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ABSTRACT The focus of cloud computing nowadays has been reshaping the digital epoch, in which
clients now face serious concerns about the security and privacy of their data hosted in the cloud, as well
as increasingly sophisticated and frequent cyberattacks. Therefore, it has become imperative for both
individuals and organizations to implement a robust intrusion detection system (IDS) capable of monitoring
packets in the network, distinguishing between benign and malicious behavior, and detecting the type of
attacks. IDS based on ML are efficient and precise in spotting network threats. Yet, for large dimensional
data sizes, the performance of these systems decreases. Thus, it is critical to building a suitable feature
selection approach that selects necessary features without having an impact on the classification process
or causing information loss. Furthermore, training ML models on unbalanced datasets show a rising false
positive rate (FPR) and a lowering detection rate (DR). In this paper, we present an improved cloud
IDS designed by incorporating the synthetic minority over-sampling technique (SMOTE) to address the
imbalanced data issue, and for feature selection, we propose to use a hybrid approach that includes three
techniques: information gain (IG), chi-square (CS), and particle swarm optimization (PSO). Finally, the
random forest (RF) model is utilized for detecting and classifying various types of attacks. The suggested
system has been verified by the UNSW-NB15 and Kyoto datasets, achieving accuracies of over 98% and 99%
in the multi-class classification scenario, respectively. It was noticed that an intrusion detection system with
fewer informative features would operate more effectively. The simulation results significantly outperform
other methodologies proposed in the related work in terms of different evaluation metrics.

INDEX TERMS Improved design for cloud-IDS, feature selection, PSO-based metaheuristic, random forest.

I. INTRODUCTION and so on [2]. However, this has led to a rising number of

Nowadays, the progress in digital technologies has led to an
explosive growth of cloud computing (CC) [1] applications in
different fields due to its services (SaaS, PaaS, and IaaS) and
its advantages such as expandability, availability, low cost,
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threats and created a massive market for cyber security [3].
According to this research [4], companies and organizations
faced 50 million cyber assaults in 2010, and by 2019, that
figure had increased to 900 million, and the figure is still
continuously rising. Both individuals and enterprises have
suffered serious damage and big financial losses as a result
of these cyberattacks. Based on recent Juniper research [5],
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FIGURE 1. IDS classification.

the expense of security breaches is forecast to increase from
USD three trillion annually to over USD five trillion in 2024.
These immense economic losses made users apprehensive
about storing their data in the cloud; thus, the primary goal
of the cloud service provider (CSP) is to allay their fears
by providing the greatest level of security and maintaining
their personal data by investing in cybersecurity solutions.
In 2022, the worldwide cybersecurity industry was estimated
to be worth USD 202.72 billion. From 2023 to 2030, it is
anticipated to increase at a CAGR of 12.3% [6].

The cloud is composed of three primary network
types: virtual, internal, and external. Communication among
virtual machines (VMs) running on the same physical
server/infrastructure is allowed through the virtual net-
work [7]. Various cloud components, such as network servers,
management systems, and storage systems, can connect with
each other over the internal network. The external network
serves as the main communication channel between the cloud
user (front end) and the CSP (back end). Altogether, these
networks enable the successful delivery of cloud services
to customers. Therefore, protecting the network from any
potential attack is of utmost importance. The cloud employs a
variety of cybersecurity strategies, such as firewalls, intrusion
prevention systems (IPS), IDSs, etc., to address numerous
security issues. Recently, network threats have worsened due
to a lack of adequate counter-security actions [8]. Conse-
quently, IDS is implemented in the cloud model to combat
security concerns. With cloud computing services being
provided through the internet network, guaranteeing data
security and protection is among the greatest obstacles to
cloud success. The key security challenge in the cloud is
detecting and preventing network intrusions. Given that the
network serves as the cloud’s backbone, any network vulner-
abilities have an immediate impact on the overall security
of the cloud [9]. Conventional solutions such as firewalls
and even traditional signature-based intrusion detection tech-
niques are no longer effective in confronting intruders [10],
as their non-deterministic nature makes them unsuitable
for cloud environments. Therefore, it is crucial to develop
anomaly-based IDSs using ML models with high accuracy,
an elevated DR, and a minimal FAR before implementing this
IDS on each server in cloud computing to monitor network
traffic for detecting attacks.

IDS is a protective measure that continuously monitors and
analyses host and network traffic to determine various types
of abnormal activity that breaches security procedures [11].
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FIGURE 2. Taxonomy of IDS based on the detection method.

IDS can be categorized based on how they are deployed or
detected. In Figure 1, the classification is presented.

o The operation-based IDS philosophy is divided into
host-IDS (HIDS) and network-IDS (NIDS). HIDS is a
single-device security tool that exclusively cares about
the security of its host. The key disadvantage is that
it must be installed on every host that requires intru-
sion protection, which adds extra operational costs to
every node and lowers the IDSs overall performance.
On the other hand, NIDS is established on the network
with the purpose of preventing intrusions on all devices
included in the network. Since cloud computing services
are provided over an Internet network and because NIDS
is more comprehensive, we use NIDS datasets for the
validation of our proposal.

o Figure 2 shows the detection methods that are catego-
rized into signature-based IDS, also known as misuse
detection. The data in the network is matched with the
types of attacks in the database of signature-based IDS
so that a warning is generated if a match is found, but the
main weakness is if in the absence of that there is some
attack on the database, the intrusion cannot be identified.
On the contrary, normal behavior cases are stored in the
database of rule-based systems, also known as anomaly-
based IDS, and it monitors all packets on the network
to issue a warning if any deviation outside the specified
rules occurs. Its main feature is its ability to detect
unknown attacks, also known as zero-day attacks [12].
Yet, the key issue is the increased FAR and lower DR
since it is challenging to distinguish between benign and
malicious profiles for intrusion detection.

Recently, ML-based IDSs have become industry leaders
and hold great promise for enhancing the field of intrusion
detection studies. ML models offer IDSs the capability of
self-learning and improvement from available data. Gener-
ally, there are two types of ML models: supervised-ML and
unsupervised-ML. In supervised ML, models are trained with
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FIGURE 3. Process of building an ML model.

labeled data, but unsupervised ML models use (unlabeled)
unstructured data for training. This study uses supervised ML
techniques, particularly multi-class classification, to identify
various types of attacks. Since datasets are crucial for eval-
uating IDSs, it is important to utilize enough high-quality
and well-pre-processed data. Most often, big datasets with
high-dimensional feature sizes are employed to train the ML
models, therefore consuming an immense amount of com-
putational resources and causing poor performance of the
model. Implementing feature selection techniques is one of
the aspects of preprocessing that is used to address the dimen-
sionality issue. Feature selection is the procedure of choosing
the optimal subset of relevant features from a high-dimension
collection to increase performance, improve classification
accuracy, and decrease cost without losing information. There
are many approaches to selecting features. Figure 3 illustrates
the design of an ML model.

In this paper, we propose a hybrid strategy for feature
selection that includes filter methods (IG and CS) and a
bio-inspired algorithm (PSO). The combination of these three
methods (IG, CS, and PSO) is a novel approach that can
provide a more robust feature selection process by exploiting
the strengths of each technique to enhance the possibilities
of determining the most related features. The unbalanced
data negatively impacts the performance metrics, especially
with the multi-class classification in the case of the minor-
ity classes. It is essential to handle this issue along with
maintaining the information values by increasing the minority
instances; thus, the SMOTE algorithm is used to do that. The
proposed system is evaluated by using a RF as a classifier
and a couple of benchmark datasets, namely, UNSW-NB15
and Kyoto. The following constitutes the paper’s main con-
tribution:

o Address the imbalance data issue using a SMOTE.

o The proposed methodology, which consists of IG, CS,
and PSO, seeks to find an optimal feature subset that
not only improves the performance of the model but
also contains features that are highly correlated with the
target variable and are informative.

« Using a RF as a supervised ML model in the detection of
the attacks. Its merits, such as handling both continuous
and categorical data, addressing missing and outliers’
values, consuming shorter time in training, etc., made
it our choice as a classifier.

o Testing the suggested model is conducted using pub-
lic standard datasets, called UNSW-NB15 and Kyoto,
which consider host and network datasets. The exper-
iment focuses on multi-class classification to illustrate
the evaluation metrics for each class.
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The current study is structured as follows: Section II presents
state-of-the-art works related to the IDSs. Brief details about
the suggested methodology are provided in Section III.
In Section IV, a short explanation is offered related to the used
datasets and performance metrics. The simulation process
and results discussion are mentioned in Section V. Finally,
the conclusion and future works are shown in Section VI.

Il. RELATED WORKS
This section provides a brief summary of recent studies
that aim to enhance IDS performance through the use of
feature selection techniques, including those that are based
on bio-inspired or filter-inspired algorithms as well as ML
and DL classifiers. Benmessahel et al. [13] created an evo-
lutionary neural network (ENN) using an artificial neural
network (ANN) and a novel natural evolutionary algorithm
(EA) dubbed the multiverse optimizer (MVO). The major
goal of this research was to train a feed-forward multi-layer
ANN using an MVO to recognize new threats and resolve
the issues that ANNSs run into. The MVO-ANN exhibits great
efficacy after being verified using the UNSW-NB15 dataset.
Yang et al. [14] presented a model comprising a DNN plus an
improved conditional variational autoencoder (IC-VAE). IC-
VAE has the capability to investigate and learn about possible
sparse representations between network data attributes and
classes. The learned-VAE encoder is used to adjust the weight
of the DNN hidden layer and minimize the size of the input
data. The ICVAE decoder is able to balance the training
dataset by increasing the records of minority attack types. The
DNN functions as both a classifier and a feature extraction
model, learning more quickly and easily than conventional
MLP networks. ICVAE-DNN was tested by UNSW NB15
and demonstrated high performance, particularly in detecting
unknown and minority attacks. Tama et al. [15] designed a
new system for IDS based on hybrid feature selection tech-
niques such as PSO, the ant colony algorithm (ACA), and
the genetic algorithm (GA), which are used to decrease the
dimension space of the training sets. This combination of
PSO-ACA-GA determined a subset of 19 features in the
UNSW-NB15 dataset. Then, a two-level meta-ensemble clas-
sifier, i.e., rotation forest and bagging, achieved considerable
performance.

Khan et al. [16] used a stacked auto-encoder (SAE) and
a soft-max classifier to develop a unique two-stage deep
learning (TSDL) approach for effective network intrusion
detection. The proposal includes two decision steps: the
first one uses a probability score value to determine if net-
work traffic is benign or malicious. This is then utilized
as an added feature for identifying benign states and other
types of threats at the final decision step. The suggested
model is able to classify data automatically and effectively
by learning relevant feature representations from significant
volumes of unlabeled data. Their proposal also used the
SMOTE algorithm to solve this issue of unbalancing data.
Vinayakumar et al. [17] suggested a hybrid intrusion detec-
tion alert system that can evaluate host- and network-level
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activity utilizing a massively scalable architecture running
on commodity computing servers. The system used a dis-
tributed deep learning algorithm with DNNs for processing
and real-time analysis of extremely large amounts of data.
The performance of the DNN model was carefully compared
to that of conventional machine learning classifiers using
a variety of standard IDS datasets. They found that DNNs
surpassed the traditional machine learning classifiers in all
situations except for UNSW-NB15, where decision trees
(DTs) and random forests performed better overall in multi-
class classification. Patil et al. [18] explained a framework
for hypervisor-level distributed network security (HLDNS),
which is installed on every processor server in a cloud
environment. For the purpose of detecting intrusions, a sep-
arate server keeps track of the network activity going to
and from the virtual, internal, and external networks con-
nected to the underpinning virtual machines (VMs). They
were able to recognize both known and unknown threats
because they applied both misuse-based and rule-based detec-
tion approaches. Furthermore, misuse-based detection was
used before rule detection, which reduced the total computing
costs because their model just had to scan the network data
for zero-day attacks. In order to select feasible attributes from
cloud network traffic, they advanced the binary bat algorithm
(BBA) with two additional fitness functions. The generated
features were then applied to the RF model to detect intru-
sions, and finally, the detected attacks from various servers
were gathered to update the signature (misuse) database.
Saleh et al. [19] proposed an IDS based on a hybrid
methodology that combined three techniques, namely, naive
base feature selection (NBFS) for reducing the size of
datasets and figuring out the best features, optimized support
vector machines (OSVM) to reject outliers, and prioritized
k-nearest neighbors (PKNN) in order to identify and classify
the threats. The Kyoto dataset was one of three datasets
utilized in this approach’s testing. By simulation, the proposal
proved effective in real-time, and it is ideal for address-
ing the multi-class classification issue. It can also be used
to reduce training and testing times while increasing DR.
Zhang et al. [20] suggested an MSCNN-LSTM methodology
that consisted of multi-scale convolutional neural networks to
analyze the spatial attributes of the dataset and then use a long
short-term memory to handle the temporal attributes; thus, the
classification was executed using spatial-temporal features.
This approach demonstrated its potent capacity for dealing
with datasets with high complexity and dimensionality. The
UNSW-NBI15 dataset, with only 20 features out of 49, was
used for verifying the method. Therefore, in the future, they
are planning to use feature selection techniques to achieve
better performance. Kasongo and Sun [21] proposed using
the XGBoost model as a feature selection model to decrease
the dimension of the dataset and enhance detection accuracy.
Then, they used ML methods (SVM, kNN, LR, ANN, and
DT) to classify and detect the threats. Finally, after comparing
the performance of ML models, they found that DT and ANN
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are better in terms of binary and multi-class classification,
respectively. In the future, they plan to employ a synthetic
oversampling technique to grow the number of minority-type
instances to solve the imbalanced data problem.

Kumar et al. [22] provided an integrated classification-based
IDS and tested its performance on the offline standard dataset
(UNSW-NB15) and online real-time dataset (‘“‘RTNITP18”
that have been created by the authors in the CSE lab of NIT
Patna). These five classes (normal, probe, DOS, generic, and
exploit) have been detected in both datasets. They have used
a DT as a classifier and IG model to select the features in the
UNSW-NBI1S5 dataset. Almomani [23] designed an intrusion
detection system based on bio-inspired feature selection
techniques such as firefly optimization (FFA), grey wolf
optimizer (GWO), genetic algorithm (GA), and PSO, along
with a couple of ML models (J48 and SVM) as classifiers
to evaluate his approach using the UNSW-NB15 dataset.
The proposal showed heightened results due to employing
the feature selection strategy, which impacted the consumed
time and improved the accuracy level. His rule-based IDS
includes 17 rules for feature selection. In total, 4 rules
are formed by every single algorithm (FFA, GWO, GA,
and PSO), and 13 sets of rules are formed because of the
combination of all of them. Each rule, R, has a different
number of features. By the simulation, R17 with 30 features
has the most satisfactory effect as it was shown that the
performance of J48 was more profitable than SVM, and the
PSO results were the best among other individual methods;
therefore, we were inspired to use PSO as a feature selection
algorithm in the current study. Jiang et al. [24] discussed a
unique technique for intrusion detection systems that inte-
grates hybrid sampling plus deep hierarchical networks.
Initially, they minimize the noise instances in the majority
class using one-side selection (OSS), and then they expand
the number of the minority instances using SMOTE. Finally,
they created a deep hierarchical network structure by using
a CNN to extract spatial attributes and a bi-directional long
short-term memory (BiLSTM) to extract temporal attributes.
The model produced high-quality results due to using re-
peated multi-level learning methods and creating a balancing
dataset, which allowed the model to comprehensively grasp
the attributes of minority instances and drastically reduce the
amount of time it takes to train. Rajesh Kanna and Santhi [25]
suggested an OCNN-HMLSTM model which combined the
optimized CNN (OCNN) for picking up the spatial features
that employed the lion swarm optimization (LSO) to adjust
the hyperparameters to obtain a perfect setting, along with
a hierarchical multi-scale LSTM (HMLSTM), which has
superior effectiveness for temporal attributes; in addition,
it also classifies packets of the network. This approach’s
ability to automatically comprehend spatial-temporal char-
acteristics makes it efficient for detecting threats. However,
the complexity of the model due to using deep learning
methods led to a long training time (30,665 s), which meant
the consumption of a lot of resources, which is what we
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have examined in this study. The authors intend to investigate
feature selection procedures in the future.

Sreelatha et al. [26] presented an efficient cloud IDS thanks
to the feature selection concept and classification. Based
on the sandpiper optimization algorithm (SOA), the rele-
vant and valuable attributes are selected from the provided
incursion dataset with the least amount of information lost.
The extended equilibrium deep transfer learning (EEDTL)
method is then used to categorize various threats accord-
ing to the best features that were chosen by SOA. Transfer
learning employs a pre-trained network called AlexNet,
which is considered the most common structure in DCNN,
to well-configure the characteristics in the convolution layers.
To update the network weights, the extended equilibrium
optimizer (EEQ) is also employed. The simulation outcomes
proved that the proposal demonstrated superior performance
compared to other methodologies, but still, there are better
results in terms of DR and precision. In upcoming works and
to enhance the effectiveness, they plan to carry out feature
selection based on hybrid optimization algorithms along with
hybrid machine learning strategies. Kanna and Santhi [27]
built an efficacious IDS based on the hybrid-optimized deep
learning involvement of ABC-BWO-CONV-LSTM. The arti-
ficial bee colony (ABC) method selects features as the initial
step. The next step is the classification step using the hybrid
DL model of black widow optimized convolutional long
short-term memory (BWO-CONV-LSTM) established on a
MapReduce framework. The proposal consists of CNN and
LSTM to understand the spatial and temporal attributes,
and BWO to tune the hyper-parameters optimally. The
experimental outcomes showed that the suggested strategy
performed remarkably well in intrusion detection with the
least amount of spatial loss and architectural complexity;
it also handled the issues of overfitting and class imbal-
ance. However, the time of training (26,721.2 s) and testing
(402.67 s) is still long, which implies significant resource
usage.

By investigating the previous literature and looking at the
studies in Tables 8 and 9, we have found some limitations,
such as not handling the issue of data imbalance, using a small
number of data samples, and using the Kyoto dataset with
only two cases (normal traffic and known attack) in the eval-
uation phase. Additionally, some strategies have employed
deep learning models that can produce good results but
require significant computational resources. Moreover, some
of these approaches are complex and challenging to interpret,
making it difficult to understand their inner workings and
how they improve their results. Furthermore, we have realized
that to obtain an intrusion detection system with satisfactory
effectiveness, the dataset must be well prepared. Therefore,
we summarize our improvement steps as follows. Initially,
treat the imbalance issue by using one of the methods, such
as SMOTE, due to its good impact on the results, especially
in the case of minority classes. Then, using feature selection
techniques for reducing the size of the dataset by deter-
mining the correlated and valuable features and eliminating

64232

the meaningless attributes without losing any information.
We have observed that the methods of feature selection were
based on wrapper, filter, or bio-inspired strategies, which
played a dual significant role in either selecting the best
collection of attributes or enhancing the weights of neu-
ral network classifiers. Finally, we observed that although
deep learning models demonstrate great performance when
employed for classification, the consumption of computing
resources is still huge. Although a lot of related research
utilized tree structure models as classifiers because of their
numerous merits, ease of use, reasonable cost, and simplicity.

However, we wish to draw your attention to the fact that
we selected relevant works that used the same datasets as ours
for comparison, although there may be other studies that used
different approaches, but with other datasets.

lIl. METHODOLOGY

Before deploying an IDS in the cloud, we must preprocess
the datasets used to train it. These datasets are quite large
and encompass a wide range of attacks, along with a signif-
icant amount of unrelated information. Therefore, we must
select the most relevant features, which will later be used
to train the classifier. This classifier will then differentiate
between benign packets and diverse types of attacks. So,
in this section, we will provide brief theoretical details of
our vision. We sought to employ the strengths of previ-
ous related works; thus, we prepared the datasets well. The
SMOTE algorithm was used, combining filter-based (IG and
CS) along with bio-inspired-based (PSO) procedures in fea-
ture selection. Finally, the classification stage was conducted
using RF model. The working stages of our suggested model
can be seen in Figure 4.

A. DATA PREPROCESSING

The datasets include a wide range of categorical and numer-
ical data, etc. Some of these data may have skewed and
irregular values, which provide undesirable outcomes. This
section pre-processes the data in order to prepare it for fea-
ture selection because ML algorithms only take numeric and
cleaned feeds. Initially, the worthless features and null values
were removed, along with any unnecessary data [28]. Then,
we took the following actions:

« Feature encoding refers to the conversion of categorical
data into a numerical input. The majority of the attributes
in this study are numerical, whereas the remainder are
categorical. Thus, the categorical attributes must be
transformed to fit the ML model for training. Label
encoding and one hot encoding are the methods that
are most frequently employed for feature mapping, and
these techniques have their own advantages and disad-
vantages. The second strategy offers better performance
but greatly increases the number of attribute dimen-
sions [29]; hence, we have chosen to employ the first
method where we find good results with it [30]. Com-
bining label encoding with one-hot encoding definitely
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FIGURE 4. Overview of the suggested intrusion detection system based on a hybrid of feature selection methods.

increases the number of features and makes the dataset
larger, which leads to increased resource consumption.
Therefore, it is better to stick with label encoding
alone, as our goal is to reduce the number of fea-
tures. Here is a list of categorical features that have
been encoded using the label encoding technique: For
the UNSW-NBI15 dataset, they are (‘srcip’, ‘dstip’,
‘proto’, ‘state’, and ‘service’), and for the Kyoto dataset,
they are (‘Service’, ‘Flag’, ‘IDS_detection’, ‘Mal-
ware_detection’,” Ashula_detection’, Source_IP
_Address’,’Destination_IP_Address’, ‘Start_Time’, ‘Pro-
tocol’). As can be observed, there are 5 and 9 categorical
features in the UNSW-NB 15 and Kyoto datasets, respec-
tively.

o Feature scaling: this is a method for normalizing and
transforming all feature values into a predefined range.
It is an essential step since it eliminates the biased
attributes of higher values. The popular approaches
to feature scaling are standardization, which may be
called the Z-score, and normalization, which is also
known as min-max scaling, which often offers gratifying
results [23]. We employed the min-max approach, which
is given as follows:

H_Hmin

Himax — Himin

H ey
where H,,;;, and H,,;; show the minimum and maximum
values of feature H.

The optimal features will be selected from the pre-
processed dataset in step B. Following that, the training
dataset and the testing dataset will be produced from the
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pre-processed data. The data imbalance issue impairs the
effectiveness of the classifiers, specifically in the minority
categories of threats; therefore, we used SMOTE to cope
with this problem, where the training dataset’s minority class
records are increased [24]. Finally, the classifier will be
trained using the new balanced training dataset and will be
tested by the testing dataset, as we will see in step C.

B. FEATURE SELECTION

The performance of the proposal can be enhanced by using
feature selection as a pre-treatment step. A reduced dataset
offers shorter training times and more accurate efficiency.
We chose the filter-based feature selection method (IG and
CS) due to its many advantages, including its interpretability,
flexibility, scalability, and time complexity. Meta-heuristic
techniques such as PSO combined with filter methods pro-
duce a more robust optimum feature subset. In light of this,
we will concisely discuss our feature selection strategies.

1) INFORMATION GAIN IG

IG is a measure of the decrease in entropy after a feature is
selected. IG can be used to determine which features are most
important for making predictions about the target variable.
Features with a high IG are considered to be more informative
than features with a low IG. This measure allows us to rank
the features and choose the most important ones for the
final effective feature set; hence, the features with a high IG
were kept in the model, while features with a low IG were
removed [31]. The IG of a feature can be calculated using the
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formula [22]:
IG(B) =E(A) — Eg(A) 2

where A denotes a dataset’s size and B is a feature.

2) CHI SQUARE CS

CS is a statistical method that determines the correlation
between 2 variables. The CS test is used in feature selection
to identify how much each feature depends on the target
variable. Features with a high CS score demonstrate a strong
reliance on the target variable and are deemed significant
features [32]. The formula of the CS test is shown by [31]:

Cs=Y (u—t)? [T 3)

where x and z are 2 variables and I and J, respectively, stand
for the observed value and expected value.

3) PRACTICAL SWARM OPTIMIZATION PSO

It belongs to the bio-inspired artificial swarms’ intelligence
(ST) families, which replicate the naturally intelligent behav-
ior of animals or insects to address a naturalistic problem [33].
PSO is a global optimization technique that imitates the
foraging behavior of birds, and it is used to solve many
real-world issues [34]. PSO is the most widely used among
the SI algorithms because it delivers the best solutions in a
reasonable amount of time [35]. In this approach, the feature
set is birds, which are represented by particles scattering
across hyperspace that continuously search for the best global
locations (Gbest). Finding the Gbest is instructed by the local
particle’s best position (Pbest). A Pbest is tuned if the particle
discovers another best location [23]. Therefore, the optimized
value (the global best value) is produced as a result of each
particle’s cooperation mechanism.

Each particle has a random location (L;) and speed (S;).
Assume that z1, 20, and w are constants that stand for cognitive
learning, social learning, and inertia weight, respectively.
Additionally, Pbest; is the personal best position of the parti-
cle i, and Gbest is the global position among the particles.
Suppose n; and ny be random values. Thus, the key rules
for adjusting each particle’s location and speed are as fol-
lows [15]:

L+ =L@®H+SE+1) 4
Si(t+ 1) =wS; (t) + ziny (Pbest; — L; (1))
+ 2212 (Gbest; — L; (1)) )

4) PSEUDOCODE
The following is the pseudocode for a feature selection
method that combines IG, CS, and PSO:

5) DIFFERENCES BETWEEN THE SELECTED METHODS

Despite the apparent overlap between IG and CS methods in
terms of filtering out features based on their relevance to the
target variable, it’s important to recognize that they each have
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Algorithm 1 Feature Selection

1. Initialize the population of particles with the features set.

2. Calculate the information gain and chi-square values for each
feature in the dataset.

3. For each particle in the population:

a) Evaluate the fitness of the particle using the information gain
and chi-square values.
b) Update the speed and location of the particle based on the
particle swarm optimization algorithm.
4. Select the best-performing particle from the population.
5. Repeat steps 3 and 4 for a predefined number of iterations or until
a stopping criterion is met.
6. Return the best feature subset as the final result.

strengths that the other lacks. There are subtle differences
between these methods, which can be summarized as follows:

The two methods are grounded in distinct statistical the-
ories and function differently. The IG method measures
the reduction in entropy, which refers to the decrease in
uncertainty or randomness. This reduction is achieved by par-
titioning the samples based on a specific feature. In turn, this
provides a measure of the effectiveness of the selected feature
in data classification. IG excels at identifying and selecting
features that help reduce uncertainty across a wide range
of feature types. Conversely, the CS test, a non-parametric
method, assesses the presence of a significant association
between two categorical variables. This method operates
under the assumption of the independence of these variables.
While the CS method excels at identifying relationships
between categorical variables, it may not always be the most
suitable for continuous or discrete features.

The integration of these methods with PSO forms a crucial
part of our strategy to effectively harness the strengths of
each individual method while counteracting their inherent
weaknesses. As demonstrated in Table 6, the fusion of these
methods, rather than exclusively depending on a single one,
leads to the creation of a superior set of features. This results
in significant improvements in the overall performance of our
intrusion detection system.

C. CLASSIFICATION

The purpose of classifiers is to categorize the received packets
as benign or malicious, and for performing this function,
ML and DL models are used. DL models are more compli-
cated and require more resources; thus, it is better to use ML
methods in our case, as they have enough power to handle our
datasets. ML classifiers have many models such as SVM, REF,
etc., but by experiment, we found that the performance of RF
is good and takes less time in training and testing compared
with SVM and other models. Therefore, the RF classifier was
employed in the current study, which was fed with the best
optimal feature set.

¢ Random Forest RF

RF is an ensemble learning approach that is employed to
predict outcomes based on DT. DT is a supervised ML model
employed for regression and classification. A tree-like struc-
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ture is used to present the potential outcomes or decisions,
in which each node stands for an attribute or feature, every
branch denotes a probable value of the feature, and every leaf
represents a class label or a numerical value. The tree is con-
structed using a training set [11]. The objective of this model
is to build a tree that properly predicts the target variable
while maximizing the information gain and minimizing the
number of nodes [22]. Thus, to prevent overfitting, the DT
model automatically chooses the most beneficial attributes
for constructing a tree, and it also performs a pruning pro-
cess to eliminate unnecessary branches. The most popular
types of DT are ID3, C4.5, and CART [36]. Sometimes,
one tree may not be sufficient to yield high performance;
therefore, XGBoost and RF, which form from multiple DT,
are used [30]. A RF generates multiple decisions, making it
suitable for handling extremely large datasets; it provides an
estimation of the variables that are most significant in the
classification process. In this research, we observed improved
performance when using the RF method. As this approach
combines multiple DT, it results in a more accurate and robust
model.

D. POTENTIAL LIMITATIONS OF THE METHODOLOGY

The proposed methodology involves four main steps: prepro-
cessing, feature selection, balancing the training dataset, and
applying a random forest classifier. Each of these steps has
its own limitations and potential sources of error.

o Preprocessing: the first step is to preprocess the data
by encoding categorical variables and scaling numer-
ical data. One limitation of this step is that label
encoding may not be appropriate for all categorical
variables. In some cases, one-hot encoding may be a
better approach. Additionally, min-max scaling can be
sensitive to outliers, which can affect the performance
of the classifier.

« Feature selection: the second step is to select the relevant
features from the pre-processed data using IG, CS, and
PSO. One limitation of this step is that it may result
in overfitting if the feature selection is not performed
correctly. Additionally, some important features may be
overlooked, leading to underfitting.

« Balancing the training dataset: It’s worth noting that the
issue of imbalanced datasets is prevalent in many real-
world machine-learning applications, especially in the
field of network intrusion detection. The third step in our
proposal is to balance the training dataset using SMOTE.
While SMOTE is an effective technique for balancing
datasets, it may also introduce noise into the dataset
due to the significant oversampling of minority classes,
leading to overfitting. We completely agree with this
potential, but this is a known trade-off when address-
ing class imbalance through oversampling. However,
we have adopted strategies to mitigate these potential
drawbacks. We used a hybrid feature selection method,
combining IG, CS, and PSO, which has effectively
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allowed us to filter out the noise and retain only the
most informative features. Furthermore, we used a RF
classifier, which is known for its resistance to noise
and overfitting. Concerning the testing dataset, we do
not balance it in the same way as the training dataset.
Our approach is grounded on a commonly accepted
principle in machine learning: the testing dataset should
as closely as possible reflect the real-world data distri-
bution to provide an accurate indication of the model’s
performance in a practical and realistic environment.
Consequently, we have maintained the same class pro-
portions in our testing dataset as those found in the
original used dataset. Additionally, SMOTE may not be
suitable for all datasets, and other balancing techniques
may be more appropriate, such as random oversam-
pling or adaptive synthetic oversampling (ADASYN),
which is considered an advanced version of SMOTE.
In future studies, we plan to handle class imbalance by
employing other techniques belonging to these strate-
gies: over-sampling the minority class, under-sampling
the majority class, and using a combination of both.
We will then evaluate the effect of these techniques on
performance.

« Random forest classifier: the fourth step is to apply a
RF classifier on the balanced preprocessed dataset. One
limitation of RF is that it can overfit if the number of
trees is too high. Additionally, RF may not perform
well on datasets with high dimensionality. Thus, the
performance of the RF classifier is sensitive to the choice
of hyperparameters, such as the number of trees and so
on.

Generally, every methodology, regardless of its steps, has
possible restrictions and sources of error that may be related
to the quantity, quality of data used, or any other factors.
However, experience remains the best evidence to confirm or
deny the possibility of error. Based on the simulation based
on the data used, our approach has proven to be effective
compared to existing conventional studies.

IV. DATASETS AND EVALUATION METRICS
An overview of the employed datasets and evaluation criteria
is provided in the following subsections.

A. DATASETS DESCRIPTION
Producing a comprehensive dataset is a costly process
that requires significant financial resources and specialized
knowledge. Consequently, one of the significant challenges
faced by the IDSs was the systematic generation of an up-
to-date dataset that encompasses a wide range of threat types
and reflects the actual environment. UNSW-NB15 and Kyoto
are considered labeled network traffic datasets and are widely
used for evaluating both the NIDS and HIDS. Table 1 presents
the statistics of the intrusion datasets used in this study.

To support the research society, the dataset should be fre-
quently revised to include the latest common attack instances.
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TABLE 1. Statistical of used intrusion datasets.

TABLE 3. Sets used from Kyoto for training and testing.

Total No. Of Total No. Of Dataset New
Dataset Name F Used Training . Testing
eatures Records Source No | Category Name Dataset | Dataset Training Dataset
UNSW-NBI5 49 350,000 [37] atase M Dataset | e
Kyoto 24 426,700 [38] 1 Normal 49,794 37,306 275,756 12,488
-1 Known attack 367,698 275,756 275,756 91,942
TABLE 2. Partial training and testing sets of UNSW-NB15. -2 | Unknown attack 9208 6963 275,756 2245
Total 426,700 320,025 827,268 106,675
New
N Category Used Training Traini Testing
1) rainin - :
Name Dataset Dataset £ | Dataset TABLE 4. Confusion matrix.
Dataset
0 Normal 305,554 | 229,140 | 229,140 | 76,414 Predicted
1 Generic 29,741 22273 | 229,140 | 7468 Attack Normal
2 Exploits 6263 4742 229,140 1521 Actual Attack TP FN
ctua
3 Fuzzers 3287 2461 229,140 826 Normal P ™™
4 DOS 2272 1692 229,140 580
5 Reconnaissance 1966 1472 229,140 494
6 Analysis 393 309 229,140 84
: 2) KYOTO
7 Backdoor 304 235 229,140 69 . . .
5 Shellcode 197 160 229.140 37 This datgset was .created in real-time by Song et al. [40] at
9 Worms » 16 229,140 7 Kyoto university in Japan be.tween 2006 and 2015. In total,
Total 350,000 262500 | 2291400 | 87.500 19,683 MB of network traffic were collected from darknet

While the aforementioned two datasets used in the study
reflect crucial attack types, it is acknowledged that they may
not represent all possible network traffic scenarios. A brief
recap of each one of them is provided as follows:

1) UNSW-NB15

This dataset was produced by Moustafa et al. [39] in the
Australian center for cyber security at the University of
New South Wales (UNSW) to address the problems seen
in the NSLKDD and KDDCup 99 datasets [17]. It took
31 hours and a variety of tools to gather 100 GB of
data, which includes around 2.5 million instances [23]. The
total number of features is 49, which were collected via
Argus tools, Bro-IDS, and 12 newly developed algorithms.
Table 15 displays each feature with its corresponding data
type. It reveals that out of the total, 43 features are numer-
ical, while 6 are nominal. These features were categorized
into five groups: basic features, flow features, time fea-
tures, content features, and additional features. Two features
function as tags: “‘attack_cat”, which can take these val-
ues (‘generic’, ‘exploits’, ‘fuzzers’, ‘dos’, ‘reconnaissance’,
‘analysis’, ‘backdoor’, ‘shellcode’, ‘worms’, and ‘normal’),
and “label”, which takes 1 for an attack and O for normal
traffic. There are nine types of attacks. Our target variable in
this study is the “attack_cat” feature. As usual, just a portion
of the dataset is used owing to its large size [36]. Table 2
illustrates the number of used records in the sets of training
and testing for each category, as well as the new training
set generated via SMOTE, which increased the number of
training instances to correspond with the number of records
in the majority class, which in this case is 229,140.
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sensors, honeypot, web crawler, email servers, and other
servers. The dataset includes 24 statistical attributes, 14 of
which are taken from the KDD Cup’99 dataset, while the
remaining 10 are modern attributes [17]. Table 16 provides
arepresentation of each feature along with its associated data
type. From the total number of features, it can be discerned
that 15 features are numerical and 9 are of a categorical
nature. The instances of traffic are categorized into three types
based on a feature called ‘““Label”’, which has these values 1,
—1, —2, which refer to a normal packet, a known attack,
and an unknown attack, respectively. This “Label” feature
serves as our target variable. Table 3 shows the number of
utilized instances in the sets of training and testing for each
type, along with the new training set produced by employing
SMOTE, which has led to a rise in the number of training
samples to equal the number of records in the majority class,
which in this case is 275,756.

B. PERFORMANCE METRICS

We evaluate the performance of our suggested model against
the conventional studies in terms of accuracy, recall, preci-
sion, F-measure, and FAR, particularly since these metrics are
commonly utilized for assessing intrusion detection models
and are calculated using the confusion matrix (CM) as shown
in Table 4 [11]:

o True Positive TP: an intrusion instance is properly deter-
mined as an attack.

o True Negative TN: a normal instance is properly deter-
mined as normal traffic.

« False Positive FP: a normal instance is wrongly deter-
mined as an intrusion.

o False Negative FN: an intrusion instance is wrongly
determined as normal traffic.
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TABLE 5. Models’ parameters value.

Model Parameter value Model Parameter value

n_estimators=30
RF - PSO
random_state=42

n_particles=25
n_iterations=50

n_estimators=30 kernel="linear'
XGBoost - SVM

random_state=42 gamma="auto'

DT random_state=42 LR solver="Tbfgs'

Accuracy: This measure refers to the ratio of instances that
have been identified correctly out of all instances.

TP + TN
Accuracy(ACC) = 6)
TP 4+ TN + FP 4+ FN

Precision: This metric assesses the ratio of attacks that
were predicted correctly in relation to the total number of
instances that were attacked.

TP
Precision(P) = P+ EP @)

Recall: This term describes the ratio of instances that were
correctly identified as attacks to the total number of instances
that were actually attacked.

Recall(R) = Detection Rate (DR) = Sensitivity (S)
TP
TP +FN

F-measure: This measurement for assessing the pro-
ficiency of a system by considering both its recall and
precision.

= True Positive Rate (TPR) = (8)

2
1 / Precision+1 / Recall
©))
False Alarm Rate: This denotes the percentage of attack

instances that were wrongly predicted among all actual nor-
mal instances.

F1 — score = F — measure(F) =

FAR = False Positive Rate (FPR) = (10)

FP + TN
Hence, the ACC, DR, and FAR are the significant measures
that distinguish any IDS and determine its power. Addition-
ally, we take into account the receiver operating characteristic
(ROC) curve, which is produced by contrasting the FPR and
the TPR of the model [28]. The ROC curve concept is often
used in evaluating the performance of binary classification
models [17], but we will use it in multi-class classification.

V. EXPERIMENT AND RESULTS DISCUSSION
In this section, the results of our proposal are presented, dis-
cussed, and evaluated against the findings from prior studies.
The experiments were run on an Intel Corei5 processor using
Python and on the Google Co-laboratory Pro platform, which
includes 25 GB of RAM. Sklearn and many other libraries are
used throughout the execution.

Table 5 outlines the parameters used in our current
work. For our present study, we have achieved satisfactory
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results without the need for hyperparameter tuning. However,
we aim to further enhance these models in the future by
employing hyperparameter optimization via the grid search
technique. This technique exhaustively tests every possible
combination of parameter values to identify the optimal set
of hyperparameters, unlike the random search method, which
selects values arbitrarily, thus not necessarily yielding the
best results. By adopting a grid search strategy, we anticipate
an improvement in our model’s performance.

The evaluation criteria for our suggested multi-class clas-
sification are derived from simulations across various feature
selection methods, with all cases utilizing the RF model
as a classifier. These values are demonstrated in Table 6,
which provides the proposal’s results, including its accuracy,
the weighted average of precision, recall, and F1-measure,
in addition to the average of FAR.

Feature selection was carried out with both filter and
bio-inspired techniques, which provided us with a highly
informative and related feature set. Initially, the informa-
tion gain method selected the informative features; then, the
chi-square test determined the features that were highly cor-
related with the target variable; and finally, the PSO algorithm
optimized the feature selection process by identifying the
best combination of features. The optimal feature set was
fed to the random forest classifier, which provided remark-
able performance with a reasonable consumption of time
and computational resources. It is essential to mention that
the efficiency of the proposed method in a real-world set-
ting is unknown due to the evaluation being conducted in
lab circumstances according to used datasets, where various
factors could affect the model’s performance in real-world
conditions.

Table 6 presents the performance comparison of our hybrid
approach against each standalone feature selection method,
all utilizing the RF classifier. The results indicate that our
approach consistently outperforms the standalone methods in
terms of classification accuracy, precision, recall, F1 score,
and FAR. The ‘Selected Features’ column lists the dig-
its of the features chosen by each approach. To identify
the actual name of each selected feature, you can refer to
Tables 15 and 16.

The motivation behind developing a hybrid feature selec-
tion approach lies in the nature of high-dimensional data and
the inherent limitations of each standalone feature selection
method. A high-dimensional dataset often includes complex
patterns that may not be adequately detected by a single
feature selection method. Each method possesses its own
strengths and weaknesses. Therefore, our hybrid approach is
specifically designed to amalgamate the strengths of these
three methods: IG, CS, and PSO. By doing so, it effectively
overcomes their individual limitations. IG and CS are sta-
tistical methods that can efficiently detect useful patterns in
the data, while PSO is an evolutionary algorithm that can
explore the feature space in a more global and robust way,
thereby capturing complex relationships that might be missed
by the statistical methods. We believe that the adoption of
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TABLE 6. Outcomes of the proposal.

Total No.
Dataset Feature Selection Selected Features ACC P R F FAR
of Features

Without All features except No 48 48 96.49 96.58 96.49 96.49 0.161

1,2,3,4,6,7,8,9,10, 11, 15, 16, 18,
1G 18 98.02 98.11 98.02 98.08 0.129

23,24,32,37,49

1,2,3,4,6,10,11, 14, 15, 16, 19, 20,

UNSW- CS 21,22,23,24,27,29,30,33, 34, 35,37, 32 97.61 97.76 97.61 97.73 0.156
NB15 39,41,42,43,44,45,46,47,49
1,2,3,4,5,6,7,8,9,10, 11, 15, 16, 18,
PSO 25 97.99 98.07 97.99 98.05 0.141
23,24,29,30,31,32,37,45,46,47,49

1,2,3,4,6,7,8,9,10, 11, 15, 16, 18,

IG-CS-PSO 21 98.39 98.54 98.39 98.46 0.046
23,24,29,30,32,37,46,49

Without All features except No 18 23 97.32 96.87 97.32 96.50 0.122
1G 1,2,3,4,5,6,8,10,13,14,17,19,20,21,22,23 16 98.96 98.99 98.96 98.95 0.053
Kyoto CS 6,8,10,12,13,14,17,21,24 9 98.97 99.01 98.97 98.99 0.039
PSO 1,2,3,4,8,10,14,17, 19, 20, 21, 22,24 13 99.08 99.13 99.08 99.11 0.012
1G-CS-PSO 1,2,3,4,10, 14,19, 20,21, 22 10 99.25 99.27 99.25 99.26 0.008

TABLE 7. Comparison between our proposal using RF and Other ML
Models.

Modle | ACC | R | FAR | Trianing Time | Testing Time
UNSW-NBI15/1G-CS-PSO / 21 Features
LR | 9711 | 97.11 | 0.291 124.741 s 0.029s
SVM | 9783 | 97.83 | 0221 | 168231525 | 15493625
DT | 98.12 [ 98.12 | 0.167 88.021 s 0.014s
XGBoost | 9838 | 9838 | 0.162 | 2360.1655 0.530s
RF | 9839 | 9839 | 0.046 | 3285115 0.361 s
Kyoto / IG-CS-PSO / 10 Features
R | 9382 | 9382 | 9101 15758 s 0.006's
SVM | 9596 | 9596 | 5229 | 11,609.284s | 8236825
DT | 9897 | 9897 | 0.082 8.777s 0.024s
XGBoost | 99.19 | 99.19 | 0.061 134.846 5 0.498 5
RF | 9925 | 9925 | 0.008 64273 s 0.386's

this hybrid approach is justified as it provides an optimal
subset of the original features, thus enhancing the overall
performance of the system. Furthermore, its superiority over
existing approaches is evident in Tables 8 and 9, demonstrat-
ing the robustness of our hybrid method.

Table 7 compares the performance of several machine
learning algorithms, namely LR, SVM, DT, XGBoost, and
RF. This comparison is based on key evaluation metrics,
including ACC, DR, and FAR, as well as both training and
testing time. Please note that the specific parameters used
by these classifiers are detailed in Table 5. The timestamps
marking the start and end of the training and testing phases
were determined using the DateTime library.

Table 7 highlights the superior performance of the RF
model in comparison to other machine learning models. Our
analysis indicates that tree models, namely RF, XGBoost, and
DT, excel in terms of ACC, DR, and FAR, as well as training

64238
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FIGURE 6. Model accuracy and loss - Kyoto.

and testing time. Nevertheless, it’s worth noting that the
SVM model demanded significantly more processing time
compared to the others.

Figures 5 and 6 illustrate the training and validation accu-
racy, as well as the training and validation loss, of our
proposal. These values are contingent on the number of trees
that comprise the RF model. This contrasts with the neural
network models, where, to the best of our knowledge, values
are typically determined based on the number of epochs.
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TABLE 8. Comparative of the suggested approach with state-of-the-art techniques that use the UNSW-NB15 dataset.

Ref. No. . No. Of
No Feature Selection Methods ACC P R F FAR
and Year Features
1 [41]2016 - DT - 85.56 - - - 15.78
2 [42]2017 PCA GMM 10 96.70 - 95.60 - 3.5
3 [43]12017 - Ramp-KSVCR - 93.52 - 98.68 98.72 2.46
4 [44]2017 Weka-ML RF 5 82.99 81.20 83.00 81.4 0.061
5 [36]2017 GA-LR DT 20 81.42 - - - 6.39
6 [45]2017 PCA GAA-ADS 15 92.8 - 91.30 - 5.1
7 [46] 2017 RFE-CS RF 16 95.09 - - - 2.415
8 [47]2018 1G 2-stage classifier - 85.78 - - - 15.64
9 [48]2018 CFS ABC-AFS 6 95.00 - 88.00 - 2.1
10 [49]2018 DBN (FE) Ensemble SVM - - 90.47 97.21 93.72 -
11 [50]2018 - Parallel K-medoids + KNN - 94.00 93.4 91.6 - 6.5
12 [51]2018 FI RF 11 75.66 75.00 76.00 73.0 -
13 [13]2018 - PSO-ANN - 91.87 - 98.61 - 0.0186
14 [14]2019 - ICVAE-DNN - 89.08 86.05 95.68 90.61 19.01
15 [15]2019 PSO-ACA-GA 2-stage ensemble 19 91.27 91.60 91.30 - 8.90
16 [16]2019 TSDL(D-SAE) Softmax 10 89.13 - - - 0.7495
17 [17]2019 - 2-layers DNN - 66.00 62.30 66.00 59.60 -
18 [18]2019 BBA (FSFF+CAFF) RF 26 97.09 - 95.53 - 2.03
19 [52]2019 A-PCA I-ELM - 70.51 77.36 35.09
20 [20] 2020 - MSCNN-LSTM 20 95.60 - - - 9.8
21 [21]2020 XGBoost ANN 19 77.51 79.50 77.53 77.28 -
22 [22]2020 1G DT 13 84.83 - - - 2.01
23 [23]2020 PSO-FO-GO-GA J48 30 90.48 84.14 97.14 90.17 14.95
24 [24] 2020 - 0OSS-SMOTE + CNN-BIiLSTM - 77.16 82.63 79.91 81.25 -
25 [53]2020 FE DBN - 85.73 - - - -
26 [54]2020 NSGA2-MLR NBTree 11 66.00 - 64.90 - 3.85
27 [55]2020 CFS ANN 33 96.44 - 50.40 - -
28 [56] 2020 WFEU FFDNN 22 77.16 - - - -
29 [25]2021 - OCNN(LSO)-HMLSTM - 96.33 100 95.87 98.13 5.87
30 [57]2021 - MFFSEM - 88.85 93.88 80.44 86.64 2.27
31 [58]2021 TS RF 16 83.12 - - - 3.7
32 [26] 2022 SOA EEDTL - 99.91 94.93 96.06 - 0.008
33 [27] 2022 ABC BWO-CONV-LSTM 36 98.67 100 98.78 98.77 4.48
34 [30] 2022 Selectkbest Stacking (DT-RF-XGBoost) 20 94.00 - 94.00 - 0.06
Our Proposal 1G-CS-PSO RF 21 98.39 98.54 98.39 98.46 0.046

As Figure 5 represents, the model reaches its peak accu-
racy of 98.39% and its lowest loss of 0.066% at the 30th
tree. Figure 5a provides a more detailed view: the training
accuracy curve starts at 99.05%, gradually rises to 99.59%,
and then stabilizes. Meanwhile, validation accuracy begins at
98.15% and peaks at 98.39% with the 30th tree. Accordingly,
the difference between the peaks of training and validation
accuracy is 1.2.

As depicted in Figure 5b, the training loss starts at 0.24%
and gradually decreases to 0.013%, at which point it stabi-
lizes. Conversely, the validation loss commences at 0.59%
and declines until it reaches a minimum of 0.066% at the
30th tree, where it too stabilizes. Consequently, the difference
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between the minimum values of training and validation loss
is 0.053.

Similarly, Figure 6 shows the model reaching its peak
accuracy of 99.25% and its minimum loss of 0.037%, both at
the 30th tree. Figure 6a presents an overview of the accuracy
metrics: the training accuracy begins at 99.46%, incremen-
tally rises to 99.74%, and then stabilizes. In parallel, the
validation accuracy starts at 98.95% and reaches its peak of
99.25% at the 30th tree. As a result, the disparity between
the peaks of training and validation accuracy is 0.49. In con-
trast, Figure 6b showcases the pattern of the training loss
convergence, initiating at 0.21% and gradually descending to
0.012%, at which point it stabilizes. On the other hand, the
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validation loss begins at 0.259% and decreases until it reaches
its lowest point of 0.037% at the 30th tree, at which point
it also stabilizes. Therefore, the gap between the minimum
values of the training and validation loss amounts to 0.025.

Overall, as seen in Figures 5 and 6, and Table 7, Tree
No. 30 delivered satisfactory results in terms of both accu-
racy and loss rates, as well as in training and testing times.
While we could increase the number of trees, the corre-
sponding improvements in accuracy and loss rates would be
marginal and might not justify the additional computational
time required.

It’s important to note that in the case of underfitting, both
the training and validation accuracies are low, while both
losses are high. This suggests that the model hasn’t learned
the training data effectively. Conversely, in the case of over-
fitting, the training accuracy is very high and the training loss
is very low, but the validation accuracy is much lower and the
validation loss is much higher. This indicates that the model
has learned the training data too thoroughly, resulting in poor
performance when applied to new data. In a well-trained
model capable of making accurate predictions on unseen data,
the training and validation plots should follow similar trends,
displaying high accuracy and low loss for both training and
testing sets. Nevertheless, there may be a gap between the two
plots, reflecting the discrepancy in performance between the
training and testing data.

Based on Figures 5 and 6, we have found that the gap
between the peaks of training and validation accuracy is
1.2 for the UNSW-NB15 dataset and 0.49 for the Kyoto
dataset. Moreover, the difference between the minimum
values of training and validation loss is 0.053 for the UNSW-
NB15 dataset and 0.025 for the Kyoto dataset. Therefore, our
model is well-trained and can make accurate predictions on
unseen data. It performs better on the Kyoto dataset than on
the UNSW-NB 15 dataset.

However, as can be inferred from Figures 5 and 6, and in
light of the aforementioned details, our model demonstrates
signs of very slight overfitting, particularly with the UNSW-
NB15 dataset. This issue needs to be addressed in the future,
perhaps by choosing a well-distributed dataset, using a more
efficient approach for balancing minority classes than the
current method, or optimizing the tuning of the classifier’s
hyperparameters.

We contrast our proposal’s performance with earlier works
in Tables 8 and 9 that follow. From these two tables, it can
be observed that the presented model is superior to com-
peting methods, particularly in terms of the ACC, DR, and
FAR, which highlights the effectiveness of our feature selec-
tion approach. The performance measures are significantly
enhanced by the feature selection methods. During the valida-
tion of our method, two benchmark datasets were examined,
which involved common threats. While it is true that the other
studies may have used more complex algorithms for their
experiments, it is important to consider the trade-off between
complexity and interpretability when selecting the models for
experiments. Sometimes, simpler algorithms can perform just
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as well or even better than more complex ones. Remember
that the performance is not solely dependent on the clas-
sifier’s or model’s complexity but on other factors such as
the size of the dataset, its preparation manner, the strategy
of the reduction in its dimensions, the extent of the training
set balance, the available computational resources, and so on.
The proposed approach has achieved better results due to the
effectiveness of the feature selection phase, which is a crucial
step in building any efficient machine learning model and is
preceded by a good preprocessing of the datasets, followed by
balancing the training datasets. Additionally, random forest is
a powerful and widely used classifier that has been shown to
perform well in various applications.

In Table 8, we note that while our approach is generally
superior to most other methodologies, study No. 3 is superior
in terms of the DR and F-measure, approach No. 13 exceeds
based on the DR and FAR, research No. 29 is better in regard
to the precision, work No. 32 is outstanding in terms of its
accuracy and FAR, and, finally, proposal No. 33 excels in
almost everything except the FAR, knowing that it used a deep
learning model and took (27,123.87 s) for training and testing.
On the contrary, through Table 9, we found an overall supe-
riority of our proposed approach over other methodologies.

We wish to clarify that, while we do not claim that our
results are the best ever achieved, our research demonstrates
improved performance in most measures compared to the
works cited in our study. While we acknowledge that our
study employs a standard RF classifier and combines exist-
ing techniques for feature selection, we would like to draw
attention to the fact that the related work and the meth-
ods presented in Tables 8 and 9 do not include unfamiliar
or innovative techniques either. However, they have con-
tributed to the body of knowledge in the IDS field. Moreover,
some of the cited studies have used the RF classifier, which
has shown varying performance. The reason behind the
differences in performance lies in the various ways of pre-
processing the dataset and the approaches used for selecting
features. Instead, we believe that the novelty of our work lies
in the integration of these methods (IG, CS, and PSO) to
select optimal features carefully after the datasets have been
well-prepared and balanced. We hope this clarifies the value
and relevance of our research.

Table 14 provides the abbreviations found in Tables 8 and
9, whose full forms are not mentioned in the related works
section.

The confusion matrix for our proposition is depicted in
Figures 7 and 8. The confusion matrix is a widely used tool in
machine learning that provides a comprehensive evaluation
of the performance of a model based on a given dataset.
Additionally, it helps identify the strengths and weaknesses
of the ML model. For example, it can reveal in which classes
it performs well and which ones it fails.

Table 10 depicts the evaluation metrics for each type in
the UNSW-NB15 dataset, which are derived in dependence
on Figure 7, where we can note an outstanding performance,
especially in terms of the ACC, FAR, and DR, which reflects
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TABLE 9. Based on the Kyoto dataset, the suggested approach is compared to traditional techniques.

Ref. No. . No. Of
No Feature Selection Methods ACC P R F FAR
and Year Features
1 [59]2014 - CSV-ISVM - - - 90.14 - 2314
Filtered, correlation,
2 [60] 2015 . OS-ELM 11 96.37 95.80 97.95 96.86 5.76
and consistency
3 [61] 2018 - VAE-Pure - - 97.50 75.30 85.00 -
4 [62]2018 BA ELM 10 97.96 - 98.75 - 2.425
5 [17]2019 - DNN S-layers - 88.50 91.30 96.40 93.80 -
6 [19] 2019 NBFS OSVM-PKNN 18 - 56.89 94.75 - -
7 [31] 2023 IG-GR-CS SVM - 96.42 90.53 96.23 92.96 -
Our proposal 1G-CS-PSO RF 10 99.25 99.27 99.25 99.26 0.008
Confusion Matrix of Random Forest - UNSW-NB15 Confusion Matrix of Random Forest - Kyoto
analysis 3 4 6 8 0 0 0 0 0 0
- 70000 ——
backdoor 4 51 5 2 2 2 0 3 0 0 Known Attack 27 240
- 60000
dos 20 2 475 % 15 9 0 7 6 ] " L 60000
- 50000 E
exploits 23 9 20 1415 15 2 o 17 8 2 i: Normal 269 12219 0
o 2 -40000
] fuzzers 9 2 14 20 766 4 0 5 6 [] (v}
o] - 40000 <
:(‘5 generic 1 5 15 3 2 7421 0 [ 0 1 0000
20000 Unknown Attack k7 0 213
normal 0 [ 0 2 0 0 76411 0 1 0
reconnaissance { 0 [ n 18 7 0 0 454 4 [ Ko v T y -0
3 T 3
T £ 1]
b1 = £
shellcode 0 0 0 2 2 0 0 0 3 0 - 2 2 Z
3 =
<] o
worms [ [ 0 1 [ 0 0 0 0 6 § 5
-0 5

analysis
backdoor
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shellcode -|
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reconnaissance

Predicted Class

FIGURE 7. Confusion matrix of the UNSW-NB15 dataset.

TABLE 10. Evaluation measures for various categories in the UNSW-NB15
dataset.

Category ACC P R F FAR
Analysis 99.91 53.66 78.57 63.77 0.065
Backdoor 99.93 54.84 73.91 62.96 0.048
DOS 99.80 87.00 81.90 84.37 0.082
Exploits 99.76 93.28 93.03 93.15 0.119
Fuzzers 99.88 94.68 92.74 93.70 0.050
Generic 99.91 99.64 99.37 99.50 0.034
Normal 1.00 1.00 1.00 1.00 0.000
Reconnaissance 99.92 93.41 91.90 92.65 0.037
Shellcode 99.97 56.90 89.19 69.47 0.028
Worms 1.00 66.67 85.71 75.00 0.003

the robustness of our approach, while both “normal” and
“generic” classes show the best results in all metrics.

Figure 9 and both Tables 11 and 12 demonstrate how our
technique has exceeded conventional approaches in terms of
accuracy, detection rate, and false alarm rate for the differ-
ent kinds of categories in the UNSW-NB15 dataset. Most
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Predicted Class

FIGURE 8. Confusion matrix of the Kyoto dataset.

malicious types were identified, along with lowered FAR and
increased DR.

Figure 9 displays the power of our approach compared to
ref. No. [17] in terms of accuracy in all classes except the
“Fuzzers” type in the UNSW-NB15 dataset.

According to the UNSW-NB15 dataset, Table 11 displays
the effectiveness of our strategy in detecting various types
of attacks, except for the “DOS” and “Exploits” categories
in reference No. [43] and the “Worms™ type in reference
No. [47].

While Table 12 illustrates that our strategy has a satisfac-
tory false alarm rate, we observed some superiority of the two
references [44] and [17] in certain classes, but overall, our
proposal still outperforms them in other measures.

Table 13 shows the evaluation criteria for each kind in the
Kyoto dataset, which are generated according to Figure 8§,
where we can remark on the distinguished results.

Figures 10 and 11 show how our method has outperformed
ref No. [31] in terms of the detection rate and false alarm
rate for all types of categories in the Kyoto dataset except
the “Unknown Attack” class concerning the detection rate.
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TABLE 11. Performance comparison between the past studies and our proposal based on the DR for each class in the UNSW-NB15.

Our Proposal
Class [43] DR, 2017 | [44] DR,2017 [47] DR, 2018 [16] DR, 2019 [17] DR,2019 | [55] DR, 2020
Detection Rate
Normal 97.38 96.30 70.30 82.00 94.70 100.00 100.00
Analysis 69.83 00.90 17.40 1.34 00.00 12.13 78.57
Backdoor 70.44 02.10 16.00 00.00 33.55 63.94 73.91
DOS 84.81 35.70 69.30 0.44 97.80 12.63 81.90
Exploits 95.61 72.80 60.70 57.14 00.17 89.44 93.03
Fuzzers 87.50 28.90 60.70 40.30 00.00 83.86 92.74
Generic 97.81 97.60 96.50 61.21 57.70 97.33 99.37
Reconnaissance 83.80 80.60 83.70 24.89 04.50 66.61 91.90
Shellcode 58.20 29.10 69.30 00.85 00.00 36.51 89.19
Worms 38.24 75.00 90.90 00.00 00.00 24.64 85.71

TABLE 12. Performance comparison between the past studies and our proposal based on the FAR for each class in the UNSW-NB15.

Our Proposal
Class [44] FAR, 2017 [16] FAR, 2019 [17] FAR, 2019
False Alarm Rate
Normal 0.106 0.001 0.299 0.000
Analysis 0.000 0.789 0.000 0.065
Backdoor 0.000 0.822 0.000 0.048
DOS 0.023 5.478 0.000 0.082
Exploits 0.073 1.391 0.000 0.119
Fuzzers 0.017 1.321 0.000 0.050
Generic 0.005 0.519 0.155 0.034
Reconnaissance 0.004 1.438 0.000 0.037
Shellcode 0.002 0.435 0.000 0.028
Worms 0.000 0.062 0.000 0.003
BN Normal W@ Analysis BB Backdoor WM Dos WM Exploits WM Fuzzers WM Generic WM Reconnaissance I Shellcode W@l Worms
Accuracy ACC - UNSW-NB15
60 99.0 9 9 9 99.97 9
80
9
E 60
3
[v]
2w
20

[17],2019

Our Proposed

FIGURE 9. Performance comparison between ref No. [17] and our proposal based on the ACC for each class in the UNSW-NB15.

Thus, we can note the importance of PSO in enhancing the
results by determining the optimal features, whereas in Ref
No. [31], they used IG and CS without any optimization
technique.

Figures 12 and 13 present the ROC curve for the multi-
class classification, which was plotted based on the values of
the FPR and TPR for each class in both Tables 10 and 13. The
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TPR is known as the recall (R) or the DR, whereas the FPR
is also known as the FAR.

The ROC curve can provide valuable insights into the
performance of the approach in each category. For example,
in the UNSW-NB15 dataset, the ““backdoor” class showed
the lowest performance, while in the Kyoto dataset, the “‘nor-
mal” type had the lowest performance. Furthermore, we can
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TABLE 13. Evaluation measures for various categories in the Kyoto
dataset.

TABLE 15. Data type for each feature in the UNSW-NB15 dataset.

No Feature Name Type No Feature Name Type
Category ACC P R F FAR 1 sreip object | 26 res_bdy len int64
Normal 99.51 97.94 97.84 | 97.89 | 0.003 2 sport int64 27 sjit float64
Known attack 99.25 99.67 99.46 | 99.56 | 0.020 3 dstip object | 28 djit float64
Unknown attack 99.74 90.22 98.57 | 94.21 | 0.002 4 dsport int64 29 stime int64
5 proto object | 30 Itime int64
TABLE 14. Abbreviation table. 6 state object | 31 sintpkt float64
7 dur float64 | 32 dintpkt float64
Nomenclature Abbreviation 8 sbytes int64 33 teprtt float64
SaaS Software as a Service 9 dbytes int64 34 synack float64
PaaS Platform as a Service 10 sttl int64 35 ackdat float64
laaS Infrastructure as a Service 11 dttl int64 36 is_sm_ips_ports int64
MLP Multilayer Perceptron 12 sloss int64 37 ct state ttl int64
AlexNet 1t’s type of DCNN: Deep Convolutional Neural Network 13 dloss int64 38 ct_flw_http mthd | float64
ID3 Iterative Dichotomiser 3 14 service object | 39 is_ftp_login int64
CART Classification And Regression Tree 15 sload float64 | 40 ct_ftp_cmd int64
LR Logistic Regression 16 dload float64 | 41 ct_srv_src int64
A-PCA Adaptive - Principal Component Analysis 17 spkts int64 42 ct_srv_dst int64
GMM Gaussian Mixture Models 18 dpkts int64 43 ct_dst_Itm int64
Ramp-KSVCR | Ramp Loss K-Support Vector Classification-Regression 19 swin int64 44 ct_src_ltm int64
Weka-ML It’s open-source ML software used for feature selection 20 dwin int64 45 ct_src_dport_ltm int64
GA Genetic Algorithm 21 stcpb int64 46 ct dst sport Itm int64
Geometric Area Analysis-Anomaly-based 22 dtcpb int64 47 ct_dst_src_ltm int64
GAA-ADS .
Detection 23 smeansz int64 48 attack_cat object
RFE-CS Recursive Feature Elimination - Chi Square 24 dmeansz int64 49 label int64
CFS Correlation-based Feature Selection 25 trans_depth int64
ABC-AFS Artificial Bee Colony-Artificial Fish Swarm
DBN (FE) Deep Belief Networks (Feature Extraction) TABLE 16. Data type for each feature in the Kyoto dataset.
FI Feature Importance model
FSFF Feature Similarity-based Fitness Function No Feature Name Type | No Feature Name Type
CAFF Classifier Accuracy based Fitness Function Dst host srv serr
I-ELM Incremental-Extreme Learning Machine ! Duration float64 | 13 - or ;ate - float64
NSGA2 Non-Dominated Sorting Genetic Algorithm 2 2 Service object 14 F]ag object
MLR Multinomial LR 3 Source bytes inte4 | 15 IDS_detection object
NB-Tree Naive Bayes Tree 4 Destination bytes int64 16 | Malware detection | object
WFEU Wrapper-based Feature Extraction Unit 5 Count int64 17 Ashula_detection object
FFDNN Feed-Forward Deep Neural Network 6 Same srv_rate float64 | 18 Label int64
MFFSEM Mulstiaii::;;lz::;ﬁ:t;:i::g:nd 7 Serror_rate float64 | 19 Source*I:*Addres object
TS Tabu Search Source_Port Num
Csv Candidate Support Vectors 8 Srv_serror_rate float64 | 20 7ber - int64
ISVM Incremental Support Vector Machine Destination IP_ A
OS-ELM Online Sequential - ELM ’ Dst_host_count int64 2 ddress_ - object
VAE Variational AutoEncoder Dst_host_srv_cou X Destination_Port .
BA Bat Algorithm 10 B n; B int64 2 Numbgr B int64
GR Gain Ratio Dst_host same sr . .
11 - float64 | 23 Start_Time object
C_port_rate
12 Dst_host_serror_r floaté4 | 24 Protocol object

obtain an overview of the classifier’s overall performance
across all classes using a macro-averaged ROC curve.
Therefore, due to the thorough preprocessing of the
datasets, which included addressing the imbalance problem
and selecting the optimal essential related features using our
feature selection approach, as well as the high performance
of the random forest classifier, the proposed system showed
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greater effectiveness when compared with other existing tech-
niques. Our suggested system achieved a high DR and a low
FAR, demonstrating its efficacy in detecting intrusions within
cloud environments. The results indicate that our system can
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FIGURE 10. Performance comparison between ref No. [31] and our
proposal based on the DR for each class in the Kyoto.
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FIGURE 11. Performance comparison between ref No. [31] and our
proposal based on the FAR for each class in the Kyoto.
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FIGURE 12. ROC curve of the UNSW-NB15 dataset.

successfully identify potential cloud attack types, such as
those mentioned in the utilized datasets. Consequently, it is
well-suited for deployment in cloud conditions.
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FIGURE 13. ROC curve of the Kyoto dataset.

VI. CONCLUSION

With the widespread use of cloud computing by people and
businesses, security in the cloud is of the utmost concern.
Thus, the potential of machine learning models to clas-
sify incoming network packets as normal or abnormal was
exploited to identify intrusions and preserve user data, and
this was done at an acceptable resource cost that distinguishes
machine learning models from deep learning models. The
suggested intrusion detection system aims to develop a model
that would leverage increased intrusion detection’s accuracy
by combining the strengths of each employed feature selec-
tion algorithm (information gain, chi-square, and particle
swarm optimization) to find an optimal feature subset that
not only enhances the performance of the model but also
offers useful features that are strongly associated with the
target variable. The proposal displayed its power to identify
multiple attack types with a greater DR and a lower FAR.

In the upcoming work, we plan to use deep learning
techniques to obtain high performance, along with ensemble
learning concepts and other meta-heuristic optimization algo-
rithms; also, the testing will be carried out through the most
recent datasets, which contain a broad range of threats that
accurately simulate the real networks of today.

APPENDIX A

Table 14 presents the abbreviations used, which have not
been mentioned in their full forms throughout the manuscript.
They are listed in the order of appearance.

APPENDIX B

Tables 15 and 16 represent the data type for each feature in the
UNSW-NBI15 and Kyoto datasets, respectively. These data
types have been determined using the info() method provided
by the Pandas library.
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