
0 c1vIn

]
∈ R2n×2n with positive constants

c1x , c1v and Q(t) = diag(q1(t), · · · , qn(t)).
Therefore, after realizing the containment control, we will

discuss whether the algorithm (5) designed above can make
the system (11) satisfy the L2 − L∞ performance indices.
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III. MAIN RESULTS
Assumption 1: There exists a positive constant pi such that

it holds that piki ≥ k2i +
∑

j∈Ni(t)
aij(t) + bi(t) for all agents i

and time t ≥ 0.
Assumption 2: In the fixed topological set G, each fol-

lower agent if can always receive information from each
leader agent il .
Lemma 1: ( [22]) There exists a nonempty closed convex

set Y ⊂ Rm such that for any vector set Ki ⊂ Rm, i ∈

{1, · · · , n}, if
n∑
i=1

ai = 1 and ai ∈ [0, 1), it holds that

∣∣∣∣∣∣ n∑
i=1

aiKi − PY
( n∑
i=1

aiKi
)∣∣∣∣∣∣ ≤

n∑
i=1

ai
∣∣∣∣∣∣Ki − PY (Ki)

∣∣∣∣∣∣.
Lemma 2: ( [23]) Given the symmetric matrix X =[
X11 X12
X21 X22

]
, where X11 ∈ Rp×p,X12 = XT21 ∈

Rp×(q−p),X22 ∈ R(q−p)×(q−p). The following three situations
are equivalent:

(a) X < 0;

(b) X11 < 0,X22 − XT12X
−1
11 X12 < 0;

(c) X22 < 0,X11 − X12X
−1
22 X

T
12 < 0. (12)

Note: For a symmetric matrix X =

[
X11 X12
X21 X22

]
, when

X22 is an invertible matrix, the Schur complement of X22
in the symmetric matrix X is X11 − X12X

−1
22 X21. Since it

holds that X12 = XT21 as the matrix X is symmetric, the
Schur complement of X22 in the symmetric matrix X can be
reduced to X11 − X12X

−1
22 X

T
12. If X11 is a invertible matrix,

then the Schur complement of X11 in the symmetric matrix X
is X22 − XT12X

−1
11 X12.

Theorem 1: In the fixed topological graph G, by designing
suitable control algorithm (5) to the dynamics equation (1) of
the agent, if there exists a positive definite matrixM satisfying
that

H =

[
Hλλ Hλw
Hwλ −γ In

]
< 0,[

c1xIn 0
0 c1vIn

]T [ c1xIn 0
0 c1vIn

]
< γM ,

where

Hλλ =

[
−31 31

33 − L34 − 32 32

]T
M

+M
[

−31 31
33 − L34 − 32 32

]
,

Hλw = Q
[
0 0
0 34

]
,Hwλ = HT

λw,

then all follower agents can enter the closed convex hull
Y formed by all leader agents and satisfy the L2 − L∞

performance indices∣∣∣∣Tzw(t)∣∣∣∣L2−L∞
= sup

0 ̸=w(t)∈L2[0,∞)

||z(t)||∞
||w(t)||2

< γ,

where c1x , c1v are positive constants and 31, 32, 33, 34
depend on the coefficients of the control algorithm (5).

Proof: We will show the proof of this theorem in two
different situations that wi(t) = 0 and wi(t) ̸= 0. The details
are in the following:
(a)For the system model (1), we set wi(t) = 0 and construct
the Lyapunov function as following:

V1(t) = max
k

∣∣∣∣ξk (t) − PY (ξk (t))
∣∣∣∣, (13)

where

ξ (t) =


x1(t)
v1(t)

...

xn(t)
vn(t)

 , k ∈ {1, 2, · · · , 2n}.

By this definition the Lyapunov function V1(t) ≥ 0.
By the system (7) after the model transformation and the

property of the derivatives, it holds that

ẋi(t) = lim
1t→0

xi(t + 1t) − xi(t)
1t

= kivi(t) − kixi(t), (14)

i.e., lim
1t→0

xi(t+1t) = lim
1t→0

(1−ki1t)xi(t)+ lim
1t→0

(ki1t)vi(t),

where 1t = t+ − t is a sufficiently small time interval which
tends to 0. As ki = bi + di is positive where di denotes the
maximum of

∑
j∈F

aij(t) which represents all possible weights

of the agent i with respect to other agent j thus ki1t ∈ (0, 1).
By (14) combined with Lemma 1 we can derive the position
state properties of the system as following:∣∣∣∣xi(t + 1t) − PY (xi(t + 1t))

∣∣∣∣
≤ (1 − ki1t )

∣∣∣∣xi(t) − PY (xi(t))
∣∣∣∣

+ (ki1t )
∣∣∣∣vi(t) − PY (vi(t))

∣∣∣∣ (15)

Combined with the definition of the derivative, we have

lim
1t→0

∣∣∣∣xi(t + 1t) − PY (xi(t + 1t))
∣∣∣∣− ∣∣∣∣xi(t) − PY (xi(t))

∣∣∣∣
1t

≤ −ki
∣∣∣∣xi(t) − PY (xi(t))

∣∣∣∣+ ki
∣∣∣∣vi(t) − PY (vi(t))

∣∣∣∣ (16)

Again by the system (7) after the model transformation and
the property of the derivatives, it holds that

lim
1t→0

vi(t + 1t) − vi(t)
1t

=(ki − pi) +

−ki + pi −
∑
j∈Ni(t)

aij(t)
ki

−
bi(t)
ki

 xi(t)

+

∑
j∈Ni(t)

aij(t)
ki

xj(t) +
bi(t)
ki

PY (xi(t)) + 0. (17)

64090 VOLUME 11, 2023



Y. Ban, Y. Ye: Robust Containment Control of Second-Order Fixed Topology Multi-Agent Systems

It immediately follows that

lim
1t→0

vi(t + 1t) = (1 + (ki − pi)1t)vi(t)

+

−ki + pi −
∑
j∈Ni(t)

aij(t)
ki

−
bi(t)
ki

 xi(t)1t

+

∑
j∈Ni(t)

aij(t)
ki

xj(t)1t +
bi(t)
ki

PY (xi(t))1t. (18)

As 1t is a sufficiently small time interval, note that ki >

0,
∑

j∈Ni(t)
aij(t) > 0, bi(t) > 0 we can set the following

notations and derive that

α1i = 1 + (ki − pi)1t > 0,

α2i =

−ki + pi −
∑
j∈Ni(t)

aij(t)
ki

−
bi(t)
ki

1t > 0,

α3ij =
aij(t)
ki

1t > 0, α4i =
bi(t)
ki

1t > 0. (19)

The Assumption 1 gives that piki ≥ k2i +
∑

j∈Ni(t)
aij(t) + bi(t)

and ki = bi + di is a positive number thus ki < pi − 1 where
di denotes as above. Thus the terms in (19) satisfy that

− ki + pi −
∑
j∈Ni(t)

aij(t)
ki

−
bi(t)
ki

> 0,

ki < pi,
∑
j∈Ni(t)

aij(t)
ki

< 1,
bi(t)
ki

< 1. (20)

Then it follows that

α1i = 1 + (ki − pi)1t ∈ (0, 1],

α2i =

−ki + pi −
∑
j∈Ni(t)

aij(t)
ki

−
bi(t)
ki

1t ∈ (0, 1],

α3ij =
aij(t)
ki

1t ∈ (0, 1], α4i =
bi(t)
ki

1t ∈ (0, 1]. (21)

Moreover we observe in (21) that

α1i + α2i +
∑
j∈Ni(t)

α3ij + α4i = 1. (22)

As PY (xi(t)) ∈ Y , by the property of the projection operator
that the first and second projections of the vector xi(t) on the
nonempty closed convex set Y are the same, i.e., PY (xi(t)) =

PY (PY (xi(t))), according to (17)(20)(21) and combined with
Lemma 1, we can derive the velocity state property of the

system as below:∣∣∣∣vi(t + 1t) − PY
(
vi(t + 1t)

)∣∣∣∣
≤ α1i

∣∣∣∣vi(t) − PY
(
vi(t)

)∣∣∣∣+ α2i
∣∣∣∣xi(t) − PY (xi(t))

∣∣∣∣
+

∑
j∈Ni(t)

α3ij
∣∣∣∣xj(t) − PY (xj(t))

∣∣∣∣
+ α4i

∣∣∣∣PY (xi(t)) − PY (PY (xi(t)))
∣∣∣∣

= α1i
∣∣∣∣vi(t) − PY

(
vi(t)

)∣∣∣∣+ α2i
∣∣∣∣xi(t) − PY (xi(t))

∣∣∣∣
+

∑
j∈Ni(t)

α3ij
∣∣∣∣xj(t) − PY (xj(t))

∣∣∣∣. (23)

Based on the properties of the position state (15) and the
velocity state (23) we have that∣∣∣∣ξk (t + 1t)−PY (ξk (t + 1t))

∣∣∣∣ ≤ max
k

∣∣∣∣ξk (t) − PY (ξk (t))
∣∣∣∣,

(24)

which implies that V1(t + 1t) ≤ V1(t) thus the Lyapunov
function V1(t) is non-increasing with respect to time t. There-
fore on the time interval [t0, t1) it holds that 0 ≤ V1(t) ≤

V1(t0) thus V1(t) is bounded.
On the other hand, it follows from (23) and the definition

of derivatives that

lim
1t→0

1
1t

(∣∣∣∣vi(t + 1t) − PY
(
vi(t + 1t)

)∣∣∣∣
−
∣∣∣∣vi(t) − PY

(
vi(t)

)∣∣∣∣)
≤ β1i

∣∣∣∣vi(t) − PY
(
vi(t)

)∣∣∣∣+ β2i
∣∣∣∣xi(t) − PY (xi(t))

∣∣∣∣
+

∑
j∈Ni(t)

β3ij
∣∣∣∣xj(t) − PY (xj(t))

∣∣∣∣, (25)

where

β1i = ki − pi, β2i =

−ki + pi −
∑
j∈Ni(t)

aij(t)
ki

−
bi(t)
ki

 ,

β3ij =
aij(t)
ki

,

which satisfies that β1i + β2i +
∑

j∈Ni(t)
β3ij = −

bi(t)
ki

. By

Assumption 2, each follow agent if can always receive infor-
mation from the leader agent il, then the coefficient bi(t) =

bi ̸= 0. Combined this with (16) (25), the convergence of the
multi-agent system can be analyzed. It follows from (25) and
Lemma 1 that

d
∣∣∣∣vif (t) − PY

(
vif (t)

)∣∣∣∣
dt

≤ β1if

∣∣∣∣vif (t) − PY
(
vif (t)

)∣∣∣∣+ (−β1if −
bif
kif

)V1(t)

≤ (kif − pif )
∣∣∣∣vif (t) − PY

(
vif (t)

)∣∣∣∣
+ (−kif + pif −

bif
kif

)V1(t0), (26)
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where the last inequality follows from the fact that 0 ≤

V1(t) ≤ V1(t0) for t ∈ [t0, t1). By the solution to the dif-
ferential equation, combined with the comparison theorem,
we can solve (26) to derive that∣∣∣∣vif (t) − PY

(
vif (t)

)∣∣∣∣
≤ e(kif −pif )(t−t0)

∣∣∣∣vif (t0) − PY
(
vif (t0)

)∣∣∣∣
+

1 − e(kif −pif )(t−t0)

pif − kif
(−kif + pif −

bif
kif

)V1(t0)

≤

(
1 −

1 − e(kif −pif )(t−t0)

pif − kif

bif
kif

)
V1(t0). (27)

Thus it follows that for any time t ∈ [ t0+t12 , t1) it holds that∣∣∣∣vif (t) − PY
(
vif (t)

)∣∣∣∣ ≤ ζ1V1(t0), (28)

where ζ1 = 1 −
1−e

(kif
−pif

)(t−t0)

pif −kif

bif
kif

. It follows from Assump-

tion 1 that pif − kif ≥
bif
kif

thus we can easily have

that ζ1 ∈ (0, 1). Similarly by the position state (16) we
have

d
∣∣∣∣xif (t) − PY (xif (t))

∣∣∣∣
dt

≤ −kif
∣∣∣∣xif (t) − PY (xif (t))

∣∣∣∣+ kif
∣∣∣∣vif (t) − PY (vif (t))

∣∣∣∣
≤ −kif

∣∣∣∣xif (t) − PY (xif (t))
∣∣∣∣+ kif ζ1

∣∣∣∣V1(t0)∣∣∣∣. (29)

Then for time t ∈ [ t0+t12 , t1), by solving (29), combined with
comparison theorem, the following inequality can be easily
derived:∣∣∣∣xif (t) − PY (xif (t))

∣∣∣∣
≤ e−kif (t−

t0+t1
2 )∣∣∣∣xif ( t0 + t1

2
) − PY (xif (

t0 + t1
2

))
∣∣∣∣

+ ζ1(1 − e−kif (t−
t0+t1

2 ))V1(t0)

≤ (ζ1 + (1 − ζ1)e
−kif (t−

t0+t1
2 ))V1(t0). (30)

As kif is positive, let us set ζ2 = ζ1 + (1 − ζ1)e
−kif (t−

t0+t1
2 )

thus we have 0 < ζ2 < ζ1 + (1 − ζ1) = 1 for t ∈ [ t0+t12 , t1).
Then on this time interval we have that∣∣∣∣xif (t) − PY

(
xif (t)

)∣∣∣∣ ≤ ζ2V1(t0). (31)

Combine (24) (28) (31), it can be derived that for time t ∈

[t0, t1), when the follower agent if can receive information
from all leaders il, the follow agent if will converge to the
convex hull Y .

(b)When wi(t) ̸= 0, let us analyze the perfor-
mance indices of the multi-agent system to find conditions
satisfying the L2 − L∞ performance indices. Set a positive
definite matrix M and construct the Lyapunov function

as following:

V2(t) = λ(t)TMλ(t), (32)

where λ(t) and its derivative were defined in (10). □
Combined with systems (10) (11), take the derivative of the
Lyapunov function V2(t) in (32), it follows that:

V̇2(t) = λ̇(t)TMλ(t) + λ(t)TM λ̇(t)

=

[(
−31 31

33 − L34 − 32 32

)
λ(t)

+

(
0 0

0 34

)(
0

w(t)

)]T
Mλ(t)

+ λ(t)TM
[(

−31 31

33 − L34 − 32 32

)
λ(t)

+

(
0 0

0 34

)(
0

w(t)

)]

= λ(t)T
[(

−31 31

33 − L34 − 32 32

)T
M

+M

(
−31 31

33 − L34 − 32 32

)]
λ(t)

+

(
0 w(t)T

)[ 0 0

0 34

]T
Mλ(t)

+ λ(t)TM

[
0 0

0 34

](
0

w(t)

)
(33)

Based on the equality (33), by use of the L2 − L∞ perfor-
mance indices, the performance index function J (w) can be
constructed to analyze the stability of the multi-agent system.
Now construct the performance index function J (w) which is
used to indicate the energy of the system as the following:

J (w) = V2(t) − γ

∫ t

0
w(s)Tw(s)ds, (34)

where the external turbulence w(t) = [w1(t), · · · ,wn(t)]T ∈

L2[0, ∞). Due to the zero initial condition, we have that
V2(0) = 0. Thus combined with (33), the function J (w) in
(34) can be transformed to the following form:

J (w) = V2(t) − V2(0) − γ

∫ t

0
w(s)Tw(s)ds

=

∫ t

0
[V̇2(s) − γw(s)Tw(s)]ds

=

∫ t

0
[λ(s)T ,w(s)T ]H

[
λ(s)
w(s)

]
ds, (35)

where H =

[
Hλλ Hλw
Hwλ −γ In

]
with Hλλ,Hλw,Hwλ defined in

Theorem 1, and then H is a symmetric matrix. By Lemma
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2 we can derive the condition satisfying H < 0 and when
H < 0 it follows that J (w) < 0 which implies that

γV2(t) < γ 2
∫ t

0
w(s)Tw(s)ds. (36)

Meanwhile, when
[
c1xIn 0
0 c1vIn

]T [ c1xIn 0
0 c1vIn

]
< γM , as

1 − qi(t) ∈ [0, 1], it follows that

z(t)T z(t) = λ(t)T
[
In − Q(t) 0

0 In

]T [ c1xIn 0
0 c1vIn

]T
[
c1xIn 0
0 c1vIn

] [
In − Q(t) 0

0 In

]
λ(t)

< γλ(t)TMλ(t) = γV2(t). (37)

Combined with (36) it follows that

z(t)T z(t) < γV2(t) < γ 2
∫ t

0
w(s)Tw(s)ds. (38)

Therefore for any external turbulence w(t) ∈ L2[0, ∞), it
holds that∣∣∣∣Tzw(t)∣∣∣∣L2−L∞

= sup
0 ̸=w(t)∈L2[0,∞)

||z(t)||∞
||w(t)||2

< γ, (39)

which satisfies the L2 − L∞ performance indices.
To summarize, the distributed algorithm designed in (5)

can make the follower agents according to the dynamics
equation (1) enter into the convex hull formed by the leader
agents, which also satisfies the L2−L∞ performance indices,

i.e.,
∣∣∣∣Tzw(t)∣∣∣∣L2−L∞

= sup
0 ̸=w(t)∈L2[0,∞)

||z(t)||∞
||w(t)||2

< γ.

IV. NUMERICAL EXAMPLE
In this paper, the simulation of a multi-agent system formed
by six follower agents is considered to verify the theoretical
analysis we did above. In particular, we need to use the simu-
lation results to verify that the distributed algorithm designed
in (5) can make the follower agents according to the dynam-
ics equation (1) enter into the convex hull formed by the
leader agents, which also satisfies the L2 − L∞ performance
indices.

Based on the theoretical results above, the coefficients in
the distributed algorithm (5) is set as the following:

bi(t) = 0.5, pi = 5,

and the initial position and velocity states as the following:

x1(0) = [−3.0, 2.0]T , x2(0) = [−3.0, −1.0]T ,

x3(0) = [0, −3.5]T , x4(0) = [2.5, −1]T ,

x5(0) = [2.5, 3.0]T , x6(0) = [0, 3.5]T ,

v1(0) = [1.0, 1.0]T , v2(0) = [1.0, 1.0]T ,

v3(0) = [1.0, 1.0]T , v4(0) = [1.0, 1.0]T ,

v5(0) = [1.0, 1.0]T , v6(0) = [1.0, 1.0]T .

Meanwhile, the position states of all static leader agents are
in the following:

y1(0) = [−2.0, 2.0]T , y2(0) = [2.0, 2.0]T ,

y3(0) = [2.0, −2.0]T , y4(0) = [−2.0, −2.0]T ,

The robust L2−L∞ containment control problem in this paper
only need states of a small portion of neighbor agents. Then
by designing a suitable distributed algorithm (5), the position
and velocity states of each agent can be modified according
to the states of its neighbor agents.According to the dynam-
ics equation (1), the follower agents enter into the convex
hull formed by the leader agents. Thus the communication
topological graph set G describes the communication among
agents in the following:

FIGURE 1. Communication topological graph.

By this communication topological figure 1, we can set
the weights of all edges in this graph to be aij = 0.8,
and then calculate the Laplacian matrix set L corresponding
to the communication topological graph of the multi-agent
system.

To verify whether the distributed algorithm (5) acting on
the dynamics system (1) designed above satisfies the L2−L∞

performance indices, we assume the external turbulence is
the pulse signal which has finite energy and appear at certain
time intervals. This external turbulence wi(t) is given in the
graph below: When the assumed external turbulence wi(t)
acting on the second-order multi-agent system, the simula-
tion results of the position, velocity states and the L2 − L∞

performance indices are given in Graph 3, 4, 5, which show
the control effects of the distributed algorithm (5) designed
above acting on the multi-agent system formed by six agents
satisfying the dynamics equation (1). In Graph 3, 4, the
position and velocity states of all the follower agents enter
into the convex hull formed by the leader agents, which
solves the containment control problem of the multi-agent
system. Meanwhile in Graph 5 we can see that z(t)T z(t)
is decreasing along the time which satisfies the L2 − L∞
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FIGURE 2. External turbulence (pulse signal).

FIGURE 3. Curve of position states (pulse signal).

FIGURE 4. Curve of velocity states (pulse signal).

performance indices:∣∣∣∣Tzw(t)∣∣∣∣L2−L∞
= sup

0 ̸=w(t)∈L2[0,∞)

||z(t)||∞
||w(t)||2

< γ.

For the further verification of the restrain of the system in
other forms of disturbance signals, we design a Sine signal
whose external turbulence wi(t) has finite energy, which is
given in the graph below: When the assumed external turbu-
lence wi(t) acting on the second-order multi-agent system,
the simulation results of the position, velocity states and the
L2 − L∞ performance indices are given in Graph 7, 8, 9:

FIGURE 5. Orbit curve of
∫ t
0 w(s)T w(s)ds and z(t)T z(t) (pulse signal).

FIGURE 6. External turbulence (Sine signal).

FIGURE 7. Curve of position states (Sine signal).

Wefind that when the form of external turbulence changes,
if the energy of the disturbance signal is finite,it can always
achieve almost the same restraint effect. Thus the numerical
simulation results based on the MATLAB/SIMULINK sim-
ulation platform is consistent with the theoretical results in
Theorem 1.
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FIGURE 8. Curve of velocity states (Sine signal).

FIGURE 9. Orbit curve of
∫ t
0 w(s)T w(s)ds and z(t)T z(t) (Sine signal).

V. CONCLUSION
In this paper, the robust L2 − L∞ containment control prob-
lem of a second-order continuous-time multi-agent system
is investigated under external disturbances in uncertain or
even unknown environments. For the second-order dynamic
equation (1), we propose a distributed algorithm (5) to make
all follower agents enter the non-empty closed convex hull
formed by the leader agent cluster. In the process of the-
oretical analysis and derivation, we design the distributed
algorithm, construct the Lyapunov function, and by use of
the properties of projection operator, combine the Schur com-
plement lemma to analyze and derive the suitable parameter
range that achieves the containment control and satisfies the
L2 − L∞ performance indices under zero input and zero
state conditions. Meanwhile, based on the theoretical anal-
ysis results, two simulation examples have been utilized to
illustrate the conclusion of Theorem 1. Finally, based on the
theoretical analysis results and numerical simulation example
results of this paper, we can conclude that even experienc-
ing external disturbances in uncertain or unknown working
environments, the multi-agent system can still complete tasks
normally when the communication topology among agents
satisfies the conditions proposed in Theorem 1 and is strongly

connected. Thus this work is of great significance in both
theoretical research and engineering and can be applied to
practical projects.
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