
Received 7 June 2023, accepted 14 June 2023, date of publication 26 June 2023, date of current version 29 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3289409

An Improvement in Dynamic Behavior of Single
Phase PM Brushless DC Motor Using Deep
Neural Network and Mixture of Experts
YANG ZHANG1, RADOMIR GONO 2, (Senior Member, IEEE),
AND MICHAł JASIŃSKI 2,3, (Member, IEEE)
1Beijing Aiqi Technology Company Ltd., Beijing 100089, China
2Department of Electrical Power Engineering, Faculty of Electrical Engineering and Computer Science, VSB—Technical University of Ostrava, 708 00 Ostrava,
Czech Republic
3Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland

Corresponding author: Radomir Gono (radomir.gono@vsb.cz)

This work was supported by the VSB—Technical University of Ostrava under SGS Grant SP2023/005.

ABSTRACT Brushless DC motors play a vital role as a workhorse in many applications, especially home
appliances. In the competitive world of the day, a brushless DC motor is a wise choice for many applications
because of its high power density, a simple driving circuit, and high efficiency. Accordingly, demonstrating
the feasibility of a new controller on this type of motor has undoubtedly paramount importance. Twomethods
of speed controllers, namely linear-quadratic regulator, and proportional-integral-derivative, are mixed using
a mixture of experts (MoE) for a single-phase PM brushless DC external rotor motor. The dynamic model
of the SP PM BLDC ER motor characterizes the behavior of the motor, involving cogging torque and
electromotive force (EMF) gained from 2D finite element analyses. The motor is supplied by a pulse width
modulation inverter with a constant voltage source. The results disclose that the SP PM BLDC performance
is enhanced and more robust during load disturbance. ANSYS and MATLAB environments are used for
obtaining finite element analysis and dynamic analysis of single-phase PM brushless DC external rotor
motors, respectively. The merits of the proposed approach are validated through implementing a low-scale
experimental setup.

INDEX TERMS Brushless DC motor, controlling system, finite element, power electronic converter.

I. INTRODUCTION
External rotor motors are exceedingly utilized in high power
density applications such as automotive, aerospace, home
appliances, etc., owing to their inherent ability to transmit
torque from their outer sides [1], [2], [3]. Coupled with the
feature above, widespread attention has been paid to the
brushless direct current (BLDC) motors providing higher
efficiency at the higher speed [4], [5]. This originates from the
fact that the BLDCmotors employ the electrical commutating
mechanism in comparison with the extensively used universal
motors in which a mechanical mechanism is in charge of
supplying power to the windings. Since the BLDC motors
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are permanent magnet motors where solid-state switches
control the commutation, they have met maintenance require-
ments [6], [7]. These features have made the BLDC motors
a potential workhorse in the home appliances industry [8].
Single-phase BLDC motors canprovide a suitable torque in
the lower weight, smaller size, and more simple structure
in comparison with three-phase BLDC motors [9], [10].
Therefore, single-phase permanent magnet brushless DC
external rotor (SP PM BLDC ER) motors are used as low
horse-power machines. SP PM BLDC ER motor has a per-
manent magnet on its rotor placed on the outer part of the
motor and the windings on the stator, which are commu-
tated electronically. SP PM BLDC ERmotor is cost-effective
and effortless to mass production compared to single-phase
induction machine [11]. SP PM BLDC ER motor is not
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self-starting; hence this type of machine has been designed
so that there is another torque acting in addition to excitation
torque confirmed by the interaction between stator winding
current and permanent magnet field. Thus machine designers
contrive an asymmetric air gap to establish cogging torque,
which originated from the fact that the stator tooth and PM
field are interacted [12], [13], [14].

In the single-phase BLDC high-speedmotors, three diverse
controlling methods, including commutation pulse [15],
phase advance [16], and reference voltage-controlled pulse
width modulation [5], [17] have been extensively used.
A digital controller such as a microcontroller or micropro-
cessor has been employed for implementing the commutation
pulse or phase advance controls or a combination thereof
in which a sequence of the input voltage is sensed [18].
Although the ability of SP PM BLDC motor performance
in the variable input voltage and variable load torque can
be achieved without pulse amplitude modulation or pulse
width modulation (PWM) in the hybrid control (combina-
tion of commutation pulse and phase advance), they are not
able to reduce the excitation torque ripple. Thus the idea of
reference voltage-controlled PWM was bounced around to
reduce torque ripple [19], [20]. The controller uses PWM
high-frequency signals for deteriorating the undesirable cur-
rent ripple in the high-speed operation while the reference
voltage is linearly decreasing rather than shifting the input
voltage phase. However, its higher switching frequency leads
to lower efficiency in high-speed applications.

In addition to the torque ripple reduction, the electrical and
mechanical response performance of the SP PM BLDC ER
motors is of paramount. The ability of accelerated response
to load and input voltage of the motor has gained lots of
attention in recent years [7], [21], [22]. In this regard, several
types of high-level controlling algorithms, such as adaptive,
conventional proportional-integral-derivative (PID), nonlin-
ear, fuzzy, and discrete controllers, have been implemented
in BLDC motor drives [23], [24], [25].

Guo et al. [26] have proposed a new adaptive integral
sliding mode (SM) controller for BLDC motors to mitigate
related problems of speed fluctuation overload torque distur-
bance. A Kalman-based load disturbance observer set up, and
an adaptive saturation function is applied to the error link
to lessen the windup phenomenon [27]. Then, the conver-
gence and stability of the controller are investigated through
the Lyapunov method. Although this controller damped
the BLDC torque under fast loading variations, its imple-
mentation is to somewhat complicated. A novel 2nd order
sliding mode coupled with the super-twisting algorithm is
presented in [28] for BLDC motor drivers. The proposed
method is capable of properly dealing by the uncertainties
and load disturbance with using a super-twisting method.
The necessity of using current and voltage control loops or
any complicated reference frame transformations demolished
in the introduced process. The main detriments of the tra-
ditional sliding mode controller, including chattering effects

and high-frequency switching, are relieved at the expense of
the torque ripple increase when the external disturbances are
applied.

A fuzzy neural network (FNN) controlling scheme is pro-
posed and implemented in [29] for BLDC motor drives.
As reported, the sole employing of the fuzzy logic controller
has posed two significant problems, including poor rough
granulation and non-adaptation and harrowing extraction and
adjustment of fuzzy roles. The idea of the proposed FNN is
to characterize the fuzzy rules based on a trainable algorithm,
such as a neural network [29]. The results seem reasonable
while using an extended Kalman filter training algorithm.
The proposed FNN provides the capability for adaptive
self-tuning of the weights and memberships of the input
parameters for fuzzy logic. Sedaghati et al. [30] proposed a
novel type-2 fuzzy controlling scheme based on the adaptive
immersion and invariance (I&I) control method for speed
controlling of the BLDC motors. The mathematical model
parameters and their associated uncertainties contemplate as
unknown parameters. The approximation error is trackedwith
the proposed fuzzy compensator, and its corresponding rule
parameters are tuned using the Lyapunov stability method.
The performance of the proposed method is investigated
during the disturbance of load torque and stator coil resis-
tance. The results reveal that although the performance of the
controlling scheme has enhanced under stator coil resistance
variation, the dynamic behavior of the BLDC motor under
load torque variation is not sufficiently improved while many
computational efforts have been burdened.

Recently, machine learning-based controlling algorithms
for motor driver has been extensively used in several appli-
cations [31]. A new convolutional neural network (CNN)
based controlling scheme for a BLDC motor is proposed
in [32]. In this method, CNN has been used to optimize the
parameters of the integral square error of the PID controller
in actual implementation. Mission profile data based on the
mathematical model of the BLDC motor is collected for
training and testing processes. However, the proposedmethod
is not robust during external load torque disturbance and
motor parameters’ uncertainties. Busetto et al. [33] propose a
new data-driven neural network algorithm for field-oriented
control (FOC) of BLDC motor. In this algorithm, the tuning
of the FOC parameters are formulated as a model reference
optimization problem which makes this algorithm a potential
candidate for the setmembership global optimization of FOC.
In comparison with Bayesian optimization, although this pro-
posed method is less computationally expensive, converging
of this optimization may last longer, causing problems in
applications with the high number of design constraints.

In the papers mentioned above, the attention has been
mainly concentrated on applyingmodern tools, such as neural
networks, and data-driven machine learning to optimize the
controlling parameters in different controlling algorithms,
including sliding mode, fuzzy logic and conventional con-
trollers. The researchers rarely focus on the direct use of
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a deep neural network (DNN) in BLDC motor controlling
based on traditional methods. This paper presents a direct
benefit of DNN in controlling an SP BLDC motor. In addi-
tion, we put another step forward and try to simultaneously
take advantage of two conventional controlling algorithms,
namely PID and linear–quadratic regulator (LQR), by utiliz-
ing them in characterizing two distinct DNNs. Simultaneous
exploitation of this combination improves the global perfor-
mance of the controlling system. In this regard, we employ
the mixture of experts (MoE) algorithm to use both merits
of LQR and PID controllers. A gating network, as the core
of MoE, is trained to determine the contribution of each
controller on the final stage of the controlling index, namely
the modulation index.

The organization of this paper is as follows: modeling and
finite element analysis of the single-phase permanent magnet
BLDC external rotor motor are explained in section II. While
section III deals with implementing controlling strategies,
the results and discussion are expressed in section IV, and
a conclusion is drawn in the final section.

II. MODELING OF SP PMBLDC ER MOTOR
In this section, a dynamic model of the BLDC motor of
interest is established based on FEA and a dynamic model
for the SP PM BLDC ER motor.

A. 2-D FINITE ELEMENT ANALYSIS
The permanent magnet material has a direct effect on the
power density of the SP PMBLDC ERmotor. In other words,
the higher the flux density the permanent magnet has, the
higher power can be achieved in a fixed permanent magnet
volume. Thus the SP PM BLDC ER motor considered here
uses an Nd-Fe-B magnet ring placed on the rotor as shown in
Fig. 1.

FIGURE 1. A sectional view of SP PM BLDC ER motor without windings.

The stator poles are asymmetrically designed to provide
the ability of self-starting in the single-phase BLDC motor.
These non-uniform air gaps, although they easily support the
self-starting of the motor, some undesirable torque ripples

TABLE 1. Parameters and dimensions used in the finite element analysis.

called cogging torque are induced on the out of the shaft
of the motor, which has to be considered in our controlling
design procedure. The stator laminations and rotor back iron
are made of steel and soft iron, respectively. The SP PM
BLDC ER motor is an eight-pole machine with only one coil
per stator pole. The parameters and dimensions are given in
Table 1.

The model had 25366 elements and 38982 nodes. The
mesh size optimization is performed using a mesh operation
tool in Maxwell software in which one may also be able
to define some constraints and conditions to optimize the
accuracy of the simulation. In the pole edges and magnetic
bars, the maximum mesh length is limited to 1mm. Based on
these constraints, the software proposes the best mesh sizes
through the different parts of the model. The stator coils are
externally supplied through the excitation management tool
of the Maxwell software regarding a predefined single-phase
full bridge inverter. Finite element analysis (FEA)was used to
obtain the electromotive force (EMF) induced in the coils and
the created cogging torque on the motor shaft for better SP
PM BLDC ER motor modeling. In this type of motor, EMF
constant (Ke) varies with rotor angular displacement. It is
owing to a non-uniform air gap [34], [35]. The EMF constant
could be obtained from the calculation of flux linkage passing
through the coils via the stator core using the following
expression [36]:

Ke =
1λ

1θr
(1)

where λ is the flux linkage of coils connected in series and θ is
the rotor position. Thus with evaluating the 1λ to 1θr ratio,
calculation of Ke will be possible. It becomes easy using 2D
FEA, as shown in Fig. 2. It illustrates the paths of magnetic
flux via stator core without any external excitation. By using
the above procedure, EMF constant will be estimated. Fig. 3a
demonstrates the EMF constant evaluated by FEA and its fun-
damentals harmonic with the following expression (the EMF
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constant is in terms of the stator pair poles) [34], [36]:

K fundamental
e = 4.8 · sin (4 · θr ) vs/Rad (2)

FIGURE 2. Flux linkage through per coil using 2D finite element analysis
in ANSYS/Maxwell environment. The magnetic and physical parameters
of the simulation are listed in Table 1.

FIGURE 3. Exploitation of mechanical and electrical parameters for SP
BLDC ER motor of interest. a) Flux linkage variations and b) total torque
variations extracted from FEA, in every rotor position a non-zero starting
torque would be produced owing to the cogging torque existence.

Regarding aforementioned equation and Fig. 3a, one can
obtain that a cycle of the electromotive force (EMF) induced
in any of the stator coils is completed during 90◦ mechanical
rotor revolution. In other word, in each mechanical rotor
revolution, four electrical cycles are completed. This relation,
as written (2), can be expounded by the use of pair poles
definition in the motor as θelec = θr · P/2 in which θr
and θelec represent the mechanical and electrical angles in
term of degree and P

/
2 denotes the pair poles of the motor.

The effective value of EMF constant is calculated as follows:

K effective
e = 3.394 vs/Rad (3)

For calculating cogging torque in the SP PM BLDC ER
motor, storing energy should be evaluated while there is not
any external excitation. Cogging torque is expressed by the
following equation [36]:

Tcogging =
1wf
1θr

(4)

It is directly obtained from finite element software by
evaluating the energy storage variation to the rotor angular
variation ratio. Fig. 3b demonstrates the total and cogging
torques, which may be written as (the cogging torque is in
terms of the stator poles) [34], [36]:

T fundamentalcogging = −0.2678 · cos(8θr + 22.1◦) (5)

The interaction between the magnetic field of the sta-
tor coils and the permanent magnets of the rotor produces
electromagnetic torque (Te). Total torque is the sum of the
electromagnetic torque and the cogging torque (Tcogging).
As shown in Fig. 3b, the total torque in every rotor position
has non-zero value which is leading to self-starting of the SP
PM BLDC ER motor owing to existence of asymmetric air
gap.

B. DYNAMIC MODEL OF SP PM BLDC ER MOTOR
The global model of the SP PM BLDC ER is shown in
Fig. 4. This model has different parts required to be mod-
eled [34], [37]. Mechanical and electrical modeling of this
motor, including voltage and torque equation models are
discussed in this section. The motor model is based on the
well-known voltage and torque equations of the DC motor.
Thus the voltage equation is [36]:

va = ea + Raia + La
dia
dt

(6)

where va is the inverter voltage,Ra and La are stator resistance
and stator inductance, respectively. ea is the back EMF of the
motor and is defined as the following expression [36]:

ea = Ke(θr ) · ωr (7)

where Ke is the EMF constant, which is a function of rotor
position and ωr is the motor speed. Fig. 4 illustratesthe volt-
age equation model. va is the output voltage of the inverter
and its polarity is a function of rotor position. Based on the
torque balance principle representing that sum of the loading
torques equals to sum of the producing torques [36], the
torque equation of this machine is calculated as:

Te + Tcogging = J
dωr

dt
+ Bmωr + TL (8)

where J is the inertia of rotor and load coupled, Bm is friction
constant, TL is torque needed by load, Tcogging is cogging
torque obtained from FEA and Te is electromagnetic torque
which is expressed by the following equation [38]:

Te = Ke(θr ) · ia (9)
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FIGURE 4. Global modeling of the single-phase permanent magnet BLDC external rotor motor.

A full-bridge single-phase PWM inverter has been utilized
to supply the SP PMBLDC ERmotor. The inverter is demon-
strated in Fig. 4 (red-shaded). Motor speed is controlled by
changing the modulation index (ma) of the PWM inverter.
The gates are driven based on rotor position feedback. In this
paper, although carrier voltage amplitude (Vc) is constant,
reference voltage amplitude (Vref) could be varied concerning
motor speed, which leads to a change in inverter output volt-
age. More details can be found in [39]. This motor’s torque
should take over at least minimum load torque which has a
step increase in operating time, load and rotor inertia, and
friction torque. The load model has shown in Fig. 4 in the
last part.

III. CONTROL OF SINGLE PHASE PERMANENT MAGNET
BRUSHLESS DC MOTOR
Using closed-loop control makes substantial quantities be in
the desired values. Although closed-loop control increases
the cost of products, it could increase efficiency and guar-
antee the desirable values or set points. Finding a cost-effect
and fast response controlling method for special motors has
sparked off a heated debate in recent years. In this section, two
methods are proposed, and their advantages and drawbacks
have been discussed. Then, the MoE algorithm is proposed
to combine both controllers’ specifications.

A. CONTROLLING PRINCIPLE AND DESIGN
In this section, the principles of the two following controlling
strategies will be discussed.

One of the most common closed-loop controllers is the
PID controller) which is tremendously adopted in industrial
control systems. The error of a measured value and a refer-
ence value is the driving force of a PID controller. By using
this controller, an error can be minimized by adjusting the
control inputs. Fig. 5 illustrates the standard structure of the
PID controller. In this structure, the control variable u(t)
is defined by summing three diverse terms affected by the
tracking error e(t). Kp determines that this term is propor-
tional to the error. Ki/S denotes an integral term, and KdS

is a derivative term. Each of terms mentioned above works
separately [40], [41], [42].

The theory of optimal control deals with operating a
dynamic system at minimum cost. The dynamics of the sys-
tem are defined by state variables, and the cost function is
determined by a quadratic function called the LQ problem.
The linear-quadratic regulator (LQR) is our tool to minimize
the cost function [43]. The system state equations can be
written in the following form [44]:

ẋ = Ax + Bu

y = Cx + Du (10)

Using state feedback

u = −Kx (11)

Using LQR for minimizing J to minimize the cost [43]

J =

∫
∞

0
xTQx + uTRudt (12)

where J is the cost function and should be minimized. Q and
R are state and input weighting arrays, respectively. These
matrices are generally obtained by trial and error. K is
obtained from the following expression.

K = R−1BTP (13)

P is obtained from the following Ricatti equation [45]

ATP+ PA− PBR−1BTP+ Q = 0 (14)

Fig. 5b depicts the control block diagram of the control
system. As observed, an integrator is used to have zero
steady-state error. Obtaining system state equations or trans-
fer function is always necessary to design a control algorithm.
Block diagrams, which demonstrate the interconnection of
the system equations, are widely employed in control system
investigation and design.

The voltage equation and the relationship between torque
and rotor speed of the SP PMBLDCERmotormay bewritten
as (5)-(8).
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FIGURE 5. Controlling schematics for single phase permanent magnet
BLDC external rotor motor. a) Conventional PID, b) LQR.

Here, these equations must be written in terms of state
variables which are armature current, rotor speed, and rotor
position, respectively.

dia
dt

=
1
La

(−Raia − Keωr + Va) (15)

dωr

dt
=

1
J
(Keia − Bmωr − TL + Tcogging) (16)

dθ r

dt
= ωr (17)

where Tcogging and Ke are nonlinear functions of θr . That
means by applying for Taylor extension over their equilib-
riums via using their fundamentals (2) and (5), one can reach
out the dynamic behavior of the system.

PID controlling technique is a controlling system based
on the error between the reference and measured output
value. Using this error to reach a reference output value by
adjusting the input value which here is the input voltage
Va. PID coefficients may be selected so that the needed rise
time, Overshoot, settling time, and steady-state error of the
system are satisfied. Therefore, catering to our purposes, the
following coefficients are calculated using MATLAB tools

KP = 2.089, Ki = 9.3456, Kd = 0.013 (18)

LQR controlling technique is a type of controlling sys-
tem based on state feedback. The algorithm of gaining state
feedback matrix K is thoroughly described in the previous
section. Concerning matrix A, which is easily borne out from
(15)-(17) and mentioned linearization method, K is

K =
[
45.344 53741 0

]
(19)

KI is also selected regarding the bandwidth of the control-
ling system, and here by trial and error via simulations are
chosen 100.

B. DEEP NEURAL NETWORKS AND MIXTURE OF EXPERTS
APPLICATION
The behavior of the SP BLDC ER motor of interest can be
controlled through adjusting its input voltage. Accordingly,
by tuning a modulation index of the inverter, one can easily
tune the speed of the SP BLDC ER motor. As previously
mentioned, we use two different types of controlling systems
i.e., PID and LQR. In both controllers, the aim is to adjust
ma in such a way as to minimize the error between the
measured and the reference speed. Two distinct deep neural
networks (DNNs) are constructed and trained for each LQR
and PID based on several operating points (2850 different
operating conditions are considered in this study). The first
two networks in Fig. 6 depict the proposed neural network
structures. Each DNN has four internal layers with a number
of neurons of [15 15 20 15]. The number of neurons and
hidden layers of each DNN have been selected as a trade-off
between the accuracy of the DNN and the required time of
the training process via trial and error.

FIGURE 6. Architecture of a mixture of experts (MoE) consisting of two
expert networks and a gating network. Given an input x∼ (ωr , ia), the
output y∼ma of the system is computed as the sum
ma =ma−PID·g1+ma−LQR ·g2.

As an example, Fig. 7 demonstrates the correlation
between the training process time andmodel accuracy regard-
ing the number of hidden layers and their corresponding
number of neurons in PID-DNN. As observed, several tests
have been performed to obtain the best structure of PID-DNN
via selecting different numbers of hidden layers and neurons.
Although the accuracy of the model increases by increasing
the number of layers and neurons, the computational time for
the training process significantly enlarges. In the low number
of hidden layers and neurons, the PID-DNN training process
time becomes considerably lower. However, its accuracy does
not meet the requirements of our problem. The green circles
specify the optimum number of neurons for each number
of hidden layers. One can find that the minimum RMSE
and computational time are allocated to a four-hidden layer
structure with a number of neurons between 15 and 20 for
each hidden layer.
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FIGURE 7. A trade-off between training process time and accuracy of
PID-DNN as the functions of the number of hidden layers and the number
of neurons.

Using these 2850 datasets, the DNNs are trained in such a
way as to minimize the root mean square error (RMSE) of the
predicted ma and the actual ma as follows [46]:

RMSE =

√√√√ n∑
i=1

1
n

(
m̂a−i − ma−i

)2 (20)

where m̂a−i and ma−i are predicted and actual modulation
index, respectively. Back-propagation and k-fold methods are
used for the training and validating processes.

The gating network, as the core of MoE, is in charge of
determining the contributions of each expert i.e., ma−PID and
ma−LQR, on the final modulation index i.e. ma. Similar to
DNNs, the same optimization process is applied to the gating
network characterize the optimum structure of the network.
The gating network has four hidden layers with a structure
of [25 30 25 30]. It means that the minimum RMSE and
computational time occur while the construction has four
hidden layers with the abovementioned number of neurons.
MoE tries to obtain a set of weighting factors for each neuron
of the gating network to minimize the RMSE. The unity
constraint (g1 + g2 = 1) of the gating signal is vital in
the training process of the gating network. Using maximum
likelihood, one can determine the weighting factors of the
gating network by maximizing the following equation [47]:

L(θ ) =

∏
α

P(xα, yα|θ )

=

∑
α

log
∑
j

gj(xα,V )Nje
−

1

2σ jj
(yα−f (xα,Wj))

2

(21)

where x is the input vector, and W is the weighting factor
of the gating network. By solving the constraint mentioned
earlier, theMoE (gating network) is trained. The combination
of the PID and LQR controllers will lead to a more reliable
and robust controlling strategy as will be discussed in the next
section.

IV. RESULTS AND DISCUSSION
In machine learning-based strategies, measurement of the
DNNs’ training process accuracy is of paramount. Several

indices, such as root mean square error, maximum absolute
error, and coefficient of determination are potential candi-
dates for evaluating the accuracy of the DNNs. In this paper,
RMSE has been chosen to investigate how PID and LQR
DNNs implement. Fig. 8 demonstrates the predicted and
actual ma for both controllers’ DNNs, namely LQR-DNN and
PID-DNN. As shown, the results are linearly correlated with
each other at the vicinity of the perfect prediction (dashed
line). The RMSEs are 3.4% and 4.1% for PID and LQR
deep neural networks. The data for LQR-DNN is a bit more
dispersive in comparison with PID-DNN. It originates from
the fact that in the LQR controller, the state variables directly
affect the modulation index. Regarding this figure, one can
validate the performance of the DNNs in both PID and LQR
strategies.

FIGURE 8. Performance of the deep neural network using PID and LQR
controller for the SPBLDC ER motor of interest.

Fig. 9 illustrates the normalized status of the considered
state variables (input), namely ia and ωr, for all three con-
trolling strategies for 200 operating points. In this figure,
the dispersion of operation points are demonstrated in the
similar rotor speed operating points for all three controlling
strategies, namely PID, LQR and MoE. In the PID controller,
the variation of armature current is 60.3%. This variation
is about 72.1% for LQR controlling strategy. It shows that
the driving circuit requires to supply more severe armature
current fluctuations for SP PM BLDC ER motor than that of
in PID controller in the identical operating points. This wider
armature current variation (11.8%) can impose more power
loss in the inverter and also increase the over/undershoot of
the rotor speed. However, regarding Fig. 9c, one can obtain
that the required armature current variation is limited to 54%
in the MoE controlling strategy. Accordingly, the merits of
lower armature current variation in the optimized combina-
tion use of PID and LQR i.e. MoE strategy can improve the
dynamic behavior of the controller compared to the PID and
LQR controllers.

The objective of this paper is to apply MoE controlling
strategy to an SP PM BLDC ER motor and guarantee its
improved performance either in steady state or transient
conditions. In this regard, in addition to MoE implementa-
tion, five other controlling strategies, including sliding mode
(SM), fuzzy neural network (FNN), convolutional neural
network (CNN), conventional PID, and conventional LQR,
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FIGURE 9. Distribution of the state variable for 200 different operating points in a) PID-DNN, b) LQR-DNN, and c) MoE
controlling strategies, for SP BLDC ER motor. It reveals that in the MoE strategies the dynamic behavior of the SP BLDC ER
motor is improved owing to the application of both merits of PID and LQR controller.

are taken into account to provide a fair comparison. More
details of FNN, CNN, and SM controlling strategies can be
found in [26], [29], and [48]. The dynamic behavior of the
SP PM BLDC ER motor over a step-change in the load
torque from half of the rated torque to its rated (0.5 N.m
to 1 N.m) and its performances over a step-change in its
speed reference from 360 rpm to 300 rpm are simulated and
shown in Fig. 10 and Fig. 11, respectively. In each analysis,
the procedure of the controlling strategies will be compared.

Dynamic responses (rotor speed and armature current) of
the SP PM BLDC ER motor of interest under a step change
in load torque is depicted in Fig. 10 for MoE, SM, FNN, and
CNN controlling strategies. Fig. 10a illustrates the mechan-
ical response using the MoE, sliding mode (SM), fuzzy
neural network (FNN) and convolutional neural network
(CNN) controllers. The rotor speed experiences a decrease
during applying rating torque from its initial value, namely
half-rated. The mechanical response at the torque release
demonstrates an overshoot in rotor speed.

This is the case for all four strategies. However, the
performance of rotor speed controlling can be judged via
two well-known parameters i.e., under/overshoot and settling
time. Among all demonstrated strategies, FNN has the best
performance in terms of the settling time, which is about
8 ms. The MoE, SM, and CNN have settling times of 9.2 ms,
16 ms, and 16ms, respectively. The settling time for LQR
and PID (their waveforms are not shown owing to keep-
ing the figure as direct as possible) is 8 ms and 15.3 ms,
respectively. Based on the maximum settling time, one can
find that LQR and FNN have the best response among all
strategies. They are followed by the MoE algorithm with an
insignificant increase. The fast dynamic response of LQR
originates from the fact that the controller directly uses the
state variables leading to a speedier reaction to any kind of
variation. The acceptable response of the FNN algorithm is
due to its self-training process in which increases the share
of the critical input parameter by tuning the rules. The delay
in the PID strategy originates due to the integral coefficient
in the controller, which lags the controlling variable leading

to a slower dynamic response. Another contributory factor
in comparing the dynamic behavior of strategies as men-
tioned earlier is undoubtedly the overshoot/undershoot of the
rotor speed. As shown in Fig. 10a, one can obtain that the
best overshoot/undershoot is dedicated to MoE controlling
strategy with a maximum value of 1.8%. SM, FNN, and
CNN have 2.26%, 2.9%, and 2.5%, respectively. In the mean-
while, all the modern strategies are better than that of using
conventional LQR strategy in which it suffers from 3% over-
shoot/undershoot during load torque variation. On the other
hand, the traditional controller has better conditions than all
strategies by having only 1.1% overshoot/undershoot. With
this information, one can attain that MoE controlling method
is the combination of LQR and PID controllers and harvesting
their advantages while mitigating each other detriment. The
electrical dynamic response of the considered algorithms is
demonstrated in Fig. 10b. Regarding this figure, it is observed
that CNN and SM have the worst transient behavior during
each switching period. In this case, FNN and MoE strategies
have the best conditions. In addition, MoE experiences a
lower current ripple in the steady state condition, which will
lead to a lower torque ripple on the motor shaft. It also leads
to lower switching loss, and higher efficiency in the inverter.

The dynamic behavior of the considered SP PMBLDC ER
motor under reference speed variation is shown in Fig. 11.
The rotor speed is shown in Fig. 11a for MoE, SM, FNN
and CNN controlling strategies. The results validate our
observations in the previous load torque step changes. From
the settling time point of view, FNN and MoE have the
shortest settling time among the modern controllers (They
are 8 ms and 9 ms, respectively). The maximum settling
time (15 ms) belongs to the SM method regarding Fig. 11a.
However, among all controlling strategies, including modern,
and conventional ones, LQR has the best performance with
7ms settling time, and PID has the worst performance with
15.1 ms. Rotor speed undershoot/overshoot follows the pre-
vious pattern and PID has the lowest one with 2%, while the
highest is dedicated to LQR with 5.9%. MoE, SM, CNN, and
FNN serve 2.1%, 4.2%, 4.7%, and 5.8%, respectively. Based
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FIGURE 10. Dynamic response of SP PM BLDC ER motor (rotor speed and armature current) under load torque step change using MoE, SM, FNN and CNN
controllers. a) Rotor speed variation, b) armature current.

FIGURE 11. Dynamic response of SP PM BLDC ER motor (rotor speed and armature current) under reference speed step change using MoE, SM, FNN and
CNN controllers. a) Rotor speed variation, b) armature current.

TABLE 2. Feature extraction of different controlling strategies.

on the disclosed results under speed reference changes, one
can observe that the proposedMoE algorithm has the best per-
formance in regard to settling time and overshoot/undershoot
considerations. It is since MoE has taken advantage of both
PID and LQR controllers. The electrical dynamic behavior of
the considered SP PM BLDC ER motor is drawn in Fig. 11b.
In this case, the armature current waveforms validated those
observations in the previous load torque variation.

A qualitative comparison between the proposed MoE
controlling strategy and other conventional and modern con-
trollers is illustrated in Fig. 12. In this figure, four critical
factors in evaluating the performance of any kind of control-
ling strategy are discussed. From the undershoot/overshoot
point of view, only a conventional PID controller has a bet-
ter condition than the proposed method at the expense of
losing fast dynamic tracking. Other strategies have worse
performance, while LQR is the worst one. This ranking is
held in both load torque disturbance and speed reference
variation as denoted with different colors in the most left
figure. Regarding the settling time, the LQR controller has
the best condition, andMoE lays in the second rank. TheMoE
is trained in such a way as to benefit from the advantages of
both LQR and PID since they are a good complement to each
other. This fact is held in both load torque disturbance and
speed reference variation. The proposed method also has an
acceptable behavior in steady state operation.
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FIGURE 12. Investigation of four critical factors, including undershoot/overshoot, settling time, steady state torque ripple, and maximum switching
frequency on the final performance of BLDC motor controller using MoE, SM, FNN, CNN, LQR, and PID.

The experimental results for these features are listed in
Table 2 under applying all six modern and conventional
controlling methods. On the whole, the experimental results
validate the simulation results under using different control-
ling strategies. The experimental results also reveal that MoE
controlling method can be an appropriate strategy in which
both steady state and dynamic behaviors are optimized in
comparison with other strategies.

Regarding Fig. 12 and Table 2, one can observe that
the torque (current) ripple of the considered BLDC motor
experiences its minimum value in the MoE strategy. This
phenomena occurs since the gating network is well-trained
and assumes a significant contribution to the PID-DNN in
the steady state to minimize the switching frequency and
torque ripple. The gating network increases the contribution
of LQR-DNN in transient conditions in which faster response
is required.

To explore the operation of the proposed algorithm for a
BLDCmotor, an experimental setupwas implemented. An SP
BLDC ER motor with the specifications listed in Table 1 was
employed. The controller algorithm was performed through
an STM32F407VGT6 discovery board. The trained parame-
ters (weighting factors) of LQR-DNN, PID-DNN, and gating
network were all inserted into the microcontroller via defin-
ing several arrays. The armature current and the rotor speed
were sensed via a Hall Effect sensor and an encoder. The
analog measured data was then converted to digital using
two ADC modules of the microcontroller. Based on the rotor
speed and armature current, the MoE generates a switching
signal which transfers to a switching pattern based on a
predefined look-up table. The experimental results of rotor
speed and the electromagnetic torque under a sudden step
change and gradual sinusoidal speed reference are depicted
in Fig. 13. In the first case in which the speed reference
experienced a sudden change (from 210rpm to 260 rpm and
vice versa), the MoE controlling strategy was tracking the
reference speed well. The maximum overshoot/undershoot
is limited to 2.8%. The settling time is limited to maximum
of 12 ms. The electromagnetic torque (Te) has an acceptable
ripple value. The performance of the considered BLDCmotor

FIGURE 13. Experimental results of the considered BLDC in the
conditions of a) sudden step change and b) gradual sinusoidal change of
the speed reference.

has got even better with gradual speed reference change.
As shown in Fig. 13b, the actual speed tracked the reference
speed with a minimum delay value, namely less than 1ms.
Regarding these figures, one can find that the experimental
results validate the merits of the new proposed algorithm
(MoE strategy) thanks to the intelligent combination of two
conventional techniques (PID and LQR).

The detriment of this controlling scheme is the fact that the
designer requires to design several controllers based on the
number of employed experts in the MoE. This may burden
some extra time in the designing stage. It even gets worse
by increasing the number of experts in the proposed MoE.
However, some optimization approaches may be apply to
minimize the designing stage time by optimizing the number
of training data.
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V. CONCLUSION
A new mixture of experts-based controlling strategy is pre-
sented in this paper. A 2D static FE analysis was performed
and the quantities (cogging torque, and EMF constant) were
extracted and used to implement a dynamic motor model.
The exploited dynamic model was used in designing dif-
ferent controlling algorithms, namely PID, LQR, and MoE
strategies using deep neural networks. The MoE strategy
tried to find an optimum contribution factor of PID and
LQR using a trained gating network. The results reveal sig-
nificant improvement in dynamic and steady-state behavior
of the SP BLDC ER motor of interest while perform-
ing MoE-based controlling strategy. The steady-state ripple
became lower in this theme, leading to lower power loss
and higher efficiency. We are now focusing on optimizing
the number of data for the training process to minimize the
designing time, and the results will be presented in the near
future.
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