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ABSTRACT The past decade has seen substantial growth in the prevalence and capabilities of wearable
devices. For instance, recent human activity recognition (HAR) research has explored using wearable devices
in applications such as remote monitoring of patients, detection of gait abnormalities, and cognitive disease
identification. However, data collection poses a major challenge in developing HAR systems, especially
because of the need to store data at a central location. This raises privacy concerns and makes continuous
data collection difficult and expensive due to the high cost of transferring data from a user’s wearable device
to a central repository. Considering this, we explore the adoption of federated learning (FL) as a potential
solution to address the privacy and cost issues associated with data collection in HAR. More specifically,
we investigate the performance and behavioral differences between FL and deep learning (DL) HARmodels,
under various conditions relevant to real-world deployments. Namely, we explore the differences between
the two types of models when (i) using data from different sensor placements, (ii) having access to users
with data from heterogeneous sensor placements, (iii) considering bandwidth efficiency, and (iv) dealing
with data with incorrect labels. Our results show that FL models suffer from a consistent performance deficit
in comparison to their DL counterparts, but achieve these results with much better bandwidth efficiency.
Furthermore, we observe that FL models exhibit very similar responses to those of DLmodels when exposed
to data from heterogeneous sensor placements. Finally, we show that the FL models are more robust to data
with incorrect labels than their centralized DL counterparts.

INDEX TERMS Human activity recognition, federated learning, deep learning, system-level aspects,
different and heterogeneous sensor placements, FL optimizers, fraction fit, bandwidth efficiency, data errors,
feature selection, model complexity.

I. INTRODUCTION
The ever-increasing ubiquity of devices such as smartphones,
smartwatches, fitness trackers, and smart glasses has paved
the way for many new applications that could be offered
to users. This is mainly due to the incredibly valuable
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context information acquired through them, which enables
applications such as (i) remote monitoring of patients [1],
(ii) prevention and detection of high-risk situations, such
as falls [2], (iii) fitness and lifestyle improvements [3],
(iv) detection of cognitive diseases such as Parkinson’s dis-
ease [4], [5], and (v) automatic activity log generation [6].

Although today’s wearable devices contain many different
types of sensors and can capture large amounts of diverse
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data, data collection remains one of the most prevalent prob-
lems in Human Activity Recognition (HAR). This is due to
the fact that the process is time-consuming, expensive, and
usually performed only once, at the start of the development
of any specific HAR pipeline. One of the reasons behind
performing data collection only once is that the technologies
used to develop HAR models require data to be centrally
stored before being used. This introduces significant privacy
risks and hinders continuous data collection both because
of security concerns and the potentially substantial costs
incurred by sending large volumes of data from a user’s
device to a central data store.

A possible solution to these problems could be the use
of Federated Learning (FL) [7], instead of the widely used
centralized classical machine learning (ML) and deep learn-
ing (DL) methods. FL is a distributed learning paradigm
that focuses on developing a shared model using clients who
each only have access to their own data. The primary advan-
tage of FL is that a client’s data never leaves their device,
which substantially decreases any security risks related to
sharing sensitive information. In addition, the only infor-
mation that leaves the user’s device when using FL is the
computed updates/weights to the local model, which substan-
tially reduces the volume of data that needs to be sent to a
central data store compared to when users send actual sensor
readings. Both the improved security and the reduced volume
of data leaving a user’s device increase the feasibility of
performing continuous data collection, which, in turn, would
significantly impact the ability of models to improve over
time and adapt to changes in the distribution of the data.

However, efficient deployment and optimal operation of
FL in real-world scenarios is far from a trivial task. FL is
commonly deployed on communication and computationally
constrained devices, and requires a better understanding of
how various system-level factors impact its reliability and
applicability. Such an understanding has immense potential
to facilitate the development ofmore effective FL-basedmod-
els, which would advance the practical application of FL in
real-world settings.

Rather than proposing a new model or FL optimizer, this
paper aims for a more significant and wider impact. Our
main goal is to provide a comprehensive and rigorous sys-
tem level analysis of federated learning for human activity
recognition. This paper is the first, to our knowledge, to offer
such a system-level perspective that covers various practical
aspects and considerations. In particular, this work initially
focuses on analyzing the performance gaps between the cen-
tralized deep learning and the distributed federated learning
approaches using two different HAR datasets with different
sensor placements. Finally, this paper aims to characterize the
behavior of FL by comparing it to that of a centralized DL,
when considering the following important practical aspects
for real-world deployments:

• data from different sensor placements,
• heterogeneous sensor placements in clients that partici-
pate in the training at the same time,

• different server-side model aggregation strategies for FL
(i.e., FL optimizers),

• a different percentage of clients participating in the
learning process,

• communication bandwidth efficiency,
• model size and model complexity as a result of feature
selection,

• data with corrupted labels.
The lessons learned throughout the paper can later serve

as comprehensive guidelines for designing and optimizing
federated learning systems for HAR.

The paper is organized as follows. Section II presents the
related work at the intersection of FL and HAR. Section III
presents the two HAR datasets used for training and evalua-
tion of our models. Next, Section IV describes the method-
ology, namely, the feature extraction that was performed, the
model architecture used as well as the FL system architecture
used. Section V presents the evaluation setup, metrics and the
details of the experiments. Section VI presents and discusses
the results from the experiments. Section VII compiles the
lessons learned though our results and, finally, Section VIII
provides a summary of the paper and discusses potential
directions for future work.

II. RELATED WORK
State-of-the-art ML and DL solutions for HAR usually
require data from different sensors and users to be located
in one central location before being used to develop models.
The disadvantages of training centralized models appear in
the form of privacy concerns and the inability to perform
continuous data collection due to both the security risk and
the high cost of transferring large amounts of data from a
user’s device to a central data store. FL can mitigate these
disadvantages by constructing a shared model using only
the updates/weights computed by each client on their local
machine and data.

Over the past few years, numerous studies have inves-
tigated the use of FL in the field of HAR. The major-
ity of these studies have concentrated on exploring new
FL applications in the context of activity recognition or
enhancing FL pipelines and methodologies [8], [9], [10],
[11], [12], [13], [14], [15]. These works usually aim to
enhance the accuracy and resilience of the FLmodel, but they
seldom focus on a broad exploration of the real-world deploy-
ment requirements of FL at the system level. Specifically,
there is a lack of research on how various factors, such as
fusion of data from different sensor placements, exposure to
clients with data from heterogeneous sensor placements, and
exposure to data with corrupted labels, affect the accuracy,
communication efficiency, and complexity of FL systems for
HAR. Furthermore, a head-to-head comparison of DL and FL
models under varying conditions, in order to quantify and
define the differences between the two paradigms, is also
rarely performed.

Only a limited number of studies have attempted to pro-
vide a deeper understanding of the system-level specifics
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of FL in the field of HAR. One example of such analysis
is presented in [16], where the impact of non-iid data on
the performance of a FL-based activity recognition system
was investigated. Specifically, the authors examined how the
performancewas affected by clients having access to different
subsets of activities, unbalanced numbers of examples from
the activities they performed, and corrupted data. They also
proposed a technique to address the issue of corrupted data.
Another study that focused on the heterogeneity of clients’
data is [17], where a device selection strategy was proposed
to alleviate problems such as activity class imbalance and
varying data sizes per client. Finally, in [18], the authors
evaluated and compared various FL optimizers, including
personalized ones. The study found that the federated aver-
aging approach provided better global performance than the
other more complex personalized approaches.

Although the mentioned papers have made contribu-
tions to the understanding of some system level aspects of
FL-based HAR, they fail to provide a broad and thorough
enough investigation of the requirements and implications
in real-world deployments of these systems. More specifi-
cally, these works fail to investigate issues associated with
diverse sensor placements in clients and data fusion, datasets
containing corrupt labels, and the trade-off between optimal
FL-specific hyperparameters, model accuracy, and communi-
cation and computational overhead. This work aims to build
upon these limitations by exploring the effects of various
FL-related factors on the overall system performance. Specif-
ically, this work investigates how different sensor placements,
FL optimizers and FL-specific hyperparameters, and data
fusion affect model performance. In addition, the analysis
encompasses the effects of communication bandwidth, model
complexity, and data with corrupted labels on the overall
precision, robustness and overhead efficiency of FL models.

III. DATA AND PREPROCESSING
For the purposes of training and evaluation of our mod-
els, in this work, we used the JSI-FOS [19], [20] and
PAMAP2 [21], [22] (hereinafter referred to simply as
PAMAP) datasets. Both of these datasets contain recordings
of activities of daily living (ADL) made using Inertial Mea-
surement Units (IMUs)which users wore attached to different
parts of their bodies.

More specifically, the JSI-FOS dataset consists of record-
ings collected from ten subjects while performing the
following activities: walking, standing, sitting, running,
lying, lying_exercising, kneeling, cycling, allfours_moving,
allfours. Although more IMU placements were available,
in this analysis, we considered only the data collected by
the IMUs placed on the wrist of the dominant hand and the
thigh of the dominant leg. Furthermore, we only considered
data coming from the accelerometer and gyroscope. During
data collection, values from the sensors were sampled using
a frequency of 50 Hz.

Similarly to the JSI-FOS dataset, the PAMAP dataset
consists of recordings collected from nine subjects while

FIGURE 1. The distribution of activities in the aggregated training and
test subsets of the (a) JSI-FOS dataset, and the (b) PAMAP dataset.

performing the following activities: lying, walking, transi-
tion, sitting, standing, ascending_stairs, descending_stairs,
ironing, vacuum_cleaning, nordic_walking, rope_jumping,
cycling, running. Here, as well, we chose to work with only a
subset of the IMU locations and sensormodalities available in
the dataset, limiting ourselves to data coming from the wrist
of the dominant hand and the chest of the user and coming
from either an accelerometer or a gyroscope. Originally, the
values from the sensors were sampled using a frequency
of 100 Hz.
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Before applying the feature extraction procedure described
in Section IV-A to both of these datasets, we first performed
some common preprocessing steps. Firstly, we downsampled
the data in the PAMAP dataset to a sampling frequency of
50 Hz to reduce the complexity of the problem. Then, we han-
dled PAMAP’s missing values by performing a backward
fill operation followed by a forward fill operation (to handle
missing values at the end of recordings).

Regarding the preprocessing steps applied to both datasets,
we first segmented the continuous data streams into smaller
windows. More specifically, we used windows of two sec-
onds without any overlap. The label of each window was
determined as the label most commonly found among the
readings contained in the window. Next, we calculated the
magnitude of the vectors provided by the accelerometer and
the gyroscope at each sampling point. Finally, we filtered the
raw sensor data using a band-pass filter to remove both the
gravitational component and the noise inherently present in
the data. It is important to mention that we kept and used both
the unfiltered and the filtered versions of the data.

Fig. 1(a) and Fig. 1(b) show the distribution of the labels in
the training and testing subsets (as described in Section V-A),
after the segmentation of the original continuous recordings
of the JSI-FOS and PAMAP datasets, respectively.

The data in both datasets are distributed equally among the
subjects who participated in the data collection, except for
‘subject 109’ in the PAMAP dataset. This subject performed
only a small subset of the activities and recorded very little
data from them. It is also worth noting that the activity
distribution in each subject’s data is similar to the one shown
in either Fig. 1(a) or Fig. 1(b), depending on the dataset to
which the subject belongs. Additionally, it is evident that the
activity distribution and frequency of occurrence are consis-
tent between the test and train subsets, irrespective of the
dataset under consideration.

IV. METHODOLOGY
This section explains the methodology used in our study,
i.e., the feature extraction process, the deep learning model
architecture and the federated learning setup, respectively
elaborated in the following subsections.

A. FEATURE EXTRACTION
To reduce the complexity of both the training and infer-
ence phase in our experiments, we decided to use a simple
Feed-Forward Neural Network (FFNN) that operates on
extracted features instead of the raw sensor data. Moreover,
utilizing a simplistic FFNN for HARhasmore practical appli-
cability, because of the limited computational and energy
capacity of HAR-related Internet-of-Things (IoT) devices.

This means that after preprocessing the data, the next step
in the ML pipeline is to extract an informative and diverse set
of features with which the FFNN would be able to achieve
high classification accuracy. Considering this, we extracted
several types of features which have proved effective when
analyzing time-series data and in particular, data from inertial

FIGURE 2. The architecture of the used feed-forward neural network for
training/inference.

sensors used for HAR [23]. The features we extracted, cate-
gorized in three groups, are the following:

• generic: mean, standard deviation, median, min, max,
range, interquartile range, kurtosis, skewness, root mean
square

• HAR-specific: integral, mean crossing rate, number of
peaks, average height of peaks, peak-to-Average power
ratio, sum, squared sum

• frequency-domain: energy, entropy, binned distribu-
tion, three largest PSDmagnitudes and their frequencies,
skewness, kurtosis

The same features were extracted from both the accelerom-
eter and gyroscope data and more specifically, for each
of their channels (including the magnitude). Furthermore,
as was previously mentioned, features were extracted from
both the filtered and the unfiltered versions of the signal
values. In total, for each window we extracted 1184 features.

B. MODEL ARCHITECTURE
After performing feature extraction, the last step of the
pipeline is the learning/inference step, performed by the
aforementioned FFNN. The architecture of the FFNN is
shown in Fig. 2. It consists of an input layer with as many
neurons as there are features that describe a single window
of data, followed by two fully-connected layers with 64 and
32 neurons, respectively. Both of these layers use the ReLU
activation function [24]. The two fully-connected layers are
followed by a single dropout layer with a rate of 0.2 [25].
Finally, the last layer in the network is a softmax layer with
either 10 or 13 neurons, depending on the dataset used for
training and evaluation. This network is used in the learning/
inference step, regardless of whether the pipeline is used in a
DL or FL context.

Finally, we want to point out that in all experiments, the
models are trained using the Adam optimizer [26], with a
learning rate of 0.0003, the categorical cross-entropy loss

VOLUME 11, 2023 64445



S. Kalabakov et al.: Federated Learning for Activity Recognition: A System Level Perspective

function, and a batch size of 256. It is important to note that,
when using FL, we also experimentedwith the use of the SGD
(Stochastic Gradient Descent) optimizer, particularly because
of the fact that it is stateless. However, the results suggested
that there is no performance advantage of using SGD instead
of Adam.

C. FEDERATED LEARNING SETUP
As previously mentioned, the core idea of FL is training
a shared model using clients that never have to share data
between themselves or with a server [29]. The depiction of
a general FL implementation (and the one we use) is given in
Fig. 3. A federated learning setup usually consists of a server
that holds the shared model and coordinates the training
process, as well as clients which all hold their own local
data and models. The training of a shared model is achieved
by aggregating the updates/weights that the clients make to
their local models using their local data. This way, clients do
not have to share their data with the server, but instead, only
share the updates/weights of their local model. One training
iteration of the shared model in FL is referred to as a round.

A more detailed illustration of what are the individual
steps in a single round of training is given in Fig. 4. The
whole process starts on the server-side with the initialization
of the weights of the shared model. This only happens in
the first round of training (thus, it is depicted with a dashed
line). Next, the server picks a subset of clients (S) which
will participate in the specific training round. This is done to
simulate the fact that not all clients are available to participate
in each round. The number of clients selected in each round
of training is denoted as C . After picking the subset of clients
that will participate, the server broadcasts the weights of the
current shared model to all of the clients that are included in
the training round.

After receiving the broadcasted weights, each of the
included clients (client x ∈ S) creates a local copy of
the shared model. This local model is then trained using
their local data for a few epochs. Subsequently, each of the
included clients sends only their updates/weights of the local
model to the server. It is important to note that when referring
to updates, we mean the difference between the received
model and the local model after training using local data.

Finally, after receiving the updates/weights from all partic-
ipating clients, the server is ready to update the shared model.
This is done using some form of aggregation of the multiple
received updates/weights. The updated shared model is used
as the starting point for training in the next round.

V. EXPERIMENTAL SETUP
In the following subsections, we provide detailed information
about the evaluation setup, metrics of interest, and experi-
ments conducted in our study.

A. EVALUATION SETUP
Instead of using a Leave-One-Subject-Out strategy, we opted
for a more personalized evaluation setup due to the

unique suitability of FL for developing personalized models.
To implement this setup, we divided the data of each user
in both datasets into training and test subsets. The training
subset typically consisted of approximately 80% of the user’s
data, equivalent to around 100 minutes of labeled data (about
3100 windows/instances) in the JSI-FOS dataset and around
46 minutes of labeled data (about 1390 windows/instances)
in the PAMAP dataset (except for ‘subject 109’). The
remaining 20% of the user’s data, equivalent to around
20 minutes of labeled data (about 700 instances/windows)
in the JSI-FOS dataset and around 13 minutes of labeled
data (about 390 instances/windows) in the PAMAP dataset,
formed the test set. No validation sets were used in this study
as there was no parameter tuning involved, and our focus
was solely on reporting performance changes using different
setups on the test data from each user.

To mitigate the potential issue of high similarity between
windows containing data from the same user in close tempo-
ral proximity, we took precautions during the data splitting
process. We ensured that windows belonging to a continuous
performance of a specific activity (activity segment) were
only present in either the training or test subset, but not
both, in each of the two datasets. This was achieved through
the following steps: (i) identifying activity segments in the
data of each user, (ii) grouping activity segments based on
the performed activity, (iii) iterating through the groups of
activity segments and assigning each segment to either the
training or test subset.

During step (iii), we assigned activity segments from each
group to the training or test subset in such a way that approx-
imately 80% of the windows in the group belonged to the
training subset of the user, while around 20% of the win-
dows in the group belonged to the test subset of the user.
This approach ensured that the evaluation of the model was
not biased by unintentional repetition of similar data during
training and testing, and helped maintain the integrity of the
evaluation process.

Due to the inherent differences between DL and FL, the
utilization of the training and test subsets varied for each
paradigm during the training and evaluation process. For
DL models trained on one of the two available datasets, the
training subsets of all users in that dataset were concatenated
to update the model in each epoch. The concatenated test
subsets of all users in the same dataset were used to evaluate
the model after each epoch and at the end of the training
procedure. In contrast, for FL models trained on one of the
two datasets, the training subset of each user was used to
train a local model in each round of FL. Simultaneously, the
test set of each user was used to evaluate the respective local
model’s performance. However, after each training round, the
shared global model was also evaluated using the concate-
nated data from the test subsets of all users in the dataset.
This distinct approach in utilizing training and test subsets in
DL and FL models accounts for the differences in how data is
aggregated and utilized in each paradigm, taking into consid-
eration the distributed and collaborative nature of federated
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FIGURE 3. The architecture of a typical FL system.

FIGURE 4. A step-by-step depiction of a single round of training when
using the federated learning paradigm.

learning compared to the centralized training in deep
learning.

B. METRICS
To account for the imbalanced distribution of activities in
the JSI-FOS and PAMAP datasets, the macro F-score was

utilized as the performance metric in this study. The macro
F-score avoids bias towards activities with a larger number
of examples, as it calculates the F-score for each activity
separately and reports the average of those results.

The F-score is a harmonic mean of the precision and recall
metrics for a specific label. While it may not be as easily
interpretable as accuracy, higher F-score and macro F-score
values (closer to 1.0) indicate better classification perfor-
mance, while lower values (closer to 0.0) indicate poorer
performance. It is worth noting that the macro F-score and
accuracy metric may report similar values on datasets with a
balanced distribution of activities.

C. EXPERIMENTS DEFINITION
The following section introduces all the experiments we con-
veyed in our study, providing descriptions, configurations and
targets of the experiment analysis.

1) SENSOR PLACEMENT IMPACT
Our first experiment performs a head-to-head comparison
between DL and FL models. Specifically, the comparison
includes observing the performance of FL models and their
gap to DL models when (i) using data from different sen-
sor placements and (ii) when using different numbers of
training epochs/rounds. In particular, the experiment inves-
tigates whether FL models exhibit similar behavior to DL
models when the above-mentioned conditions are varied,
and analyzes the performance gap between the two learning
paradigms.

More specifically, we trained six models (three DL models
and three FL models based on the three different sensor
placements), on each of the two datasets, and evaluated their
performance after each epoch/round of training. The max-
imum number of epochs/rounds used for training both DL
and FL models was 50. It is important to note that when
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comparing the DL and FLmodels, we treated one epoch (DL)
and one round (FL) as equivalent. This approach is intended
to provide fairness in the comparison, as FL locally operates
on smaller amount of data, compared to DL, but exploits
more local epochs. Also, the updates of the shared (global)
FL model, occur in every round, which is equivalent to the
model update at each epoch in the DL case. When training
FL models, the C parameter was set to 6 and the number of
local epochs used, was 5.

Furthermore, as already mentioned, we also varied the
sensor placement whose data we used for training and testing.
Namely, we used three possible sensor placements: (i) the
wrist of the dominant hand, (ii) the thigh of the right leg,
when using the JSI-FOS dataset, or the chest when using the
PAMAP dataset, and (iii) a combination of both available sen-
sor placements. When using data from two different sensor
placements, the data were simply concatenated and examples
from both placements had the same weight while training.

2) FL OPTIMIZER IMPACT
The goal of this experiment is to explore the behavior of
different FL optimizers - FedAdagrad [27], FedYoGi [28],
and FedAvg [29], with respect to their macro F-score per-
formance. Specifically, we will evaluate these optimizers
when using both sensor locations. Due to the different
approach in computing the global model, it is expected that
some optimizers should operate more accurately for the case
of HAR.

3) IMPACT OF CLIENTS WITH HETEROGENEOUS SENSOR
PLACEMENTS
Our third experiment investigates the impact of building a
shared model using clients that have access to data from dif-
ferent sensor placements. In real-world scenarios, not every
person who uses an activity recognition service will wear
their sensor-equipped device at the same location on their
body. For example, if that device is a smartphone, one person
may wear it in the pocket of their trousers, and another might
wear it in the pocket of their jacket or even in a backpack.
This means that some of the clients of a FL model might
send updates computed on data from one sensor placement,
while others send updates computed on data from another
sensor placement. Considering this, this experiment aims to
explore the effects that receiving updates corresponding to
data from heterogeneous sensor placements might have on
the performance of the shared model.

To that end, we varied the number of users who only had
access to data from one sensor placement but not the other,
and observed the performance changes that occurred. In each
training round, all clients, regardless of what data they had
access to, were eligible to be used for training, while the
selection of which clients had access to a particular type of
data was done randomly. The whole process was repeated
ten times to reduce the effects of randomness. It should be
pointed out that in each repetition, the test subset of each user

contained data from only one sensor placement, depending
on what type of data the user was chosen to have access to.

As was the case previously, after each round, the model
was evaluated on a test subset that was a combination of the
individual test subsets of all users (clients). This effectively
meant that the test subset used to evaluate the model, had
roughly the same ratio of examples from different placement
as the ratio of users who had access to data from different
sensor placements.

Furthermore, aside from varying the number of users who
had access to each location, we also varied the number of
clients used for training in each round and the number of
rounds used to train each model.

4) BANDWIDTH EFFICIENCY ANALYSIS
One of the most prominent advantages of FL is the exchange
of the model information, instead of the complete dataset.
This results in decreased volume of shared information, that
facilitates higher bandwidth efficiency and easier collabora-
tion and model building. However, the improved bandwidth
efficiency can result in performance decline. This experiment
aims at analyzing the effects of bandwidth efficiency on the
overall FL model performance. Specifically, the experiment
strives to analyze how the number of clients and the volume
of the exchanged data impacts the precision and robustness
of the FL model.

It is intuitive that DL will have an advantage compared
to FL due to the larger volume data that is available to the
model at any point in time. However, this larger data volume
hampers the deployment of DL in real-world scenarios, where
bandwidth limitation and efficiency is of utmost importance
to IoT-based HAR systems. Conversely, the experiment also
compares the FL and DL performances for the same amount
of exchanged data. The comparison provides further insights
regarding the applicability of FL when compared to DL.

The experiment setup and system configuration for the
bandwidth efficiency analysis is the same as described in
Section V-C1. The performance analysis is conducted with
respect to the attained macro F-score as a function of the
volume of data transmitted to a server. For FL, the data
transfer volume is calculated as:

DFL = C · Ntr · Nw · P (1)

whereC is the number of random clients that participate in the
round, Ntr is the number of training rounds executed in order
to attain the givenmacro F-score,Nw is the number of weights
of the client’s model and P is the memory size of each weight
in the model (i.e., 4B per weight, assuming single precision
floating point). For DL, the data transfer volume is calculated
as:

DDL = F · Nf · Ndr · P (2)

where F is the fraction of data used for training the DL
model, Nf is the number of features used for training (1184
in total), Ndr is the total amount of data rows (cumulative for
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all clients), and P is the feature precision (i.e., 4B, assuming
single precision floats).

For both, the DL and the FL strategy, multiple runs were
conducted to calculate the 95% confidence intervals of the
macro F-score. For comparability reasons, only two DL vari-
ations were considered, i.e., DL trained with 10% and 50%
of the training part of the dataset.

5) MODEL COMPLEXITY AND THE EFFECTS OF FEATURE
SELECTION
Often HAR-based systems rely on devices that have limited
energy, computational and communication capabilities. Since
FL relies on local model building, it is crucial to minimize the
model complexity. However, straight-forward minimization
of the model complexity can have detrimental effects on
the overall performance of FL. As a result, there exists a
requirement for exploring the possibilities that minimize the
model complexity without significantly decreasing the FL
performances.

Feature selection represents one of the most auspicious
ways of minimizing the model complexity while attaining a
certain level of robustness and precision of the FL model.
This experiment analyzes the effects of model complexity
minimization by feature selection, and discusses the potential
benefits and pitfalls.

For the purposes of this experiment, the performed feature
selection process is a Recursive Feature Elimination (RFE).
The goal of the feature selection was set as selecting the best
100 features out of the total of 1184. Afterwards, the models
were trained and tested on these 100 most important features

6) EFFECTS OF DATA WITH CORRUPTED LABELS
In real-world deployments, the available data is non-ideal
and exhibits different negative properties, such as data will
be noisier and data labels can be incorrect. This experiment
analyzes the performance behavior of FL when considering
non-ideal datasets. Specifically, the experiment analyzes the
FL performances when there exist errors in the labeling of the
data. The amount of erroneous data (wrong labels) is varied
for both DL and FL. Since FL relies on a subset instead
of all clients during each round of the training phase, it is
very important to analyze how the volume of erroneous data
correlates with the number of active clients per round, and
how it compares to the DL case.

The dataset with corrupted labels is generated from the
JSI-FOS dataset. The process of generating the erroneous
labels, is as follows: (i) randomly select specific amount of
labels (i.e., 1%, 10% or 20%) that will be incorrect; (ii) for the
selected labels, choose a different label based on a uniform
random distribution from all available ones in the dataset;
(iii) use the newly generated dataset for training.

VI. RESULTS AND DISCUSSION
This section presents and elaborates on the main results we
obtained from all the experiments introduced in Section V-C.

A. SENSOR PLACEMENT IMPACT
Fig. 5 presents the main results from our first experiment.
More specifically, Fig. 5(a) and Fig. 5(b) show the achieved
macro F-score in dependence of the number of training
rounds/epochs, for the DL (shown using dotted lines) and
the FL models (solid lines) when using either the JSI-FOS or
PAMAP dataset for training and evaluation, respectively. The
three models per learning paradigm differ only in the sensor
placement that provided the data they processed.

When using JSI-FOS for training and evaluation, Fig. 5(a)
shows a clear ranking between the models that differ only
in the sensor placement they used, regardless of whether
DL or FL was used. For example, the worst performance
was generated by DL and FL models that used data from
the wrist sensor placement, while substantially better results
were produced by those using either the thigh placement or a
combination of both sensor placements. In fact, the best DL
and FL models were produced using the combination of both
placements. Furthermore, the results show that all models
tend to plateau once the number of training epochs/rounds
reaches 20, with models that use either both sensor place-
ments or the thigh sensor placement, converging slightly
faster than the models that use the wrist sensor placement.

When comparing models based on their type, i.e., DL or
FL, the results show that DL models always produced
slightly better results across the whole range of training
epochs/rounds when compared to the corresponding FL
model. Additionally, this performance gap between the two
types of models seems to remain almost constant across the
whole range of epochs/rounds, with the exception of the case
when DL and FL models are trained on data from both sensor
locations and when the number of epochs/rounds is above 20.
It is also evident that these models behave very similarly and
usually generate test macro F-score curves that have nearly
identical shapes, with FL models taking a slightly larger
number of rounds to achieve their best performance.

The results presented in Fig. 5(b) indicate that using
PAMAP as the dataset for model training and evaluation
yields similar outcomes. It is worth noting that models of the
same type maintain a consistent ranking. In particular, deep
learning (DL) and federated learning (FL) models that utilize
data from both sensor locations perform better than those
using data from the chest alone, which in turn perform better
than those using data solely from the dominant wrist. How-
ever, a key difference when training and evaluating on the
PAMAP dataset is that the gap in the performance between
models trained on wrist sensor data and models trained using
the chest location or data from multiple sensor locations is
substantially smaller compared to that which is present when
using the JSI-FOS dataset. For instance, the FLmodel trained
on chest data performs worse than the DL model trained on
wrist data, which is not observed in the case of using the
JSI-FOS dataset. We hypothesize that this discrepancy arises
because data from the chest sensor placement is inherently
less informative for predicting the target activities compared
to data coming from a sensor placed at the user’s thigh.
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FIGURE 5. Comparison of macro F-scores [%] between DL and FL models at varying numbers of training
epochs/rounds when using the (a) JSI-FOS dataset, and the (b) PAMAP dataset.

Regarding the relative behavior of DL and FL when
using the PAMAP dataset, things remain unchanged. Again,
DL models always produce slightly better results across the
whole range of training epochs/rounds when compared to the
corresponding FL model. Additionally, the performance gap
between these two models seems to remain constant as the
training of the model progresses. Furthermore, as was the
case when using the JSI-FOS dataset, the results show that
all models tend to plateau around the 20th epoch/round, with
models that use either both sensor placements or the chest
sensor placement converging slightly faster than the models
that use the wrist sensor placement. Finally, here we can once
more observe that the different models produce test macro
F-score curves that have nearly identical shapes.

Given that the relative performance of DL and FL models
does not appear to change when using different datasets

for training and evaluation, and to streamline our analysis,
we decided to exclusively present the results obtained on the
JSI-FOS dataset from this point forward.

Fig. 6 takes an even closer look into the relative per-
formance of the FL models compared to the DL models.
It presents two confusion matrices, generated from the pre-
dictions of a DL model and an FL model, both using data
from both sensor locations for training and evaluation on
the JSI-FOS dataset. By comparing the confusion matrices,
we can observe that both DL and FL models exhibit very
similar detection performance per activity class. Specifically,
both models achieve the best performance for activities such
as standing, lying, cycling and running. The worst perfor-
mances are attained for activities such as kneeling. It is also
interesting to note that DL and FL models make mistakes
in roughly the same situations, namely, confusing lying for
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FIGURE 6. The confusion matrices generated by the (a) DL model, and the
(b) FL model, trained using both sensor placements on the JSI-FOS
dataset.

sitting, walking for standing, kneeling for standing, etc. How-
ever, the FL model tends to confuse lying for sitting and
bending for standing a lot more than the DL model.

B. FL OPTIMIZER IMPACT
Fig. 7 investigates the performances of different FL opti-
mizers, i.e., the FedAdagrad, the FedYoGi and FedAvg,
when combining both sensor placements. The optimizers
do not undergo a hyperparameter tuning process, in order
to foster a more generic and fair comparison. The results

show that FedAvg provides best performances in terms of
the achieved macro F-score. The figure also shows that the
FedYoGi optimizer has comparable performances to FedAvg
for higher number of training rounds. The worst performance
is achieved by the FedAdagrad optimizer, attaining the lowest
macro F-score, and exhibiting large performance oscillations.
In all remaining experiments we use FedAvg, as it provides
best performances.

C. IMPACT OF CLIENTS WITH HETEROGENEOUS SENSOR
PLACEMENTS
Fig. 8 depicts the macro F-scores attained by FL models that
were trained for 50 rounds on the JSI-FOS dataset, using
varying values for the C parameter, and for different amounts
of data from the two sensor placements. The quantity of
data from each sensor placement is regulated by the number
of users who have access to the data from that particular
placement. The x-axis shows the sensor split i.e. how many
clients had access to data from the wrist sensor placement
(w) or the thigh sensor placement (t). The y-axis shows the
achieved macro F-score. The red line presents the results of a
DLmodel, while the rest of the lines correspond to FLmodels
that use different values for the C parameter. It is evident
that both DL and FL behave in a very similar manner. They
achieve the best performances for the case when all data is
derived from only the thigh (i.e. w0_t10), and achieve the
worst performance when all data is derived from the only the
wrist sensors (i.e. w10_t0). Moreover, it is noticeable that FL
closes the performance gap to DL for the case of w10_t0.

Fig. 8 also shows that FL models require a slightly larger
number of clients with data from the thigh sensor placement
before achieving more substantial improvements in perfor-
mance. Notably, when the data split corresponds to w10_t0,
w9_t1, w8_t2, w7_t3, or w6_t4 FL models perform at a level
close to the maximum achieved by models that use only
wrist sensor data in the first experiment (Fig. 5(a)). It is only
when at least five users have access to thigh sensor data that
FL models in this experiment start to show more substantial
improvement.

Our hypothesis is that the FL models’ inability to leverage
data from a potentially more informative sensor placement
results from the fact that, during each training round, only a
subset of clients (four, six, or eight) contribute their data for
training, thereby limiting the models’ exposure to the entire
training set and hindering their ability to properly adapt to
using data from two different sensor placements. However,
the results from the first experiment (Fig. 5(a)) demonstrate
that when models have access to twice the amount of training
data, they can more easily utilize data from two sensor place-
ments and generate superior results. Thus, a possible solution
to mitigate these negative effects is to involve clients who can
provide more data than those included in these experiments.

It is also interesting to note that there does not seem to be a
noticeable advantage to using any of the investigatedC values
over the other, as they perform comparable to one another
across thewhole range of possible training data compositions.
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FIGURE 7. Macro F1-scores [%] of different FL optimizers.

FIGURE 8. Macro F-scores [%] achieved by DL and FL models using different compositions of the
training data.

Additionally, the analysis in this section focuses on the
statistical behavior of the FL models. Fig. 9 shows the statis-
tical performances of FL models (mean and 95% confidence
interval) that had been trained for either 10, 30 or 50 rounds,
that used eight clients for training in each round (C = 8),
and that used different ratios of clients with heterogeneous
sensor placements. The results reveal a substantial perfor-
mance gap depending on the number of rounds chosen for
training. Specifically, opting for a low number of rounds, such
as 10, yields relatively poor results in terms of mean macro
F-score values, whereas a higher value like 30 or 50 leads to
better performance. However, the difference between choos-
ing 30 and 50 rounds for training is small, consistent with
the results from the first experiment, where the models tend
to plateau in performance after the 20th round. Furthermore,
choosing a larger number of rounds for training (e.g., above
30) and/or using only thigh sensor data, yields results with
a lower standard deviation (i.e. smaller 95% confidence
interval).

D. BANDWIDTH EFFICIENCY ANALYSIS
The results of our analysis regarding bandwidth efficiency
are presented in Fig. 10(a). More specifically, Fig. 10(a)
shows a comparison between DL and FL models that use
different amounts of training data from a full-featured version
of the JSI-FOS dataset. As a distributed learning strategy, FL,
transfers the model weights to the centralized server in each
round of operation. In contrast, for DL, the data needs to be
completely transferred to the central server to perform the
training of the model. The FL-basedmacro F-score curves are
presented as continuous with respect to data transfer volume
and theDL results are depicted as discrete points on themacro
F-score vs. data transfer volume plots.

In terms of the FL performances, Fig. 10(a) shows that the
FL strategy with one active client per round (C = 1) can
achieve the near optimal macro F-score with about 15MB of
data transferred, while FL with five and nine active clients
per round needs ∼30 and ∼45MB, respectively, to achieve
the near-optimal macro F-scores. The FL results also show
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FIGURE 9. Impact of the number of training rounds on a FL model’s (C = 8) macro F-score [%]
performance for different compositions of training data from the JSI-FOS dataset.

that the confidence intervals for the macro F-score decrease
as the number of active clients increases, meaning that a bit of
bandwidth efficiency needs to be sacrificed for an increased
stability of the FL models. In conclusion, there is a clear
trade-off between the bandwidth efficiency, model accuracy
and model stability for the FL strategy.

Fig. 10(a) also depicts the DL results for the macro
F-scores and confidence intervals vs. the data transfer vol-
ume. It is clear that the DL model using only 10% of the
dataset for training is outperformed by all FL scenarios in
terms of bandwidth efficiency. The DL model trained with
50%of the dataset, shows slightly better macro F-scores at the
price of a wider confidence interval (lower model stability)
than FL with a larger number of active clients per round (≥5).

E. MODEL COMPLEXITY AND THE EFFECTS OF FEATURE
SELECTION
The results of our analysis regarding model complexity are
presented in Fig 10(b). They are consistent with the ones
presented in Section VI-D. The data volumes are reduced in
compliance with equations 1 and 2.

Comparing the results between Fig. 10(a) and Fig. 10(b),
there is a significant improvement of the bandwidth efficiency
of the FL strategy. In particular, FL with one active client
per round needs about 4MB to achieve a near-optimal macro
F-score. FL with a higher number of clients (five and nine)
does not converge in the inspected data volume range. The
increase of the bandwidth efficiency comes at the price
of a reduced model accuracy. Comparing Fig. 10(a) and
Fig. 10(b), there is a noticeable drop in performances for the
FL strategy. There is about a 5% drop in macro F-score at a
lower number of rounds, as well as a noticeable increase in
the confidence intervals (model instability) for all inspected
FL use-cases (C = 1, 5, 9).
On the contrary, the DL strategy preserves the macro

F-score performances with the reduced feature set, compared
to DL with the full feature set (Fig. 10(a)). These are the

only differences: an increase in the confidence interval for DL
trained with 10% of the dataset and a slight increase in macro
F-score for the DL trained with 50% of the dataset. DL with
the reduced feature set (100 features) provides a dominant
bandwidth efficiency, i.e., a macro F-score of≈0.83 for 5MB
of data volume transferred.

In conclusion, DL with optimized feature set might come
as a satisfactory solution for bandwidth efficient ML for
HAR. However, the online principle of operation, privacy
preservation, reasonable performances and bandwidth effi-
ciency, still remain the main benefits of the FL strategy.
Furthermore, the drop in macro F-score performances of FL
with reduced feature set may come as a result of the low
number of epochs used to train the local FL models (=5), i.e.,
the inability of the local models to converge for the reduced
feature set. The optimization of these aspects will be part of
the authors’ future work.

F. EFFECTS OF DATA WITH CORRUPTED LABELS
The results of our analysis into the effects of data with cor-
rupted labels are presented in Fig. 11.

A general observation is that DL is more vulnerable to
this phenomenon than the FL models. It is intuitive that the
increase of percentage of incorrect labels will decrease the
macro F-score of the DL model, which is also confirmed
by the results. Furthermore, as the number of epochs grows,
the DL performances drop even more significantly, since
the model has more opportunities to fine-tune to data with
incorrect labels.

On the opposite, the FL strategy is more robust to label
errors, dropping only 1-4% in macro F-score as the percent-
age of label errors grows to 20%, depending on the number of
active clients. It is also clear that FL with more active clients
(C = 6) is more robust to label errors. This is mostly due
to the online operation and the weight averaging principle of
the FL strategy. This is a very important advantage of the FL
paradigm, since in real-world scenarios flawed or imprecise
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FIGURE 10. A comparison between FL and DL in terms of bandwidth
efficiency, i.e., macro F-score vs. data transfer volume to achieve the
respective scores.

FIGURE 11. Impact of label errors on the macro F-score performance of
FL and DL models.

data might seriously degrade performances. In each round of
operation, the global FL model is calculated based on averag-
ing local models from a random subset of clients. This means
that erroneous local FL model weights are averaged out with
more accurate ones and the effect of error propagation is
diminished.

VII. LESSONS LEARNED
This section summarizes our observations from the multiple
performed experiments related to FL for HAR using wearable
sensors. The following lessons can be learned based on our
findings:

1) Federated vs. deep learning general observations.
It has been consistently observed that DL models
outperform FL models in terms of classification per-
formance. This is intuitive from an information theory
perspective, since distributed learning cannot achieve
higher accuracy than a centralized DLmodel when they
use the same underlying neural network. DL models
are trained on the entire dataset, while FL models only
train local models on portions of the dataset and then
combine them into a global model, which can result
in valuable information being lost due to partitioning
and averaging. However, this trade-off is necessary for
increased privacy and data protection. After examining
various use cases, it has been found that the macro
F-score performance gaps between FL and DL typi-
cally range between 5-10% for the region of a lower
number of rounds/epochs (<15), and below 5% for
larger numbers of rounds/epochs (>20). These results
and all previously discussed conclusions are consistent
for two different datasets, namely the JSI-FOS and the
PAMAP datasets, that were analysed using the same
pipeline. Given that the performance of DL models
serves as an upper limit to the performance of the FL
models and the gap are not so significant when themod-
els are trained in a sufficient number of epochs/rounds,
choosing the appropriate neural network architecture is
a critical step that can greatly impact the performance
of FL. The goal should be to select a neural network
architecture that maximizes the upper limit, thereby
pushing the FL classification performances as high as
possible.

2) FL optimizer impact. We conducted an investigation
to compare the performance of various FL optimizers,
namely FedAdagrad, FedYoGi, and FedAvg, for the
purpose of HAR. The findings showed that despite its
simplicity, FedAvg outperformed the other optimizers
in terms of both convergence and macro F-score. Fur-
ther investigation is required in this area since some
of the optimizers were used with default initialization
parameters.

3) Sensor placement impact. The impact of sensor place-
ment on model performance highlights the importance
of careful selection of sensor placements for accurate
recognition of different activities. The results from the
analysis in this paper show that the thigh (JSI-FOS
dataset) and the chest placement (PAMAP dataset)
prove to be more informative regarding HAR in com-
parison to the wrist sensor placement. It is important
to note that this observation is true for both DL and
FL models. Furthermore we observed that, the combi-
nation of either thigh or chest sensor data with wrist
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sensor data yielded the best performances in terms of
macro F-scores, again, for both the DL and the FL
models. This is due to the fact the wrist sensor can
contribute to better performances for some specific
type of activities. The DL and FL results, as well as the
gaps between the DL and the FL models are consistent
for the two investigated datasets.

4) Clients with heterogeneous sensor placements. The
experiment conducted on clients with heterogeneous
sensor placements revealed that compared to DL mod-
els, FL models needed a slightly higher number of
clients that have access to data from the more infor-
mative sensor placement before they are able to start
leveraging this data source and improve their results.
In addition, our results also showed that, when using
clients with data from heterogeneous sensor place-
ments, choosing one C value (fraction of clients) over
the others does not make much sense as there was no
substantial difference between their results.

5) Bandwidth efficiency. Regarding bandwidth effi-
ciency, FL demonstrated better performance than DL
by achieving a nearly optimal macro F-score with the
transfer of only tens of megabytes of data. The inves-
tigation also looked into the C parameter and revealed
that increasing the number of active clients per round
led to improved model stability but required more data
to be transferred for the FLmodels to converge. In other
words, the study highlighted a clear trade-off between
bandwidth efficiency, model accuracy, and model sta-
bility for the FL paradigm.

6) Model complexity and feature selection. The exper-
iment used the Recursive Feature Elimination (RFE)
to select the best 100 features, and the models were
trained and tested on these 100 features. The results
showed a substantial improvement in the bandwidth
efficiency of the FL strategy when compared to the
full feature set, with a 4MB data volume needed for
near-optimal macro F-score. However, this increase in
bandwidth efficiency came at the cost of reducedmodel
accuracy, with a noticeable drop in macro F-score and
an increase in confidence intervals for all inspected
FL use cases. The main conclusion is that DL with
optimized feature sets may be a satisfactory solution for
bandwidth-efficient ML for HAR, but FL still remains
the main choice for online operation, privacy preserva-
tion, and reasonable performances.

7) Erroneous data effect. The experiment compared the
performance of FL to that of traditional DL when
working with a dataset that has a varying percentage of
erroneous labels. The results of the experiment show
that the DL model is more vulnerable to label errors
than the FL model. This finding highlights the advan-
tage of FL in mitigating the effect of erroneous data,
limiting the error propagation due to the averaging
process for the global model update.

The previously discussed conclusions and lessons learned
can serve as valuable and comprehensive guidelines for
designing, developing and implementing efficient federated
learning solutions for human activity recognition. Most of the
conclusions are also generalizable to other federated learning
applications beyond human activity recognition.

VIII. CONCLUSION
This paper presents a performance analysis for FL-based
HAR, from a system level perspective and under various real-
world conditions, such as communication cost/bandwidth
efficiency, model complexity, erroneous data, etc. The analy-
sis also provides a head-on comparison between FL and DL
when using two different datasets. The results clearly show
that various system parameters and configurations like the
type of sensor placement, FL optimizer, model complexity,
data volume as well as erroneous data can play a crucial role
in the robustness and applicability of FL-based HAR.

Future work will focus on several different optimality and
optimization aspects that will build upon the findings from
this work. Specifically, the future work will investigate the
analytical tractability and generalization of the optimization
problem related to system-level parameters, including band-
width efficiency, energy efficiency, model complexity, and
the model performance. Additionally, it will broaden the
analysis of the erroneous data effect, by including non-iid
data points, noising of the data samples, as well as label
smoothing.
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