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ABSTRACT Vehicle speed prediction plays an important role in vehicle energy saving and safety
research. It can contribute to vehicle energy saving and safety assistant driving, route navigation, automatic
transmission gear control, and hybrid electric vehicle predictive control. The research on vehicle speed
prediction has important theoretical basis and application value. The data-driven deep learning (DL) model
provides a powerful method for building an accurate speed prediction model. However, the traditional vehicle
speed prediction model has some limitations in prediction efficiency and accuracy, which fails to take into
account the characteristics of the time dimension of speed data. This paper proposes an Long-Short Term
Memory(LSTM) vehicle speed prediction model based on heuristic adaptive time-span strategy. The model
mainly includes three parts: 1. In view of the instantaneity of the time series, we add weights to the input
data, increase the weight of the data near the prediction point, and accelerate the convergence speed and
accuracy of the model. 2. Simulated annealing algorithm is adopted to adaptively select the most appropriate
time span for the current data. Compared with the traditional vehicle speed prediction model, this approach
does not fix the time span and has better data universality. 3. The basic unit of the model is the LSTM model.
The time series model is used to make prediction of speed, which is in line with the law of speed data.
Validation of the model using driving data from ten vehicles over a 1-year period reveals that the LSTM
speed prediction model based on a heuristic adaptive time-span strategy exhibits impressive accuracy and
outperforms existing state-of-the-art machine learning models.

INDEX TERMS Automotive energy efficiency, vehicle speed prediction, machine learning, heuristic
algorithms, neural networks.

I. INTRODUCTION

With the development of the social economy and techno-
logical progress, ground transportation plays an increasingly
important role in ensuring the normal operation of the social
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and economic system. However, the rapid development of
surface transportation has also brought about many problems.
According to statistics, major cities in the United States lose
$47.5 billion annually due to traffic congestion, and up to
14.35 billion liters of fuel and 2.7 billion hours of work are
wasted each year due to traffic congestion, and these figures
keep growing at a rate of 5-10% per year [1]. In the UK,
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energy wastage due to traffic congestion will reach £1 billion
per year. Government departments expect that this cost will
double in the next 30 years and that environmental pollution
will worsen [2]. In light of these facts, the issue of energy
efficiency and safety of vehicles has attracted increasing
attention from scholars around the world, and the related
technologies have also been researched with a growing trend.

Vehicle speed prediction refers to the prediction and
estimation of the future speed of a vehicle [3]. Vehicle
speed prediction is one of the important components of
automotive energy efficiency and safety research. For new
energy vehicles, speed prediction can also be used for
predictive control to improve vehicle energy economy and
service life. In the field of new energy vehicles, the energy
management of the vehicle directly affects the life and
mileage of the vehicle, and the vehicle speed is the main
direction of new energy vehicle management. If the vehicle
speed can be accurately predicted to provide the most energy-
efficient output conditions for the energy supply device of
new energy vehicles, the mileage of the vehicle will be greatly
improved and the waste of resources will be reduced [4].
Therefore, the study of vehicle speed prediction has important
theoretical value and wide application prospects for new
energy vehicles.

With the widespread application of computer- and
communication-centered information technology in the field
of vehicle control as well as prediction, and the research
results of big data and machine learning accumulated over
the past years, data-driven DL models have great potential for
understanding speed prediction and can improve prediction
capabilities. Such models are trained using vehicle travel data
and can accurately and efficiently handle the relationship
of prediction influence factors with high adaptability and
portability [5].

Currently, machine learning models for vehicle speed
prediction mainly include neural network models such as
spatial models (ANN [6], DNN [7]) and temporal models
(RNN [8], LSTM [9]). Artificial neural networks (ANN)
also have unique advantages in handling a large number of
parameters for vehicle speed prediction due to their complex
network structure formed by interconnecting a large number
of processing units (neurons). Fabritiis et al. [10] based on
real-time floating car data (FCD), two algorithms based
on artificial neural networks (ANN) and pattern matching,
respectively, to predict online the average speed of the target
road section for 5-10 steps or 15-30 minutes from the average
speed of the current and neighboring road sections at 3-
minute intervals, and finally use the prediction model to
provide real-time traffic speed information for the Italian.
Deep neural networks (DNNs), on the other hand, have
multiple nonlinear mapping feature transformations that can
be fitted to highly complex functions. This satisfies that
the parameters of vehicle speed prediction are nonlinearly
transformed features, so DNN is also suitable for vehicle
speed prediction. Park et al. [11] mainly introduced a traffic
model for vehicle speed prediction by DNN, which has
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12 subneural networks, including both congested and non-
congested traffic levels, each divided into 6 time intervals,
and the upper limit of prediction is 30 minutes in the future.
The results show that the longer the prediction interval, the
better the prediction results are in the non-congested traffic
situation, while the congested situation has a larger error
when the speed fluctuates a lot.

Although some scholars have already done research on
machine learning with vehicle speed prediction as the
main focus, and good results have been achieved under
certain conditions and situations. However, the above-
mentioned literature does not cover in short-term prediction,
for example, the models proposed by Lukas et al. [12] and
Liu et al. [13] are neural network vehicle speed prediction
models built with specified road section data, and the models
are highly dependent on the road sections. If the road section
is changed for prediction, the adaptability of the network
will be reduced and the accuracy of vehicle speed prediction
cannot be guaranteed. The application is not conducive to
generalization under the premise of requiring accuracy, and
the scope of use will be limited. Huang et al. [14] build neural
networks based on work condition classification without
time and space constraints. However, the article focuses on
the benefits of analyzing the work condition classification,
which is only divided into four work conditions. The average
vehicle speed in the next 50 seconds is predicted under the
same network structure without involving specific details
of the vehicle speed variation or optimizing the network
structure for each working condition. In addition, the speed
predictions made in the above literature are based on the
average speed of road sections or time periods. In addition,
the speed predictions made in the above literature are based
on the average speed of a road segment or time period, which
obviously cannot meet the requirements for future stochastic
continuous speed prediction, while the LSTM model is the
model used to predict continuous time data [15]. From the
perspective of time span, it is also questionable whether the
same time span can meet the prediction requirements for
predicting the speed of multiple future time periods, so it
is necessary to establish an LSTM speed prediction model
based on heuristic adaptive time span strategy.

This paper aims to solve the problem of short-term
continuous vehicle speed prediction for automobiles, and
establishes an LSTM vehicle speed prediction model with
heuristic adaptive time span strategy based on the statistical
basis of new energy vehicle driving cycle data. The model
predicts the future continuous 30-second vehicle speed. The
advantage of this model is that it is not constrained by
road sections nor time span. The number of network layers,
the number of nodes per layer, the activation function and
the training function are included in the building process
of the speed prediction model. The network structure is
modified by the training and testing results of the model to
finalize the network structure and predict the vehicle speed.
Another advantage of the optimization algorithm studied in
this paper is that it can solve the problem that different time
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FIGURE 1. The overall flow chart of the experiment.

intervals within a fixed time span selected by the traditional
regression model for predicting vehicle speed have different
effects on the prediction results but with the same weights,
which leads to too low prediction accuracy or poor model
generalization ability. This study proposes the design of
additional weights to the input data, which solves the problem
well and provides a new idea for the subsequent increase of
time span to do speed prediction. Finally, based on the above
study, we present the LSTM speed prediction model based on
heuristic adaptive time span strategy. An improved simulated
annealing algorithm is used to optimize the input time span
of the LSTM neural network speed prediction model, so that
the model can find the optimal time span for warp prediction
autonomously. And the improved model is used for vehicle
speed prediction, and the prediction results are compared with
the unoptimized results and the results optimized by other
neural network algorithms to directly improve the accuracy
of the prediction.

Il. MODEL DESCRIPTION
Figure 1 shows the overall structure of the algorithm.

As shown in the figure, our experiment is divided into four
parts. The first part is the data layer, which mainly includes
the introduction data and data processing. Detailed operations
such as parameter selection and data pre-processing will be
described in Part IIT A-C.

The second part is the model layer, which mainly includes
all the models involved in our experiments (Liner, DNN,
RNN, LSTM). In the subsequent a-d the four regression
models are mainly described in detail and the inputs and
outputs of each model are elaborated as a comparison with
our optimized models. Among them, the LSTM model is the
main model in this paper.

The third part is the optimization part, which is mainly
optimized from two aspects. One is to weight the data to
solve the problem that long time span affects the accuracy of
the model. The other is to adapt the time span by simulated
annealing algorithm to solve the problem that different data
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FIGURE 2. Diagram of LSTM model based on heuristic adaptive time span
strategy.

need different time spans for speed prediction. For time series
data, the closer the data is to the predicted time, the more
accurate the prediction will be, and the greater the weight will
be. From the Weight layer in Figure 2, we have weighted the
input data, as shown in formula (1):

tanhﬁ n
Vi = o XV
' Z}iltanhﬁ 1

where N represents the length of the time span and i
represents the sequence number within the time span. y;
represents the data value of the current sequence number.
Where tanh is the hyperbolic tangent function, we take the
interval of the function whose definition domain is on [0,
1], and the closer to 1, the larger the function value. Then
the closer to the prediction time of the input variables, the
larger the weights will be. After weighting processing, the
proportion of values close to the predicted data will be larger,
and vice versa. This solves the problem that values far from
the predicted data interfere with the prediction accuracy, and
provides the possibility to expand the time span, find the
optimal time span, and predict the vehicle speed for a long
time.

For the problem of speed prediction time span selection,
previous regression models use the same time span to
simulate the temporal relationship between vehicle speed and
predictors, ignoring the variation of different time spans on
the relationship between vehicle speed and predictors, which
has some limitations in reflecting the time span variability
of vehicle speed. In order to overcome the above limitations,
this paper proposes a time span optimization method based
on the simulated annealing algorithm, which uses a simulated
annealing algorithm to deal with time span predictors. The
simulated annealing algorithm is derived from the solid
annealing principle, which is a probability-based algorithm
that heats up the solid to a sufficiently high temperature and
then allows it to cool down slowly. The objective function
of the simulated annealing algorithm in this paper is the
LSTM model, and the variable is the time span. The accuracy
of the LSTM model differs greatly for different time span
inputs. The simulated annealing algorithm starts from a
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certain time span with low accuracy, and along with the
decreasing temperature (time span) parameter, it combines
the probabilistic jump property to find the global optimal
solution of the objective function (RMSE) in the solution
space randomly. Assuming that the previous state is x(n),
the system changes its state to x(n+1) according to the
RMSE (gradient descent, energy of the previous section).
Correspondingly, the energy of the system changes from E(n)
to E(n+1). Define the acceptance probability P of the system
changing from x(n) to x(n+1) as:

1, Emn+1 E
P= [ _ E(+1)—E) D =Em 2)
e T, Em+1)>E(n)

E(n) = RMSE(n) 3)

From equation (2), we can see that if the energy decreases,
then this transfer is accepted (with probability 1). If the
energy increases, it means that the system deviates further
from the position of the global optimum. At this point the
algorithm does not discard it immediately, but performs a
probabilistic operation: First a uniformly distributed random
number « is generated in the interval [0,1]. If ¢ < P, such
transfer is accepted. Otherwise, the transfer is rejected and
goes to the next step, and the cycle repeats. Where P takes
the amount of change in energy and T to determine the
magnitude of probability P, so this value is dynamic. That is,
in the local optimal solution can probabilistically jump out
and eventually converge to the global optimum. Simulating
the combinatorial optimization problem with solid annealing,
the internal energy E is modeled as the RMSE value of the
LSTM model and the temperature T evolves into the time
span i, i.e., the simulated annealing algorithm for solving the
combinatorial optimization problem is obtained. This solves
the drawback of the traditional LSTM model with a fixed time
span, so that the optimal time span can be found for different
data. Algorithm 1 is the pseudo-code for the adaptive time
span of the above simulated annealing algorithm.

Algorithm 1

Pseudocode for adaptive time span of simulated annealing
algorithm

s:=50; e:= E(5)// Set current state as s, and the energy as E )

k: =0// K is the number of evaluations

while k<kyqayx and e>epmqx// If there is enough time(k isn’t reach to
kmax ) and the result is not good enough(e is not low enough), then:
Sp = neighbour(s)// Disturbance produces new s,

en =E(su)// The energy of suis Ep)

if random()<P(e,en,temp(k/kmayx)) then// Decide whether to gener-
ate a new s,

§:= Sy, e: = epl/ Accept the new sy

k: = k+1// Assessment completed, k increased by 1

returns//return to s

The fourth part is the result layer. The result layer is
mainly for calculating errors, such as root mean square
error (RMSE). RMSE represents the prediction volatility
capability, which can reflect the accuracy of most regressions.
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Equation (4) is the definition criterion for this parameter.

Ziy:l (yi - 91‘)2
N

where y; is the real value of the data set at moment, and
is the DL predicted value at moment. The smaller the
RMSE, the better the predictive power of the model. All
variables are standardized to reduce the impact of absolute
scale. The experiment was conducted on a server equipped
with Intel Core 15-9400 CPU, 2.60 GHz RAM and a
GeForce RTX 2060 GPU, with an integrated development
environment Pycharm 2018.1.4. Pytoch is the back-end of the
experimental environment.

RMSE == )

A. LINER MODEL

The linear regression model is a basic linear regression model
and one of the most fundamental regression models. It can
fit the most appropriate straight line from enough samples.
In the contrast experiment, the input of the prediction model
is a continuous time series of 10000 seconds, including
7 characteristic parameters. Therefore, the input size of the
prediction model is 10000 x 7, and the output is the speed
of the next 30 seconds with the size of 30 x 1. Since speed
prediction is a regression task, in order to fairly compare
the prediction performance of all regression models, all top
layers are changed from Softmax loss layer to Euclidean
loss layer. According to the hardware conditions, we use the
Adam optimizer to train the model by setting the number of
iterations to 40 and the number of batch processing to 64.

B. DNN MODEL

Deep neural networks (DNN) are the foundation of deep
learning. It can extract distinctive data features from enough
samples. Like the Liner model, in the comparison experiment,
the input of the prediction model is a continuous 10000-
second time series, which contains seven characteristic
parameters and outputs the speed value of the next 30 sec-
onds. For the DNN model, the input layer corresponds to
seven input features that do not need to undergo the nonlinear
processing of the activation function. Each feature is input to
the next layer of the neural network through different lines,
i.e., different weights w. The output size is 120 x 7x9880,
and each neuron in the next layer adds a bias term to the
weighted sum of all inputs. The hidden layer uses the standard
rectifier linear unit “ReLU” to activate the function, and
finally outputs the speed value.

C. RNN MODEL

RNN (Recurrent Neural Network), which generally takes
sequence data as input, effectively captures the relationship
characteristics between sequences through the structural
design within the network, and generally outputs in the form
of sequences. The circulation mechanism of RNN allows the
results of the previous time step of the hidden layer of the
model to affect the output of the current time step as part of
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the input of the current time step (the input of the current time
step includes the output of the hidden layer of the previous
step in addition to the normal input). Thus, the speed change
trend can be captured and then successfully applied to speed
prediction. In the contrast experiment, the input variables are
the same as those of the liner prediction model, and their
shape is 10000 x 7. The dimension of each input time step
is 120 seconds, and the predictor consists of 7 variables. The
variables are the 120 x 7 characteristic graph. The output
is the same as the prediction model based on DNN. For
RNN-based prediction models, the hidden layer size is set to
100 x 120. Then, according to the output data of 120 seconds
in succession, the predicted speed of the next 30 seconds is
obtained through the whole connection layer.

D. LSTM MODEL

LSTM is a time cycle neural network specially designed to
solve the long-term dependency of general RNN. It can make
full use of the information before and after the sequence.
In time series data, the output of the previous step can be
used as input data, so the information of the previous period
can be stored in the memory gate and further affect the next
output. Therefore, it can capture the long-term change trend
of speed, and then successfully apply it to speed prediction.
In the experiment, the input variable is the same as the
input variable of the RNN prediction model, and its shape
is 10000 x 7. The dimension of each input time step is
120 seconds, and the predictor is composed of 7 variables.
The variables are the size of 120 x 7 characteristic graph.
The output is the same as the prediction model based on
RNN. For the LSTM-based prediction model, the hidden
layer size is set to 100 x 120. Then, according to the output
data of 120 seconds in succession, the predicted speed of the
next 30 seconds is obtained through the whole connection
layer.

E. LSTM MODEL BASED ON HEURISTIC ADAPTIVE
TIME-SPAN STRATEGY

Figure 2 shows the flow chart of the LSTM model based
on the heuristic adaptive time span strategy. The first layer
is the data input layer, and the input variable is the same
as the RNN prediction model input variable, which is the
time series data of a car in motion with shape 10000 x 7.
Each input time step dimension is derived from the simulated
annealing algorithm and the predictor consists of 7 variables,
the variables are 120 x 7 size feature maps. The second
layer is the weighting layer, which deals with the problem of
reducing the accuracy of the model due to too long time span.
The data is processed by the second layer, and the feature
map size is still 120 x 7. The third layer is the main body
of the model, LSTM model, which is good at dealing with
continuous time data series, which is the same as our input
data, so we choose LSTM model as the main body of our
model. As shown in Figure 3, the structure includes input
gate i, forgetting gate f; and output gate o;. The input gate
is used to update the cell state. First the information about the
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hidden state of the previous layer and the feature values of the
current input are passed to the sigmoid function. The value is
adjusted between 0 and 1 to determine which information to
update. 0 means not important and 1 means important. Next,
the information from the previous layer of hidden states and
the feature values of the current input are passed to the tanh
function to create a new vector of candidate values. Finally,
the output value of sigmoid is multiplied with the output
value of tanh. The output value of sigmoid determines which
information in the output value of tanh is important and needs
to be retained. The output gate is used to determine the value
of the next hidden state, which contains information from
the previous input. First, we pass the previous hidden state
and the current feature value to the sigmoid function, and
then pass the newly obtained cell state to the tanh function.
Finally, the output of tanh is multiplied with the output of
sigmoid to determine the information that the hidden state
should carry. The hidden state is then used as the output of the
current cell, and the new cell state and the new hidden state
are passed to the next time step. The function of the forgetting
gate is to decide which information should be discarded or
retained. The information from the previous hidden state is
passed to the sigmoid function along with the feature value
of the current input, and the output value is between 0 and 1,
with closer to 0 meaning it should be discarded and closer to
1 meaning it should be kept. Long-term memory is achieved
through these three gates, and the parameters in the LSTM
structure are shown in Eq. (5)-Eq. (9):

fy = o (Wxt + Wnehe—1 + Wegc—1 + by) 5
i = 0 (WxiX¢ + Whihi—1 + Weice—1 + by) (6)
01 = 0 (WxoX¢ + Whoh—1 + WeoCi—1 + bo) @)
¢t =f 1 c—1 +iptanh(wWxeXe + Whehi—1 +be)  (8)
hy = oy - tanh(cy) O]

In formula (5) - formula (9), c, represents the cell state at
the time of t, h; represents the output of hidden layer, and
bt, bi, b, be represents offset. wxf, Whe, Wef, Wxi, Whi, Wi,
Wxo> Who» Weo», Wxe» Whe Tepresent weights, which are obtained
through training. According to the constructed LSTM model,
it is able to capture the long-term relationship of the features
in the vehicle driving data. This helps to improve the model
to judge the vehicle speed at the current moment based on
the input at the current moment and the state at the previous
moments, so the theory has a higher accuracy rate. In this
paper, the LSTM model is used to process the vehicle driving
information with temporal characteristics, combined with the
whole connection layer in the neural network to fuse multiple
features, which becomes the main body of this experimental
model. The data is output to the hidden layer after a modified
LSTM model, and each neuron in the hidden layer is weighted
and summed over all inputs, plus a bias term. The hidden
layer uses the default rectified linear unit “ReL U activation
function, and the data is passed through the hidden layer,
resulting in a continuous velocity value.
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IIl. SIMULATION AND RESULT ANALYSIS UNITS

A. DATA SOURCE AND SPAN SELECTION

The research data came from the experimental data of
National Big Data Alliance of New Energy Vehicles
(NDANEYV). The data is the driving data of ten new energy
vehicles within one year, which includes 6756825 data, and
the data features include time, vehicle speed, total voltage,
total current, SOC, drive motor speed, drive motor torque,
drive motor temperature, drive motor controller temperature,
motor controller input voltage, motor controller DC mother
current, acceleration pedal stroke value, brake pedal status,
which are 13 The first 10,000 items were selected for this
experiment. The first 10,000 data are selected as training
data and 10,000-12,000 data are test data for this experiment.
Previous experiments limited the total length of the predicted
output speed and the historical input speed of the neural
network to a fixed time interval, such as a fixed time interval
of 150 seconds. After selecting 60 seconds as the predicted
output time length, the historical input vehicle speed time
length is set to 90 seconds of the current experience. In other
words, if the current moment is T, the historical input speed
is the speed data from T-89 seconds to the T second, which
means the sampling time length is 90 seconds. Unlike the
previous ones, this paper makes an innovative effort to use the
adaptive input vehicle speed time length to find the optimal
time length to satisfy the best efficiency with the optimal
accuracy.

B. CORRELATION ANALYSIS OF CHARACTERISTIC
PARAMETERS

Correlation analysis refers to the analysis of two or more
elements of variables that have correlation, so as to measure
the closeness of the correlation between two variable factors.
A correlation analysis is only possible when there is a certain
association or probability between the correlated elements.
This paper adopts the Pearson product moment correlation
coefficient, which measures the correlation between two
variables X and Y (linear correlation), with a value between
-1 and 1. The Pearson correlation coefficient between two
variables is defined as the quotient of the covariance and
standard deviation between the two variables:

cov(X,Y) E[X—ux)(Y—puy)l
- oOxX0yYy

p(X,Y) = (10)

o0X0Yy

From the results of correlation analysis in Figure 4, we can
see that the correlation coefficient matrix is symmetric, so we
only need to find the characteristic parameters corresponding
to the data with greater correlation in the data below the
main diagonal. Some foreign scholars take the correlation
coefficient of 0.3 and 0.5 as the limit. If the absolute value is
greater than or equal to 0.3 but less than 0.5, it is considered
to have moderate correlation. If the absolute value is greater
than or equal to 0.5, it is considered to have high correlation.
This paper also takes this limit as reference. From the
figure, it can be seen that the seven parameters that have
correlation with speed are voltage, drive motor speed, drive
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FIGURE 4. Parameter correlation analysis.

motor temperature, drive motor controller temperature, motor
controller input voltage, accelerator pedal travel value, and
brake pedal status. Seven parameters with high correlation
with speed may cause the training speed of the model to
decrease, but the accuracy of the model will be greatly
reduced when we try to reduce the number of parameters.
Therefore, in this paper, we still choose 7 parameters for
model training.

This paper analyzes the relationship between speed and
voltage, drive motor speed, accelerator pedal travel value
and brake pedal status, as shown in Figure 5. Figure 5 (a)
shows the relationship between speed and brake pedal status.
It can be seen from the graph that the speed is basically
inversely proportional to the brake pedal status, and the speed
increases fastest when the brake pedal status is 0, i.e. when the
brake pedal is depressed. Figure 5 (b) shows the relationship
between speed and accelerator pedal stroke value. When
the accelerator pedal value is positive, the speed increases.
When the accelerator pedal curve slope value is positive,
the speed curve slope is large. When the accelerator pedal
curve slope value is negative, the speed curve tends to be
flat. When the accelerator pedal stroke value is 0, the speed
decreases. Figure 5 (c) shows the relationship between speed
and voltage. Like Figure 5 (a), speed and voltage are also
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in a simple inverse relationship. However, when the voltage
changes rapidly, the speed still keeps the original change
rate, and the slope does not change. Figure 5 (d) shows the
relationship between the speed and the speed of the drive
motor. The speed refers to the vehicle driving speed, while
the drive motor speed can be regarded as the tire speed, so it
can be seen from the figure that the two are basically the same.

C. DATA PROCESSING

The time series data for vehicle speed are first screened
to check data consistency and to deal with invalid and
missing values. Excel is utilized to automatically identify
each variable value that is out of range based on the
defined range of values, and then normalize that data. Certain
missing values are replaced with the average, maximum, and
minimum values to achieve the purpose of purification.

D. COMPARATIVE ANALYSIS OF REGRESSION

MODEL DATA

In this paper, the general speed prediction model (Liner,
DNN, RNN, LSTM) and LSTM model based on input
variable weighting strategy are used to predict the vehicle
speed, and the experimental data are recorded. Table 1
shows the weighted and unweighted experimental results of
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FIGURE 6. Comparison of results of four DL models.

TABLE 1. Weighted and unweighted experimental results of four DL
models.

Model RMSE TimeSpan
Liner 0.0257 5
Liner+Weight 0.0255 15
DNN 0.0230 3
DNN-+Weight 0.0210 13
RNN 0.0251 69
RNN+Weight 0.0246 15
LSTM 0.0192 26
LSTM+Weight 0.0190 63

the four regression models. The general regression models
show good performance (0.0257, 0.0230, 0.0251, 0.0192),
of which the general LSTM performs best. The LSTM
model based on the input variable weighting strategy is
particularly outstanding, with the RMSE of the optimal result
of 0.019 and the time span of 63. Figure 6 shows the
comparative analysis of four DL models. It is clear from
the figure that when the time span is less than 50 seconds,
DNN model and LSTM model perform better, with RMSE
below 0.025, but the performance of Liner model and RNN
model is slightly weak (RMSE above 0.025). However, when
the time span is greater than 50s, all models show poorer
accuracy. Among them, the LSTM model performs the most
consistently among the four models although it decreases
(up 15%), which highlights the fact that the accuracy of the
DNN model decreases considerably (the slope of the RMSE
results is about 1 between the time span 50s-180s). This
indicates that without weighting the input data, the accuracy
of different models decreases to different degrees as the time
span increases. We assume that the reason for this situation
may be due to the fact that the time in the front end of the time
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horizon is too long apart from the desired prediction while
the time horizon increases, resulting in a small impact of the
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TABLE 2. Comparative experimental results of LSTM model and LSTM
model based on heuristic adaptive time-span strategy.

RMSE Time Span Training
Time

HATLSM  0.0190 26 7.5hours
model
LSTM 0.0190 26 22.1hours
model
Liner 0.0257 5 15.7hours
model
DNN 0.0230 3 17.3hours
model
RNN 0.0251 69 20.%hours
model

variable values in the front end of the time horizon on the
prediction.

However, the weights in the model are consistent with the
weights at the end of the time span. Therefore, we believe
that weighting the input data and reducing the impact of the
variable value at the front of the time span on the prediction
will improve this result. Figure 7 shows the results of our
comparative experiment. For the four regression models,
we have carried out weighted experiments and comparative
experiments (time span: 1-300 seconds). Figure 7 (a) shows
the weighted and unweighted experimental results of the
input data of the Liner model. Figure 7 (b) shows the
weighted and unweighted experimental results of the input
data of the DNN model. Figure 7 (c) shows the weighted
and unweighted experimental results of the input data of the
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RNN model. Figure 7 (d) shows the weighted and unweighted
experimental results of the input data of the LSTM model.
It can be clearly seen from the four figures in Figure 7 that
although the accuracy of the experiment will still decrease
with the increase of the time span when the input data is
weighted, the growth rate of the four curves is below 20%.
In particular, it can be seen from Figure 7 (b) and Figure 7 (d)
that the experimental results of DNN model and LSTM model
have improved significantly after the input data is weighted,
When the time span of DNN model is 180 seconds, the test
results are optimized by 50%, and LSTM model also has
good results when the time span is greater than 120 seconds
(RMSE is below 0.022). Although there is little improvement
in the optimal value of the experimental results of the four
DL models, this idea makes it possible to increase the time
span prediction speed. Figure 8 shows the convergence rate
of the four models. It can be seen from the figure that the
convergence rate of the model in this paper is faster than that
of the Liner model, and slightly faster than that of the CNN
model and RNN model.

E. LSTM MODEL BASED ON HEURISTIC ADAPTIVE
TIME-SPAN STRATEGY

It can be seen from Figure 7 that the accuracy of the four
DL models, whether weighted or unweighted, is decreasing
as the time span increases, so the traditional idea of fixed
time span of regression model obviously can not make a
good speed prediction. So, we propose LSTM model based
on heuristic adaptive time span strategy (HATSLM), which
uses simulated annealing algorithm to optimize the time span
and automatically find the optimal time span. For different
data sets, our model can adapt to the optimal time span and
find the most suitable time span for the data set. Table 2 shows
the running time comparison test results of the five models.
Liner, DNN, RNN and LSTM use the exhaustive method to
calculate all the results with a time span of 1-300 seconds. The
other is the LSTM model based on heuristic adaptive time
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span strategy, which is used by us to find the optimal time
span from 1s-300s. From Table 2, we can clearly see that the
time required by our method is about one third of that of the
traditional LSTM, and the accuracy is the same. This greatly
improves the efficiency of finding the optimal time span.

Figure 9 shows the results of the convergence rate of the
five models. The reference ordinate is RMSE. It can be
seen from the figure that the HATSLM model converged
in the fifth round, but the other four traditional regression
models converged after the tenth round, which verifies that
the training efficiency of the HATSLM model is higher than
that of the traditional regression model.

IV. CONCLUSION
In this research project, a new adaptive model is proposed

to do vehicle speed prediction based on a heuristic adaptive
time span strategy, which breaks through the original concept
of fixed time span - the LSTM speed prediction model. This
model is trained to automatically find the optimal time span
and accurately capture the transformed relationship between
vehicle speed, time span and other predictors, overcoming the
disadvantages of traditional DL models that waste efficiency
and accuracy due to fixed time span. It is able to enhance
the vehicle speed prediction performance of DL models with
consistently more accurate results and higher efficiency. This
study tested the speed prediction performance of relevant
DL models (Liner, DNN, RNN, LSTM) for vehicle speed
prediction on daily vehicle data. Then the improved LSTM
model of this paper is compared with the commonly used
DL models for vehicle speed prediction. The experimental
results show that the LSTM prediction model can achieve
a lower RMSE (0.0257, 0.0230, 0.0251, 0.0192) than other
DL models (Liner, DNN, RNN) compared to the traditional
DL models. The LSTM model improved by us, on the other
hand, has similar results as the LSTM model with the same
time span chosen (RMSE of 0.0190), but for different training
data, our model can adaptively choose the optimal time
span, which greatly increases the generalization ability of
the model. In general, too small or too large time span will
have a large impact on the speed prediction accuracy. Our
model can determine the optimal time span faster and more
accurately, which successfully overcomes the shortcomings
of traditional DL models. It is expected that this paper can
provide more novel ideas and methods for speed prediction
models.
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