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ABSTRACT An increase in popularity of wireless networks, mainly in industrial automation and manufac-
turing, has escalated the need for reliable wireless networks. One subtle way of achieving reliability is early
diagnosis of transmission failures in order to take preventive measures against them. However, this can be
difficult to achieve because these failures mainly arise from challenging signal propagation conditions and
interference from co-existing networks, which is hard to diagnose. This leads to Quality-of-service (QoS)
degradation and faulty applications, which may result in system breakdown and financial distress. In this
paper, we propose a novel Dynamic Time Warping (DTW) based method named Variable Adaptive DTW
(VADTW) for synchronizing spectral and protocol domains to obtain precise and complete information about
collisions and co-existing links that cause interference, which can be utilized for troubleshooting. VADTW
divides the spectral and protocol sequences in adaptive time bins and calculates variable window limits for
each frame to perform the synchronization, which aims to complement the cross-RF-standard interference
detection of the spectral domain with the MAC-Layer information from the protocol domain. To prove
the effectiveness of the proposed approach, we tested it in a Wi-Fi network as a proof-of-concept. The
experiments are performed with real-time data traffic captured in different scenarios. VADTW successfully
synchronizes sequences even with a frame loss ratio of 50%. We also perform comparative analysis of
VADTWwith other DTW based approaches on the basis of performance, computational cost, and execution
time.

INDEX TERMS Dynamic time warping, quality-of-service, time series analysis, troubleshooting, Wi-Fi,
wireless communication.

I. INTRODUCTION
The swift transition of wireless networks in manufacturing,
IIoT, military and industrial automation has accelerated the
need for highly reliable networks demanding strict latency
requirements and reduced transmission failures. These fail-
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ures usually occur due to adverse signal propagation con-
ditions emerging through multipath propagation, path loss,
non-line-of-sight (NLOS) and interference from co-existing
networks operating on the same frequency, resulting in mal-
functioned applications and QoS deterioration. In industrial
scenarios such as automotive and semiconductor industries,
such failures can even lead to system downtime and economic
losses.
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Although powerful monitoring tools already exist
to troubleshoot such failures and identify causes of
QoS degradation, they provide an indirect and insufficient
assessment. For instance, protocol-based analysis (using snif-
fers such as Wireshark [1]) grants a detailed overview of
higher protocol layers of communicating entities, but provide
very limited information about the physical layer. In con-
trast, spectrum-based analysis provides a detailed insight into
RF interference. It provides information about co-existence
problems within and between RF-standards and also detects
packet collisions which are missed by protocol-based analy-
sis. It also grants deeper insights into the physical layer by
guaranteeing accurate information about the spectral shape
of the transmission consisting of signal bandwidth, power
distribution, timestamps, etc. However, it does not provide
any information about the higher protocol layers of the com-
munication partners, i.e., the source or destination addresses,
flags inside the protocol headers, content of the payload of a
transmitted frame, etc., remains unknown. So even if interfer-
ence or collision is detected by spectrum analysis, the actual
interferer remains unrevealed. In terms of root cause analysis,
an independent analysis of the protocol and spectral domain
misses a number of insightful entanglements. Combining
both domains allows for a much more comprehensive and
user-friendly investigation of QoS degradation problems in
wireless networks [2].

This manuscript contributes to the root cause analy-
sis of QoS degradation by synchronizing spectrum-based
analysis, which enables precise investigations of RF inter-
ference, with protocol-based analysis. This provides the user
with a far-reaching insight into the link layer to obtain
comprehensive information on interference problems. The
cross-relationship of these two data sources enables infer-
ences to be made that can be used to troubleshoot network
problems rapidly, which is an integral part of recovering from
sporadic and non-deterministic system failures. Although the
synchronization of both domains appears to be straightfor-
ward and easy, it is complicated and challenging due to
the flaws and imperfections present in the received traces
from both methods. In protocol-based analysis, the tempo-
ral information is assigned by the operating system kernel
instead of a deterministic timestamp generated in the receiver
hardware, which makes it error-prone and inaccurate due
to the resulting strong jitter. Additionally, it also suffers
from bursty packet losses due to inadequate signal-to-noise
ratio (SNR), overloaded system buses (e.g. PCIe or USB)
and increased central processing unit (CPU) load [3]. Thus,
an advanced and intelligent algorithm is required to perform
synchronization.

In this paper, we propose a novel method known as
Variable Adaptive Dynamic Time Warping (VADTW) to
perform multi-level synchronization of protocol and spec-
tral domains. VADTW works by dividing the sequences in
adaptive time bins which are ordered in time. Adaptive time
bins refer to bins of different lengths in time, where the
length of the bin is determined by certain characteristics

of the input sequences. Further, basic DTW1 is applied to
the frames2 inside a time bin, where each frame within the
sequence is assigned a time window of variable length. The
window length specifies the time limits within which the
frames of another sequence should be matched to the first
sequence. VADTW is similar to some existing versions of
DTW like Sakoe-Chiba [4], Itakura parallelogram [5] and
Ratanamahatana-Keogh band [6] in a way that they also use a
window element to limit the number of comparisons. The key
difference is that VADTW uses a dynamic window element
instead of a static one, where the window length for each
frame is based on the characteristics of a sequence. By imple-
menting binning and variable windowing, VADTW manages
to reduce the computational complexity for synchronization
as compared to unconstrained DTW, yet achieve considerable
accuracy and precision.

In our previous work for synchronization published in [7],
we started exploring the possibility of utilizing basic DTW
for matching the sequences. Although we received promising
results, we came across a few shortcomings and issues, and
realised that a more sophisticated algorithm is required for
the same. One of the major issues was bursty packet losses in
protocol-based traces. When the burst size increases beyond
5 frames, the synchronization gets disrupted and accuracy
drops. However, in real-life scenarios burst size is often much
higher than 5. Another major drawback is the computational
cost of basic DTW. It compares every frame of one sequence
with every other frame of another sequence incurring huge
number of comparisons and complexity of O(n2), which is
not feasible in practical scenarios where we have millions of
frames. Additionally, the previous approach was only eval-
uated on a synthetic dataset. This work is an improvement
over [7] in the following ways:

• We propose a model based on variable window con-
straints and adaptive DTW to perform synchronization
of spectral and protocol domains using multiple features
and levels of synchronization, where coarse-grained
synchronization creates adaptive time bins, and fine
grained synchronization determines varying window
limits and performs basic DTW using the limits.

• The proposed model limits the number of computations
done by the basic DTW algorithm to only the useful
ones, which significantly improves performance - with-
out losing accuracy.

• In case of bursty packet losses, the fact of limiting the
possible matches by time helps avoid wrongfully con-
necting the packets which are too far apart in time, and
helps to produce a more precise synchronization.

• To evaluate the effectiveness and robustness of the pro-
posed model in a real-world environment, we conducted
experiments for Wi-Fi as a proof-of-concept. The Wi-Fi
traffic from the testbed setup, as well as the office space

1In basic DTW, every element of one sequence is matchedwith every other
element of another sequence. It is also known as unconstrained DTW.We use
basic and unconstrained interchangeably throughout the paper.

2In this paper, frame refers to single packet of the respective RF-Standard.
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environment setup is captured, and a robustness score
is calculated for both configurations, without induced
packet drops and up to 50% randomly introduced packet
drops (for more details, see Section V-A). We also com-
pare various DTW based algorithms statistically.

• The obtained results show that the proposed algorithm
performs better than other algorithms when both perfor-
mance and computational cost are considered.

The paper is organized as follows: Section II discusses the
existing state-of-the-art approaches and establishes the moti-
vation for this work. Section III explains the fundamentals of
DTW. Section IV describes the methodology of the proposed
model. Section V discusses the different experimental setups
used for the measurements, the performance of the proposed
model in different scenarios, and a comparative analysis
of different algorithms. Finally, Section VI concludes the
paper.

II. RELATED WORK
Troubleshooting wireless networks to analyze the root cause
of faulty applications has long been recognized as an impor-
tant topic for network maintenance. The most researched
method in the literature is protocol analysis. The protocol
analysis has been widely used in the areas of Network foren-
sics [8], [9] and anomaly detection [10], [11], [12], [13] to
identify and investigate faults in the network introduced either
by attacks such as denial-of-service, data exfiltration, etc.,
or by performance degradation induced by factors such as
packet losses, overload, and jitter. Although protocol anal-
ysis techniques are very comprehensive and cost-effective,
they are based on capturing the individual data packets
as completely as possible. However, in wireless networks,
interference or collisions in the network can lead to sig-
nificant reception problems. Depending on the degree of
data loss caused by these problems, significant misinter-
pretations can occur in the subsequent protocol analysis.
Further, one of the most common ways of performing pro-
tocol analysis is by capturing and analyzing packet capture
(pcap) files by Wireshark [1], [14]. Wireshark [1] is an
open-source packet analyzer software that uses an open-
source libpcap [15] library for capturing packets. The libpcap
library uses a 2-copy process where the packets are first
copied to the device driver memory and from there to the
kernel buffer and further to the user space buffer [16].
Since writing to disks is impacted by overloaded system
buses and CPU load, it results in packet losses and impre-
cise information like timestamps [16]. Thus, the analysis
relying on such softwares suffers from impreciseness and
ambiguity.

To detect interference and collisions in the network, arising
mainly due to the coexisting RF-standards operating in the
same frequency band, spectrum analysis is widely used. It not
only provides accurate physical layer information, but also
improves detection rate in scenarios where a received frame
can no longer be correctly decoded. This is particularly com-
mon in scenarios where a large number of collisions between

frames occur or where a very low SNR dominates [17].
Many previous studies [18], [19], [20], [21], [22], [23], [24]
perform signal classification using Machine Learning (ML)
algorithms to detect and recognize different RF-standards.
They employ object detection or feature extraction techniques
to extract relevant features from spectrograms and use them
to classify coexisting standards in the network. Commer-
cial real-time spectrum analyzers are also available [25].
Although these approaches have a high accuracy and pro-
cessing speed, they only provide physical layer information
(such as frame duration, center frequency, signal bandwidth,
modulation coding scheme, and signal strength) about the
detected frames. So even if interference or frame collisions
are detected in the spectrum, there is no information about
their source.

In this paper, we attempt to bridge the gap between spec-
tral and protocol analysis by taking information from both
domains and synchronizing them. By analyzing both domains
separately, we realized that both domains provide signifi-
cant and importantly, different information about the frames.
When these two analyses are performed side by side and the
results are merged, we obtain important additional informa-
tion. In the spectrogram, a much more precise assignment
of the individual frames is possible (e.g. source address,
destination address, payload, header flags, etc.) and in the
protocol analyses, information about frames that cannot be
decoded (e.g. time of reception, bandwidth, length, etc.) is
available, which can be used for troubleshooting failures and
faults in the system.

One could argue that why not directly use a Software
Defined Radio (SDR) to capture the spectrum and demod-
ulate the packets? Although this sounds convincing, it is
complicated and expensive. The baseband and MAC-layer
processing for SDRs are expensive intellectual property (IP)
block implementations that need to be written for every RF-
standard. It is also hard to extend and adapt these solutions
to changes in a communication standard as the creation of
IP blocks and testing is time consuming and requires a high
level of experience, and may not achieve the noise immu-
nity and sensitivity offered by a commercial chip. On the
other hand, obtaining spectral trace using deep-learning based
spectrum analysis [17] and synchronizing it with protocol
trace obtained using off the shelf receiver hardware does not
require a separate demodulation operation or a new decod-
ing device. It is an extendible approach and can be used
for prototyping as well. The goal is to achieve a real-time
monitor which can display the live RF-frames present in the
network along with higher protocol layer information using
synchronization. This can be useful, particularly in cases
where the spectrum is used by co-existing systems and indus-
try applications as the problems caused by collisions due to
the hidden-node-problem and cross-standard interference can
be detected and corrected swiftly. An automated evaluation
of the analysis results could be used for advanced alerting
systems, networkmanagement software or autonomous adap-
tation of channel usage in the context of cognitive radio.
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To the best of our knowledge, we are the first ones to apply the
concept of sequence alignment for acquiring more informa-
tion about spectral frames from the protocol domain to help
diagnose the failures in the network in a fast and efficient
way.

III. BACKGROUND
DTW is a time series analysis method that provides a proce-
dure for aligning temporally distorted sequences of variable
length. It uses dynamic programming to calculate an optimal
non-linear warp path from an element-wise cost matrix [26].

Given two sequences A = a1, a2, . . . an of length n and
B = b1, b2, b3 . . . bm of lengthm, the DTW distance between
two elements at positions k and l in sequences A and B,
respectively is given as:

Dk,l = d(ak , bl) + min


Dk−1,l−1

Dk,l−1

Dk−1,l

where d(ak , bl) represents the squared euclidean distance
between ak and bl , where k ≤ n and l ≤ m. A cost-
matrix is calculated from the distance values and then a path
corresponding to minimum cost in the matrix represents an
optimal warp path. Let P represent an (A,B)-optimal warp
path of length L, where P = p1, p2, . . . pL , with pt =

(ai, bj) ∈ [1 : n] × [1 : m] for t ∈ [1 : L].
Comparing every element of A with every element of B

to compute warp path is a slow and expensive process.
Additionally, it can also wrongfully match pairs which are
far apart in time. To prevent such issues, the notion of
global constraints was introduced. Figure 1 represents the two
most popular DTW versions for global constraints - Sakoe-
Chiba [4] and Itakura Parallelogram [5]. However, in our
case, the global constraints do not work because the frame
sequence does not follow a uniform and regular behaviour,
especially when it comes to packet rate and losses. There is no
definite behaviour or pattern for the same. So, we need local
constraints which take into account the varying parameters
of sequences.

FIGURE 1. The global constraints introduced in DTW - (a) Sakoe-Chiba
and (b) Itakura. The horizontal axis represent the spectral sequence and
vertical axis represent the protocol sequence. Only those frames that are
highlighted in purple are used to find the optimal warp path in order to
match the protocol sequence with the frames of the spectral
sequence [27].

IV. PROPOSED APPROACH
In this paper, we propose an approach to diagnose wireless
networks for detecting the causes of QoS degradation. The
fundamental idea is to provide completeness to automated
spectrum analysis by complementing the information from
protocol analysis so that whenever a disruption is detected
while analyzing the spectrum, we have information about
potential causes. We can take necessary measures swiftly
to resolve the faults, such as shifting the sources to other
non-interfering channels or raising an alarm in case of anoma-
lous traffic or unexpected RF-standards, e.g., in the context of
smart industry.

To perform synchronization of spectral and protocol
domains, we propose an approach known as VADTW,
which conducts multi-level synchronization consisting of
coarse-grained and fine-grained levels. We discuss these syn-
chronization levels one by one in detail.

A. COARSE-GRAINED SYNCHRONIZATION
This level of synchronization aims at splitting sequences into
smaller subsequences based on their packet rate per unit of
time. Let us assume the unit of time as θ . We define the
Packet rate as number of packets in a sequence per θ . In other
words, we divide sequences into bins of θ and then count the
number of packets inside these bins. Further, both sequences
are cross-correlated based on the packet rate to identify the
displacement of one sequence relative to another. This is
basically done to remove the lag (if present) in the sequences
to optimize the process of synchronization.

After removing the lag, an offline change point analysis is
applied on time bins to detect all bins where the packet rate
has changed significantly. We use the Pruned Exact Linear
Time (PELT) algorithm to detect the change points. PELT
works through minimization of the costs and assumes that
change points are spread all across the data. It has linear
computational costs and is the fastest among the exact search
methods and more accurate compared to the approximate
search methods [28], [29], [30]. In addition, a union of the
change points from both sequences is performed resulting
in a single list of change points. On the basis of these
change points, adaptive time bins are determined. All bins
between each pair of consecutive change points form one
adaptive bin in each sequence. In this way, bins having a
continuous similar packet rate are merged and the ones where
a significant variation is observed are considered as separate
bins. These bins are called adaptive because they adapt to the
packet rate variation of the sequences and vary in length in
terms of time.

Methodology: Let us assume that the spectrum analysis
sequence χ of time length n ms is divided into k θ ms time
bins represented as t1, t2, . . . tk . Similarly, protocol analysis
sequence β of length m ms is divided into q θ ms time bins
represented as t ′1, t

′

2, . . . t
′
q. The bins are cross-correlated and

let us assume a lag of δ bins is detected in χ . After removing

VOLUME 11, 2023 64671



V. Jain et al.: DTW Based Method to Synchronize Spectral and Protocol Domains

FIGURE 2. (a) ADTW does not consider the start and end points of the bins and therefore, points
marked in red can never be a part of warp path. (b) VADTW determines variable dynamic
window limits for each frame in one sequence and matches them to the frames of another
sequence falling under the same window limit. Thus, overcomes the problem of not considering
edge cases.

the lag, we get the new spectral sequenceχ ′ with the time bins
as: tδ+1:k . Using the PELT model, let us assume we detect µ
change points in tδ+1:k at time bins τ1:µ = {ti}δ+1≤i≤k and ν

change points in t ′1:q at time bins τ ′

1:ν = {t ′j }1≤j≤q. The change
points are unioned and let us assume a total of ε adaptive
time bins is produced having the bounds at λ0, λ1, . . . λε ms,
where λ0 = 0 ms and λε = max(n,m) ms. These bounds
split the sequences χ ′ and β into adaptive bins, where the
ith bin contains frames between λi−1 and λi ms. Further,
to handle the frame losses, we remove adaptive bins which
do not contain frames in at least one of the sequences. This
produces χ ′′ and β ′′.

B. FINE-GRAINED SYNCHRONIZATION
The aim of this level of synchronization is to identify an opti-
mal match between the individual frames of both sequences.
One intuitive way of moving ahead is to perform basic

DTW on all adaptive time bins independently from each
other and then merge the results to obtain an optimal warp
path. We named this approach as Adaptive DTW (ADTW).
Although the approach is convincing in terms of computa-
tional cost, it may suffer from false positives and negatives
because of not considering the start and end points of a bin.
Figure 2 shows an example for the same. In Figure 2(a),
the two big boxes represent adaptive bins and blue colored
boxes represent the optimal warp path using ADTW. Since
we perform DTW only on the frames inside the time bins,
the points marked in red can never be a part of the warp path
which can lead to a loss in precision and recall.

To solve this problem, with VADTWwe introduce the con-
cept of variable window lengths. For every frame in the first
sequence, we identify awindow limit based on the time length
of its adaptive bin and then match that frame to all the frames
in the second sequence falling under this window limit. In this
way, the matching is not constrained inside the adaptive bin
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and we overcome the problem of not considering the edges
of the bins. Figure 2(b) shows an example of varying window
constraints for synchronization.
Methodology: Let the jth frame in β ′′ be located in the

adaptive bin i of length ςi = λi − λi−1 ms. Let j be
present at η ms in β ′′. So the variable window limit of j
becomes η − ςi : η + ςi. It implies that β ′′

j is only syn-
chronized with frames located between η − ςi and η + ςi ms
in χ ′′.
Thus, for every packet in β ′′, we calculate a variable

dynamic window limit and then use it while performing
DTW to find an optimal warp path. Algorithm 1 explains the
methodology used by VADTW in a nutshell.

Algorithm 1 Variable Adaptive Dynamic Time Warping

Coarse-grain(χ, β)
Divide χ and β into θ ms time bins ⇒ t1:k , t ′1:q
Cross-correlate(t1:k , t ′1:q) ⇒ a lag of δ (e.g. in χ )
Remove the lag ⇒ χ ′, tδ+1:k
Change-points(tδ+1:k , t ′1:q) ⇒ τ1:µ, τ ′

1:ν
Union(τ1:µ, τ ′

1:ν) ⇒ λ0:ε ms adptive bins
Remove-empty-bins(λ, χ ′, β) ⇒ χ ′′, β ′′

Fine-Grain(χ ′′, β ′′, λ)
for every packet ρ in β ′′

Identify the bin using η ms (time) in β ′′
⇒ i

Calculate bin length ςi = λi − λi−1 ms
limitρ = η − ςi : η + ςi

DTW(χ ′′, β ′′, limit) ⇒ warp-path

V. EXPERIMENTAL RESULTS AND DISCUSSION
To conduct synchronization of protocol and spectral traces,
VADTW uses two features - total duration of the frame and
received signal strength (RSS). Total duration of the frame
represents the air-time of the signal and RSS represents the
energy of the signal at the position of the receiving antenna.
For the RSS value, it must be ensured that the acquisition of
spectral and protocol traces takes place in local proximity
and with the same type of antenna; otherwise, the devia-
tions of the measurements become too large. Furthermore,
a normalization of RSS values is helpful and required. In our
previous approach proposed in [7], we only used total dura-
tion as a feature, which gives incorrect pairings in cases
where variation in duration between the frames is very low.
Therefore it became necessary to include more features in the
synchronization process in order to allow a unique mapping.
However, the number of features available in spectral traces
is very limited as it does not contain information extracted
from the decoded content of the frames. After performing
a thorough impact analysis of features on the accuracy of
synchronization process, we identified that these two features
provide the most precise results.

For our experiments, we considered the value of θ as 50ms.
The reason being if the value of θ is very small, it will produce

a lot of empty bins and consumes a huge computation time,
and if the value is large, it might miss some crucial packet
rate variations. So, after performing considerable number of
experiments, we identified that θ = 50 ms gives us the
best results for a Wi-Fi system. However, it also depends
on the frame sequences and may vary from sequence to
sequence.

To illustrate the accuracy and robustness of the proposed
approach, we extensively tested it on a real-world dataset
obtained under a testbed setup and an office space environ-
ment setup (details are explained in Section V-A). To verify
how the approach performs in case of bursty packet losses,
we artificially introduced packet drops ranging from 5% to
50%. We also compared VADTW with ADTW and basic
DTW in terms of performance and computational complexity.

A. PERFORMANCE ANALYSIS
For evaluating the performance of VADTW, we tested it on
real Wi-Fi network traffic. However, it is difficult to perform
accuracy measurements in real traffic as the ground truth is
unknown. Moreover, no information about the content of the
frames is received from the spectral trace. Therefore, obtain-
ing a perfect synchronized sequence as a labelled ground
truth is not feasible in our case. For this reason, we assess
the accuracy of VADTW in terms of robustness in map-
ping sequences when packet drops are introduced. In other
words, the shifts in alignment of sequences are calculated
in case of additional artificial packet losses to verify the
robustness of synchronization by the proposed approach.
We conducted experiments in both a controlled and randomly
chosen environment. Tomake the calculations precise, during
the measurement, care was taken to ensure that the reception
conditions were as good as possible and that the measurement
hardware produced as little packet loss as possible.

1) TESTBED SETUP
The testbed setup for Wi-Fi network is shown in Figure 3.
The setup consists of two stations (STA) and one access point
(AP) as participating entities such that traffic consisting of

FIGURE 3. Testbed setup.
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TABLE 1. Robustness scores obtained for synchronization using VADTW in different real-world setups.

transmission control protocol (TCP) packets is transmitted
fromSTAs toAP usingDistributed Internet TrafficGenerator
(D-ITG) [31] at center frequency 5.765 Ghz. To obtain a
protocol trace, Wireshark + Wi-Fi card in monitor mode (we
call it Sniffer) is used and to get the spectral trace, a
deep learning based spectrum analyzer pro-
posed in [17] is used, which captures the spectrum using
a SDR and uses advanced image recognition techniques to
detect and classify frames into different RF-standards to
which they belong. It provides a json file as an output
containing precise physical layer information of the frames.
The experiment is performed in an electromagnetic shielded
tent represented by a solid line in Figure 3 to reduce external
interference to minimum.

We capture the traffic for 30 seconds consisting of approx-
imately 50, 000 frames using both analyzers and preprocess
the traffic for synchronization. The first obtained optimal
warp path is considered as a reference and further, random
packet drops ranging from 5% to 50% are introduced in
the sequences using the Three-state Markov Chain model
proposed in [32]. This model is used because it provides
sufficient control over the parameters of packet loss (such
as burst size, percentage, etc.) and loss-free periods. The
percentage of pairings that remain the same as the reference
after artificial packet drops is further termed as robustness
score. Table 1 shows the robustness scores for testbed setup
in different packet loss scenarios.

In Table 1, SS stands for single source packet drop and
AS stands for all sources packet drop, i.e., dropping packets
from both spectral as well as protocol domain. The burst size
of packet drops is maintained in coordination with the drop
percentage. VADTW manages to align more than 50% pairs
accurately even with 50% random packet drops from both
sources in case of testbed setup with a burst size range of
⟨44 − 46⟩, which is fairly high. We also performed experi-
ments in a random office space environment, where we do
not control any parameters while capturing traffic.

2) OFFICE SPACE ENVIRONMENT SETUP
The experimental setup used for real-world office space envi-
ronment is shown in Figure 4. In this setup, we randomly
captured Wi-Fi traffic for 30 seconds in an office space
consisting of multiple APs, clients and a moving smart-

FIGURE 4. Experimental setup used for random office space environment
scenario.

phone streaming a video. In total, 13 entities were present
in the network during the experiment. The dotted line in
the figure represents that the capture is performed in a
random environment without any shielding against external
interference. The captured traffic consists of approximately
70, 000 frames.
Similar to the previous scenario, we considered the first

synchronized sequence as the reference and further dropped
packets randomly to calculate the robustness scores shown
in Table 1. It can be seen that even with completely random
RF traffic, VADTW manages to achieve the robustness score
of 42.8% in case of 50% packet losses from both the sources,
which is noteworthy.

B. COMPARATIVE ANALYSIS
As discussed in Section II, the existing state-of-the-art
approaches either apply protocol analysis or spectrum anal-
ysis for troubleshooting the failures in the network. The
protocol analysis suffers from data loss and imprecise
information as it heavily depends on reception conditions
impacted by collisions and interference in the network (as
explained in detail in Section II). On the contrary, spec-
trum analysis provides precise physical layer information.
However, under certain conditions, such as densely popu-
lated networks, this information is insufficient to detect the
source of faults and failures in the network (as explained in
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Section II). We apply both these approaches simultaneously
and combine the results. It enables us to obtain physical
layer information (such as frame duration, center frequency,
signal bandwidth, modulation coding scheme, and signal
strength) from spectrum analysis on one hand, and protocol
layer information (e.g., source address, destination address,
payload, header flags, etc.) from protocol analysis on the
other hand. Our combined analysis empowers the swift diag-
nosis of wireless networks, which is of crucial importance
in automation systems and industrial scenarios. To the best
of our knowledge, we are the first ones to introduce the
concept of protocol and spectrogram synchronization for
root cause analysis of performance degradation in wireless
networks.

To assess the efficiency of our proposed algorithm
(VADTW) as a sequence alignment method, we performed
a comparative analysis between VADTW, ADTW, and basic
DTW to highlight the improvement obtained via VADTW
in terms of performance (based on precision and recall)
and computational complexity. Since the frame sequences in
our use case do not exhibit steady and regular behaviour,
particularly regarding packet loss and packet rates, global
constraints are not suitable. Therefore, we did not compare
our approach with Sakoe-Chiba and Itakura methods, which
utilize global constraints. Instead, we compared our approach
with techniques that either apply local constraints or do not
apply any constraints at all.

1) PERFORMANCE
For this analysis, we generated a synthetic dataset of
20, 000 IEEE 802.11n frames using Rhode &
Schwarz®SMBV100B vector signal generator
at a center frequency of 5.5 Ghz. To obtain a spectral
trace Ellisys Bluetooth analyzer is used, and for
obtaining a protocol trace Wireshark + Wi-Fi card in mon-
itor mode is used. After capturing the traces, we manually
extracted a gap-free sequence from both domains to get a
labelled ground truth.

We calculated the F1-score using true positives (TP), false
positives (FP) and false negatives (FN). The positive and
negative factors are defined as follows:

Let us assume spectral analysis sequence χ contains g
frames, protocol analysis sequence β contains h frames and
P represents an optimal warp path of length L, where P =

p1, p2, . . . pL , with pt = {(χi, βj)}i∈[1:g],j∈[1:h].
If {(χa, βb)}a≤g,b≤h is a detected pair then:

• {(χa, βb) = pk |pk ∈ P}1≤k≤L → TP.
• {(χa, βb) ̸= pk |χa ∈ pk , βb /∈ pk , pk ∈ P}1≤k≤L → FP.
• {(χa, βb) ̸= pk |χa /∈ pk , pk ∈ P}1≤k≤L → FN

We statistically compared the F1-scores of basic DTW and
ADTW with VADTW using Wilcoxon signed-rank test [33].
Wilcoxon signed-rank test, without making any assumptions
about the form of distribution of the observations, estimate
whether the difference between the medians of two related set

FIGURE 5. Box plot comparing the F1-scores obtained from basic DTW,
ADTW and VADTW methods at various frame drop percentages.

of observations is statistically significant with a significance
level α. We select α = 0.05 for the test.

We calculated the F1-scores of basic DTW, ADTW, and
VADTW for the frame drop percentages of 5%, 15%, 30%,
and 50%, each with 100 samples. When comparing basic
DTW with VADTW using the Wilcoxon signed-rank test,
we observed that there is a significant difference between
their F1-scores (p-value=1.35 × 10−7 and Z-score=−5.27).
There is also a significant difference observed between the
F1-scores of ADTW and VADTW (p-value=0.0002 and
Z-score=−3.64). It is also interesting to see that there is
no significant difference between ADTW and basic DTW
(p-value=0.5 and Z-score=−0.63). Further, Figure 5 shows
the box plot comparing the F1-scores of all the three
approaches for the various frame drop percentages. It could
be observed from Figure 5 that VADTW performs better
than ADTW and basic DTW under the various frame drop
scenarios.

2) COMPUTATIONAL COMPLEXITY
To assess the performance of VADTW in terms of computa-
tional cost, we calculate the computational complexity based
on the number of operations made by various approaches to
produce a final warp path.

If the spectral analysis sequence χ contains g frames and
the protocol analysis sequence β contains h frames, then the
number of comparisons made by basic DTW is given as:
g × h, since in basic DTW every frame of one sequence is
compared with every frame of another sequence to find a
warp path. Figure 6(a) diagrammatically shows the number
of comparisons made by basic DTW. The x-axis represents
the spectral frames, y-axis represents the protocol frames and
every protocol frame is compared with every other spectral
frame to find the warp path shown in blue color.

In case of ADTW, the comparisons are made within the
adaptive time bins, i.e., the protocol frame will only be
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FIGURE 6. Number of comparisons made by various approaches to find warp path - (a) basic DTW, (b) ADTW and (c) VADTW.

compared to spectral frames that fall within the range of
adaptive time bin towhich the protocol frame belongs. If there
are a total of n = |{b1, b2, ..bn}| adaptive time bins and
every bin contains {gbi |

∑n
i=1 gbi = g} spectral frames and

{hbi |
∑n

i=1 hbi = h} protocol frames, then number of com-
parisons is given as:

∑n
i=1 gbi × hbi . Figure 6(b) shows the

number of comparisons made in case of ADTW. Here, every
protocol frame is compared only with spectral frames which
belong to the same time bin as the protocol frame, repre-
sented by big boxes. Thus, the number of comparisons get
reduced.

In case of VADTW, every protocol frame has a variable
window based on its timestamp and the length of the adaptive
time bin it belongs to, i.e. if the protocol frame is present at
timestamp t1 in the protocol sequence and the length of the
adaptive time bin to which it belongs is t ′, then its window
becomes t1 − t ′ : t1 + t ′. It will only be compared to
the spectral frames falling under t1 − t ′ : t1 + t ′. Let the
numbers of spectral frames to which protocol frames will be
compared be represented by a vector y = y1, y2, . . . yh such
that yi represents the number of spectral frames to which the
ith protocol frame will be compared. So, the total number
of comparisons is given as:

∑h
i=1 yi. Figure 6(c) shows the

number of comparisons made in case of VADTW.
It can be seen from Figure 6 that computational cost of

basic DTW ≥ VADTW ≥ ADTW. When all the frames fall
under one big time bin, the computational cost of basic
DTW ≡ VADTW ≡ ADTW which can be considered as the
worst case scenario for ADTW and VADTW. However, this
case would only occur for very uniform sequences. The
occurrence of these long uniform sequences is highly unlikely
in practice.

We also computed the execution time incurred by various
algorithms while synchronizing the synthetic dataset. On one
hand, where basic DTW took 23.8 minutes to synchronize,
VADTW achieved the same result in 14.6 seconds. A sig-
nificant improvement is witnessed by VADTW in terms of
execution time. This is of significant importance for our case
as the spectral and protocol sequences can contain millions
of frames and applying basic DTW for synchronizing them
seems impractical, especially in case of online analysis during

the measurements. Although ADTW has the lowest compu-
tational cost, it incurs more false positives and negatives as
compared to VADTW (proved in Section V-B1). Therefore,
taking both performance and computational cost in consider-
ation, VADTW performs better than basic DTW and ADTW
as it manages to reduce the number of comparisons while
maintaining a high level of accuracy.

C. DISCUSSION
Time series analysis has a wide range of applications in
domains like science, medicine, ecology, telecommunication
and meteorology. Often the time series arise from differ-
ent sources and analysis is done by applying data mining
methods such as classification and clustering to understand
their behaviour, like predicting future events or detecting
anomalies [27]. However, our case is different. Here, a single
source is transmitting the frames which are captured by two
different methods resulting in two different time series that
represent the same frame sequence but in different forms.
It gets more challenging when there are missing frames in
the sequences, collisions from different RF-standards and
imprecise time information in one of the sequences. The
objective is to synchronize such sequences without having
any knowledge about the uncertainties and anomalies in the
traces.

To fulfil our objective, we proposed two variants of basic
DTW in this paper - ADTWandVADTWwhich differmainly
in the concept of choosing local window constraints for syn-
chronization. In ADTW, the window boundaries are the same
for all frames belonging to the subsequence that contains
samples of similar properties whereas in case of VADTW
window boundaries differ for every frame. Both approaches
can be extremely helpful for the research community in
analyzing time series with huge number of observations
and a lot of sudden change points which do not follow
a steady behaviour such as signals with loads of irregu-
lar study periods. It can also be helpful in cases where
local window constraints are more accurate instead of global
ones. For instance, local window constraints would be more
effective when predicting road traffic patterns which is
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more on weekdays as compared to weekends and more on
morning and evening hours as compared to other hours of
the day.

VI. CONCLUSION
In this paper, we discuss the advantages of synchronizing
protocol and spectral frames to obtain more precise informa-
tion about spectral frames captured via automatic spectrum
analysis and use this information further for troubleshoot-
ing QoS degradation issues. For synchronizing the frames,
we propose a multi-feature DTW based model known as
VADTW which uses binning and windowing approaches to
overcome the inaccuracies arising from frame losses and
imprecise timestamps and to reduce the computational com-
plexity of DTW. By performing experiments onWi-Fi frames
captured in a testbed and an office space environment, we dis-
cussed and proved that the proposed approach manages to
achieve considerable robustness scores even in the case of
50% random packet drops in both frame sequences, which
is a very difficult scenario. We compared our approach
with other variants of DTW in terms of performance and
computational complexity to prove the supremacy of the
proposed algorithm. VADTW is more robust with empir-
ical evidence from statistical significance. It witnesses a
significant 99% improvement in execution time as com-
pared to basic DTW. We also discuss the usefulness of the
proposed DTW based approaches for the research commu-
nity. In the future, we would like to incorporate VADTW
in the automatic spectrum analysis by using online change
point analysis method to perform the synchronization in
real-time.
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