
Received 15 May 2023, accepted 18 June 2023, date of publication 26 June 2023, date of current version 30 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3289288

Sensitivity Analysis for the Single-Machine
Preemptive Scheduling Problem of
Minimizing Flow Time
XIAOXI LI1 AND SHANLIN LI 2
1Department of Arthroscopic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200233, China
2School of Electronics and Information Engineering, Taizhou University, Taizhou, Zhejiang 317000, China

Corresponding author: Shanlin Li (lishanlin56@hotmail.com)

ABSTRACT Sensitivity analysis for the single-machine preemptive scheduling problem of minimizing
flow time is discussed herein. Note that an optimal solution of the scheduling problem contains not just
a combinatorial structure but also a temporal structure. The combinatorial structure specifies the sequence in
which jobs or job pieces are processed. The temporal structure provides the start and completion time of every
job or job piece. It is certain that a change in parameters causes a change in temporal structure. In this paper,
we focus on the robust performance in the combinatorial structure, or the optimal sequence, after a single
release data changes. By observing the effects of a parameter change on the optimal sequence, we found that
the parameter change results only in the shifting forward (or backward) of some job blocks, and the amount
of shifting forward (or backward) is equal to the amount of the first job piece size decrease (or increase)
or the amount of the last job piece size increase (or decrease) for any shifting job block. Furthermore,the
first job piece and the last job piece are, respectively, the first piece of the same job being processed and
the last piece of the same job being processed. Therefore, to answer the question of focus in this paper,
we first rewrite the optimal sequence in a job block form, and show some of its important properties. Then,
a necessary and sufficient condition for the optimal sequence to remain optimal after a single release data
changes is generated by four O(nlogn) iterative time algorithms in the order of the job blocks.

INDEX TERMS Job block, optimization production scheduling, sensitivity analysis, single-machine deter-
ministic sequencing.

I. INTRODUCTION
Sensitivity analysis consists of checking how the values
of chosen parameters can vary so that the obtained solu-
tion remains optimal. Such analysis is an important part
of optimization. It is a well-established topic in linear pro-
gramming [1], [2]. However, in mixed integer programming
and combinatorial optimization, it is a much less developed
research area. Some general results on the complexity of
post-optimality analysis of 0-1 programs are presented by
[3]. Sensitivity analysis has been applied to several specific
problems, such as the traveling salesperson problem [4],
minimum spanning tree and shortest path problems [5], the
generalized assignment problem [6], and strictly periodic

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Asaduzzaman .

tasks in multi-core real-time systems [7]. Some general
results on stability analysis related to the situation in which
several problem parameters may vary simultaneously are
presented by [8] and [9].

There are several works on sensitivity analysis for schedul-
ing problems. For ease of presentation, we use the widely
adopted three-field classification scheme α|β|γ (see, e.g.,
[10]) to represent every scheduling problem we are con-
cerned with in this paper, where α, β, and γ represent,
respectively, the machine configuration, model restrictions
and conditions, and the objective function to be minimized.
In a single-machine environment, Mahadev et al. [11] exam-
ine the sensitivity of a schedule to earliness and tardiness
penalties in the objective function for problems 1||

∑
(αjEj+

βjTj) and 1||max{αjEj, βjTj}. Moreover, Penz and Rapine
[12] investigate the sensitivity of problem 1||

∑
Cj with

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 64621

https://orcid.org/0000-0001-6531-8683
https://orcid.org/0000-0002-8885-6721

X. Li, S. Li: Sensitivity Analysis for the Single-Machine Preemptive Scheduling Problem

independent tasks that can be guaranteed not to exceed the
square root of the magnitude of the perturbation. Chanas
and Kasperski [13] consider sensitivity analysis for the prob-
lem 1|prec|max{wjLj} by checking how the values of given
parameters can vary so that a given optimal sequence remains
optimal. Jiang et al. [14] conduct sensitivity analysis for
several scheduling problems, i.e., 1||

∑
C2
j , 1|prec|

∑
wjCj,

and 1|rj, pj = 1|Lmax, by giving limits to a parameter change
such that the solution remains optimal. In parallel-machine
environments, Tovey [15] considers the scheduling problem
Pm||Cmax on a changing number of identical processors.
Kolen et al. [16] study a class of heuristic algorithms, known
as list scheduling rules, for the problemPm||Cmax. For several
heuristics, they derive bounds on the number of possible
assignments of jobs for machines. Penz and Rapine [12]
investigate the sensitivity of the problem Pm||

∑
Cj with

independent tasks that can be guaranteed not to exceed the
square root of the magnitude of the perturbation. Jiang et al.
[14] conduct sensitivity analysis for the flowshop problem
F2||Cmax, and for the flowshop with a series of dominat-
ing machines Fm||Cmax, by giving the limits to a parameter
change such that the solution remains optimal. Moreover,
Maqsood et al. [17] present a detailed heuristic-based genetic
algorithm parameter analysis for the jobshop scheduling
problem Jm||Cmax by finding the best possible parameter
combination. Hall and Posner [19] are the first to attempt
a systematic study on sensitivity analysis for scheduling
problems. For three classes of scheduling problems, i.e., list
scheduling problems, polynomial solvable problems, andNP-
hard problems, they reveal the issues that occur in sensitivity
analysis and introduce some basic methods to address them.

In this paper, a sensitivity analysis for the problem
1|rj, pmtn|

∑
Cj is discussed. That is to determine the condi-

tion of a parameter change such that the optimal sequence of
the problem remains optimal. The sensitivity analysis enables
the identification of critical jobs in a schedule, in the sense
that such jobs have the highest impact on the quality of a
schedule, and is of great importance for scheduling practi-
tioners, which could help bridge the gap between productions
scheduling theory and practice. Here, we employ a different
research strategy than that used in the existing literature in the
text. They typically give a condition and then prove that it is
sufficient.We first examine the necessity conditions, and then
determine the sufficient conditions that make the necessity
conditions true. Specifically, we first focus on the effects
of a parameter change on the optimal sequence. We find
that the effect of the parameter change is closely related to
the movement of job blocks. Thus, we rewrite the optimal
sequence in job-block form, and its basic characteristics are
investigated. This is conducive to our sensitivity analysis.
Then, we provide a necessary and sufficient condition for
the optimal sequence to remain optimal after a single release
data changes. This condition is generated by four O(nlogn)
iterative time algorithms in the order of the job blocks, and
the corresponding proofs are given.

The paper is organized as follows. In Section II, we define
our notations and present the structure of the optimal sched-
ule. Section III provides a sensitivity analysis for the problem.
Finally, Section IV contains a conclusion and discussion of
some possible extensions.

II. PRELIMINARIES
The single-machine preemptive scheduling problem of flow
time minimization is a classical scheduling problem. There is
a set of n jobs, i.e., J = {1, · · · , n}, to be processed on a single
machine. Each job j ∈ J has a nonnegative release time rj, and
a positive processing time pj. Processing may be interrupted
and resumed later. In a given preemptive schedule, for each
job j ∈ J , we denote Cj as its completion time. The objective
is to find a preemptive schedule that minimizes

∑n
j=1 Cj. The

problem is referred to as 1|rj, pmtn|
∑
Cj.

Schrage [18] shows that an optimal schedule for
1|rj, pmtn|

∑
Cj can be found inO(nlogn) time by processing

the available job with the shortest remaining processing time
at each point in time. This is called the shortest remaining
processing time (SRPT) rule. Furthermore, this schedule
contains no more than n− 1 preemptions.

In this paper, we discuss the sensitivity analysis issue
for 1|rj, pmtn|

∑
Cj. This analysis considers the effects of a

single release time change on the optimal sequence. For ease
of presentation, we use the following definitions hereafter.
The jobs are indexed such that r1 ≤ r2 ≤ · · · ≤ rn.
Moreover, if rj = rj+1, then pj ≤ pj+1. To break ties
when using the SPRT rule, we assume that the smallest index
is selected for processing. Let π denote a job sequence. A
schedule σ provides the start and completion time of every
job or job piece. Cj(σ) denotes the completion time of job j
in schedule σ . The start time of job j in schedule σ is specified
by Sj(σ). Parameters and variables of the modified problem
are identified with an added ‘‘′′′; for example, rj, Sj, and Cj
become r ′

j , S
′
j andC

′
j . Let△ denote the amount of a parameter

change. When there is a single parameter change of the form
r ′
k = rk + △, σ ∗ denotes the optimal SRPT schedule before
the parameter change occurs, and σ ∗

′

denotes the optimal
SRPT schedule after the parameter change occurs. Similarly,
π∗ and π∗

′

represent the optimal job sequences before and
after there is a parameter change, respectively.When obvious,
Cj(σ ∗), Cj(σ ∗

′

), Sj(σ ∗), and Sj(σ ∗
′

) are replaced by C∗
j , C

∗
′

j ,
S∗
j and S∗

′

j , respectively. Here, we define some additional
notations as follows. LetA be a subsequences of sequence π∗.
r∗
A: the release time of the first job of A in σ ∗.
S∗
A: the start time of the first job of A in σ ∗.
C∗
A: the completion time of the last job of A in σ ∗.

Rj(t): the remaining processing time of job j at time t
in σ ∗.

I (t0, t1) : the total idle time in the interval [t0, t1] in σ ∗.
To answer the question in this paper, we present a example.

In several cases where a parameter changes we will observe
the effects of the parameter change on the optimal sequence
so that we might be able to find a way to solve the question.

64622 VOLUME 11, 2023

X. Li, S. Li: Sensitivity Analysis for the Single-Machine Preemptive Scheduling Problem

Example 1: Consider an instance of 1|rj, pmtn|
∑
Cj with

six jobs J = {1, 2, 3, 4, 5, 6} and the following parameters.

TABLE 1. Parameter data in Example 1.

Solving this instance using the SPRT rule yields the opti-
mal sequence π∗

= (1, 2, 3, 2, 4, 5, 6, 5), and the optimal
schedule σ ∗

:

FIGURE 1. Optimal schedule (Example 1).

Let r ′

2 = r2 + △ = 5 − 2 be a parameter change
for the instance. We have the optimal sequence π∗

′

=

(1, 2, 3, 2, 4, 5, 6, 5) = π∗, and the optimal schedule σ ∗
′

:

FIGURE 2. Optimal schedule (replace r2 = 5 with r2 = 3 in Example 1).

Let r ′

2 = r2 + △ = 5 − 4. We have the optimal sequence
π∗

′

= (1, 2, 3, 2, 4, 5, 6, 5) = π∗, and the optimal schedule
σ ∗

′

:

FIGURE 3. Optimal schedule (replace r2 = 5 with r2 = 1 in Example 1).

Let r ′

2 = r2 + △ = 5 − 5. We have the optimal sequence
π∗

′

= (2, 1, 2, 3, 4, 5, 6, 5) ̸= π∗.
Let r ′

2 = r2 + △ = 5 + 0.5 < 6. We have the optimal
sequence π∗

′

= (1, 2, 3, 2, 4, 5, 6, 5) = π∗, and the optimal
schedule σ ∗

′

:

FIGURE 4. Optimal schedule (replace r2 = 5 with r2 = 5.5 in Example 1).

Let r ′

2 = r2 + △ = 5 + 2 ≥ 6. We have the optimal
sequence π∗

′

= (1, 3, 2, 4, 6, 5) ̸= π∗.
From observing the instances above, we made some inter-

esting observations under π∗
′

= π∗.
(1) The start time and completion time of some jobs that

are located in front of the parameter variable or between two
pieces of the same job are identical in σ ∗, such as job 1, job
3, and job 6 in Example 1.

(2) The parameter change results only in the shifting for-
ward (or backward) of a job block j18j2, such as job block

(2, 3, 2) and job block (5, 6, 5) of π∗ in Example 1; moreover,
the amount of shifting forward (or backward) is equal to the
decrease (or increase) in the size of job piece j1 or the increase
(or decrease) in the size of job piece j2, where job piece j1 is
the first piece of job j, job piece j2 the last piece of job j, and8

the subsequences of sequence π∗ located between j1 and j2.
(3) The amount of movement of different job blocks and

the amount of parameter change may be different.
These observations suggest that it is more convenient and

intuitive to rewrite π∗ as a block form for the problem we
are studying. The invariants shown in (1) should be some
important constraints. (2) suggests that we should find the
conditions of maximum shift of each job block. (3) sug-
gests that the solution process should adopt a recursive form,
because the amount of movement of a job block depends not
only on the start time and release time of its first job, but also
on the completion time of the previous job block. Now we
rewrite the optimal sequence π∗ in job block form, and show
some of its important properties.

For some k ∈ J , let r ′
k = rk + △ be a parameter change

for 1|rj, pmtn|
∑
Cj. To determine the limits to the parameter

change such that optimal sequence π∗ remains optimal, there
are two cases to consider:
(i) job k does not preempt any job in σ ∗.
(ii) job k preempts some job, say i, at rk in σ ∗.

In case (i), we rewrite optimal sequence π∗ in job block
form as follows:

π∗
= (A0,B1,B2, · · · ,Bm),

where Bt = (j1t , 8t , j2t) for t = 1, 2, · · · ,m; j11 is the first
piece of job j1 = k and j21 the last piece of job j1 = k in
σ ∗; j1t is the first piece of job jt that is processed after C∗

jt−1
;

j2t the last piece of job jt in σ ∗ for t = 2, · · · ,m; A0 and
81, · · · , 8m are all subsequences of sequence π∗, and can
be empty. In Example 1, m = 3, A0 = (1), B1 = (2, 3, 2),
81 = (3), B2 = (4), 82 = ∅, B3 = (5, 6, 5), 83 = (6), and
π∗

= (1, 2, 3, 2, 4, 5, 6, 5) = (A0,B1,B2,B3).
In case (ii), we rewrite the optimal sequenceπ∗ in job block

form as follows.

π∗
= (A0, i1,B1,B2, · · · ,Bm, i2,A1),

where i1 is the last piece of job i that is processed before rk
in σ ∗; i2 is the first piece of job i that is processed after rk
in σ ∗; Bt = (j1t , 8t , j2t) for t = 1, 2, · · · ,m; j11 is the first
piece of job k in σ ∗; j21 is the last piece of job k in σ ∗; j1t
is the first piece of job jt in σ ∗ for t = 2, · · · ,m; j2t is the
last piece of job jt in σ ∗ for t = 2, · · · ,m; and A0, A1, and
81, · · · , 8m are the subsequences of sequence π∗, and can
be empty. Now we give a preliminary result that shows the
structural properties of the optimal schedules σ ∗ and σ ∗

′

in
case (i) and case (ii), respectively. This is key for generating
a correct condition such that the optimal sequence undergoes
no change.
Lemma 1: For some k ∈ J , let r ′

k = rk +△ be a parameter
change for 1|rj, pmtn|

∑
Cj, and job k does not preempt any

VOLUME 11, 2023 64623

X. Li, S. Li: Sensitivity Analysis for the Single-Machine Preemptive Scheduling Problem

job in σ ∗. Suppose that π∗
′

= π∗. Then all the following
conditions hold.

(a) There is no idle time between the jobs or/and the job
pieces of Bt , for t = 1, 2, · · · ,m, in σ ∗

′

and σ ∗, respectively.
(b) For t = 1, 2, · · · ,m, the release time and completion

time of every job in 8t/{jt } must be on closed interval
[S∗

8t
,C∗

8t
].

(c) The start time and completion time of each job or job
piece in A0 and 8t/{jt }, for t = 1, 2, · · · ,m, are identical in
σ ∗

′

and σ ∗.
Proof. Proof of (a). Result (a) follows from job jt being

available at each point between the start time and completion
time of Bt , for t = 1, 2, · · · ,m, in σ ∗

′

and in σ ∗, respectively.
Proof of (b). For each job j ∈ 8t/{jt }, it is clear that

Rj(S∗
8t
) < Rjt (S

∗
8t
). This implies that C∗

j ∈ [S∗
8t

,C∗
8t
], and

that rj ∈ [S∗
8t

,C∗
8t
]. Job j will finish processing before S∗

8t
otherwise, which contradicts the optimality of π∗.
Proof of (c). Because π∗

′

= π∗, selections at each point on
interval [0,C∗

A0
] are not effected by the change of parameter

rk . Thus, result (c) holds for each job or job piece in A0. For
any t ∈ {1, 2, · · · .m}, the first job of8t preempts job jt at r8t

in σ ∗
′

and σ ∗, therefore, the start time of the first job of 8t
is does not change across σ ∗

′

and σ ∗. Furthermore, since the
processing order follows from π∗

′

= π∗, there is no idle time
as follows from (a), and the size of each job is as follows from
(b), the start and completion times of each job or job piece in
8t are identical in σ ∗

′

and σ ∗.
Lemma 2: For some k ∈ J , let r ′

k = rk +△ be a parameter
change for 1|rj, pmtn|

∑
Cj. Job k preempts some job, say i,

at rk in σ ∗. Suppose that π ′
= π∗. Then, all of the following

conditions hold.
(a) There is no idle time between jobs or/and job pieces in

interval [S∗

i1
,C∗

i2
] in σ ∗

′

and σ ∗, respectively.
(b) For t = 1, 2, · · · ,m, the release time and comple-

tion time of every job in 8t/{jt } must be in closed interval
[r∗

8t
,C∗

8t
].

(c) The start time and completion time of every job or job
piece in A0, A1, and 8t/{jt } for t = 1, 2, · · · ,m are identical
in σ ∗

′

and σ ∗.
Proof. Similar to that of Lemma 1.

III. SENSITIVITY ANALYSIS
In this section, we give a description of the correct condition,
together with the corresponding proofs and analysis.

In Case (i), job k does not preempt any job in σ ∗.
Before giving the result, we first briefly describe the

condition-forming process. We adopt an iterative method
according to the job blocks to generate the condition.

In the case△ ≤ 0, the parameter change possibly results in
a gap between two adjacent job blocks that there is no a gap
between them in σ ∗. We use Algorithm 1, given later in this
section, to compute the lower bound of △ such that optimal
sequence π∗ remains optimal.When running the tth iteration,
we need to compute three quantities: at , bt , and ct , where
at denotes the maximum shifting backward quantity of job
block Bt , bt is the maximum shifting backward quantity of

job block Bt that ensures the processing order of jobs in job
block Bt undergo no change, and ct is used to check whether
at is valid. If min{at , bt , δ2(t − 1)} = at < δ2(t − 1) and
ct < rjt , and at is valid. at is invalid otherwise. Then, we
output two quantities, δ1(t) and δ2(t), where δ1(t) describes
the maximum lead time to start processing job k that ensures
the job sequence before c∗jt − δ2(t) undergoes no change, and
δ2(t) is the shifting backward quantity of job block Bt and the
available shifting room provided for the next job block when
S ′
k = S∗

k − δ1(t). After the iteration finishes, if S∗
k − δ1 >

C∗
A0
, then −δ1 is the lower bound of △. Otherwise, we need

to further compute the maximum lead time of the release time
for job k that ensures the job sequence before job k undergoes
no change; this value then becomes the lower bound of △.
In the case △ ≥ 0, the parameter change results in the

gap between C∗
A0

and S∗
k increasing while gaps between two

adjacent shiftable job blocks disappear. We use Algorithm 2
to compute the upper bound of △ such that the optimal
sequence π∗ remains optimal.When running the tth iteration,
we need to compute two quantities, i.e., at and bt , where
at denotes the maximum shifting forward quantity of job
block Bt that ensures that the processing order of jobs jt and
jt+1 undergoes no change, and bt is the maximum shifting
forward quantity of job block Bt that prevents job piece j1t
from disappearing.We also compute c1, which prevents some
job from appearing in the new gap between C∗

A0
and S∗

k .
We output the quantity δ(t) that describes the maximum delay
time to start processing job k that ensures the job sequence
before min{c∗jt + δ(t), r8t+1} undergoes no change.
Theorem 1: For some k ∈ J , let r ′

k = rk + △ be a
parameter change for 1|rj, pmtn|

∑
Cj. Assume that job k

does not preempt any job in σ ∗. Then, π∗ is optimal for the
modified scheduling problem if and only if △

1
≤ △ ≤ △

2,
where △

1 and △
2 are obtained by following Algorithm 1

and Algorithm 2, respectively. The specifications of strict or
weak inequalities in △

1
≤ △ ≤ △

2 will be pointed out in
the following algorithms. The computational complexity of
algorithms 1 and 2 is O(nlogn).

Algorithm 1: In following statement of the algorithm,
we prescribe that C∗

A0
= 0 if A0 = ∅; bt = +∞ if 8t = ∅;

and cm = +∞.

1. Let δ1(1) = min{a1, b1}, δ2(1) = min{a1, b1},
and t = 2, where a1 = S∗

j1
− C∗

A0
, and b1 =

min{Rj1 (rj) − pj|j ∈ 81, j ̸= j1}.
2. If rjt > C∗

jt−1
or t = m + 1, then let δ = δ1(t − 1),

and go to step 5.
3. Compute at = S∗

jt − rjt , bt = min{Rjt (rj) − pj|j ∈

8t , j ̸= jt }, ct = min{rjt+1 , · · · , rjm} and dt =

min{at , bt , δ2(t − 1)}.
4. If dt = bt or dt = at < δ2(t − 1), and ct < rjt ,

then let δ1(t) = dt , δ2(t) = dt , and t = t + 1, and
return to step 2. Otherwise, let δ1(t) = δ1(t − 1),
δ2(t) = dt , and t = t + 1, and return to step 2.

5. If S∗
k − δ = C∗

A0
and δ ̸= bt for t = 1, 2, . . . ,m,

then output △1
= max{min{t|t ≤ C∗

A0
, I (t,C∗

A0
) =

64624 VOLUME 11, 2023

X. Li, S. Li: Sensitivity Analysis for the Single-Machine Preemptive Scheduling Problem

0},max{t|Rj(t) ≥ pk for some j ∈ A0 }} − rk , and
△

1
≤ △. If S∗

k − δ > C∗
A0

and δ ̸= bt for t =

1, 2, . . . ,m, then output △
1

= −δ and △
1

≤ △.
If S∗

k − δ ≥ C∗
A0

and δ equals some bt , then output
△

1
= −δ and △

1 < △.

Algorithm 2: We use the below notation in Algorithm 2.

at =


rjt+1 − C∗

jt + pjt+1 if rjt+1 > C∗
jt , pjt+1 < pjt ;

pjt+1 − Rjt (rjt+1) if rjt+1 ≤ C∗
jt , pjt+1 < pjt ;

+∞, otherwise.

We note that bt = +∞ if 8t = ∅; and c1 = +∞ if m = 1;
am = +∞.

1. Let δ(1) = min{a1, b1, c1}, and t = 2, where
b1 = r81 − S∗

j1
, and c1 = min{max{0, rj − S∗

k }|j ∈

{j2, · · · , jm}}.
2. If rjt ≥ C∗

jt−1
+ δ(t − 1) or t = m + 1, then let

δ = δ(t − 1), and go to step 5.
3. Compute at , bt = r8t − S∗

jt .
4. Let δ(t) = min{I (rk , rt)+at , I (rk , rt)+bt , δ(t−1)},

and t = t + 1, and then return to step 2.
5. If δ ̸= I (rk , rt)+bt for t = 1, 2, . . . ,m, then output

△
2

= S∗
k − rk + δ and △ ≤ △

2. Otherwise, output
△

2
= S∗

k − rk + δ and △ < △
2.

Proof. (⇐). We will check the correctness of the con-
dition step by step in time order. There are two cases to
consider: (ia1) △ ≤ 0, and (ib1) △ ≥ 0.
Case (ia1) △ ≤ 0. According to the output of Algorithm

1, there are three cases.
First, the output is △

1
= max{min{t|t ≤ C∗

A0
, I (t,C∗

A0
) =

0},max{t|Rj(t) ≥ pk for some j ∈ A0 }} − rk and △
1

≤ △

on condition that S∗
k − δ = C∗

A0
and δ ̸= bt . It is clear that

π ′
= π∗ under △

1
= △ ≤ 0 implies π ′

= π∗ under △
1

≤

△ ≤ 0. We assume that △
1

= △, r ′
k = r∗

k + △
1. In interval

[0, r ′
k), the selections by the SRPT rule are not affected by

the change of the parameter. Thus, σ ∗
′

and σ ∗ are identical
in the interval. In interval [r ′

k ,C
∗
A0
), the available jobs and

the remaining processing time of each available job at each
point in time in the interval are the same as those for original
parameter data for jobs other than k . Since r ′

k ≥ min{t|t ≤

C∗
A0

, I (t,C∗
A0
) = 0}, there is no idle time in interval [r ′

k ,C
∗
A0
)

in σ ∗. From r ′
k ≥ max{t|Rj(t) ≥ pk for some j ∈ A0}, we have

pk ≥ Rj(t) for j ∈ A0 and t ∈ [r ′
k ,C

∗
A0
). Thus σ ∗

′

and σ ∗ are
identical in the interval, which follows from the SRPT rule
and our assumptions above. Noting that interval (C∗

A0
, S∗

k)
is idle in σ ∗, we have job k processed in [C∗

A0
, S∗

k) in σ ∗
′

.
In interval [S∗

k ,C
∗
k − δ), the available jobs and the remaining

processing time of each available job at each point in time
in the interval are the same as those for original parameter
data for jobs other than k , and the remaining processing time
of job k at each point in time in the interval is decreased
by δ compared with those for original parameter data. The
condition δ ≤ δ1(1) < b1 = min{Rj1 (rj) − pj|j ∈ 81, j ̸= j1}
ensures that σ ∗

′

and σ ∗ are identical in the interval. We see
that the job sequence beforeC∗

k −δ in σ ∗
′

does not destroyπ∗.

Now, we examine job sequence (B2, · · · ,Bm) in σ ∗
′

. If rj2 >

C∗
k , we have π ′

= π∗, which follows from job j2 starting
at the same time rj2 in both σ ∗

′

and σ ∗ and from the results
obtained earlier. If c2 ≥ rj2 , and noting that if rj2 ≤ rj ≤ S∗

j2
for some j ∈ {j3, · · · , jm}, then either Rj(rj2) > pj2 or j2 < j
when Rj(rj2) = pj2 , the interval [C∗

k − δ, rj2] is idle. Job
j2 is processed in interval [rj2 , S

∗
j2
] in σ ∗

′

if C∗
k − δ < rj2 ,

but is processed in interval [C∗
k − δ, S∗

j2
] in σ ∗

′

otherwise.
This means that the job sequence in [C∗

k − δ, S∗
j2
] in σ ∗

′

does not destroy π∗. When job block B1 shifts δ backward,
we note that the actual shifting backward quantity of job block
B2, say △1, is less than or equal to δ2(2). Furthermore, the
condition δ2(2) < b2 = min{Rj2 (rj) − pj|j ∈ 82, j ̸= j2},
along with △1 ≤ δ2(2) and the remaining processing time
of job j2 at S∗

j2
decreases by △1, and ensures that σ ∗

′

and
σ ∗ are identical in the interval [S∗

j2
,C∗

j2
− min{δ, δ2(2)}).

We see that the job sequence before C∗
j2

− min{δ, δ2(2)} in
σ ∗

′

does not destroy π∗. If c2 < rj2 , by Algorithm 1, we have
δ ≤ δ1(2) = δ2(2). This means that there is no gap between
job blocks B1 and B2 in σ ∗

′

. Following a similar argument in
case c2 ≥ rj2 , the job sequence before C∗

j2
− min{δ, δ2(2)}

in σ ∗
′

does not destroy π∗. By applying a similar argu-
ment to sequence (B3, · · · ,Bm) in σ ∗

′

, we conclude that
π ′

= π∗.
The proofs for two other cases are similar to that of the first

case.
Case (ib1) △ ≥ 0. There are two cases for consideration

according to the output of Algorithm 2.
First, the output is △

2
= S∗

k − rk + δ and △ ≤ △
2 on

condition that δ ̸= bt . Without loss of generality, we assume
that △ = △

2
= S∗

k − rk + δ. Clearly, σ ∗
′

and σ ∗ are identical
in interval [0,C∗

A0
]. From δ ≤ c1 = min{max{0, rj − S∗

k }|j ∈
{j2, · · · , jm}}, it follows that interval (C∗

A0
, S∗

k + δ) is idle in
σ ∗

′

. By δ < b1 = r81 − S∗
k , we have S

∗
k + δ < r81 . Thus,

in interval [S∗
k + δ,C∗

k), the available jobs and remaining
processing time of each available job at each point in time
in the interval are the same as those for original parameter
data for jobs other than k , and the remaining processing time
of job k at each point in time in the interval is increased
by δ compared with those for original parameter data. The
condition δ ≤ a1 ensures that σ ∗

′

and σ ∗ are identical in
the interval. For interval [C∗

k ,C
∗
k + δ], from δ ≤ δ(2) ≤

I (rk , rj2)+b2 = I (rk , rt)+r82 −S∗
j2
, it follows that C∗

k +δ <

r82 . If rj2 ≥ C∗
k +δ, and since [C∗

k ,C
∗
k +δ] is idle in σ ∗, job k

is processed in the interval.We conclude that theπ ′
= π∗ that

follows from job j2 starts at the same time rj2 in σ ∗
′

and σ ∗,
and from the results obtained earlier. If C∗

k < rj2 < C∗
k + δ

or rj2 ≤ C∗
k , the condition δ ≤ I (rk , rj2) + a1, along with

the remaining processing time of job k at C∗
k increased by δ,

ensure that job k is processed in interval [C∗
k ,C

∗
k +δ]. We see

that the job sequence beforeC∗
k +δ in σ ∗

′

does not destroyπ∗.
By applying a similar argument to the sequence (B2, · · · ,Bm)
in σ ∗

′

, we conclude that π ′
= π∗.

The proof of the second case is similar to that of the first
case.

VOLUME 11, 2023 64625

X. Li, S. Li: Sensitivity Analysis for the Single-Machine Preemptive Scheduling Problem

(⇒). There are also two cases for consideration: (ia2) △ ≤ 0
and (ib2) △ ≥ 0.

Case (ia2) △ ≤ 0. We show this by contradiction. Sup-
pose that △ is different from the output by Algorithm 1.
Consider the following three situations. First, the output is
△

1
= max{min{t|t ≤ C∗

A0
, I (t,C∗

A0
) = 0},max{t|Rj(t) ≥

pk for some j ∈ A0 }} − rk and △
1

≤ △. We suppose
that △ < △

1. By the SRPT rule, job k either starts before
min{t|t ≤ C∗

A0
, I (t,C∗

A0
) = 0} or preempts some job in A0

in σ ∗
′

. This contradicts that π ′
= π∗. Second, the output is

△
1

= −δ and △
1

≤ △ on condition that S∗
k − δ > C∗

A0
and δ ̸= bt . We suppose that △

1 > △. When δ ̸= bt , δ

equals to some at . Since S∗
k − δ > C∗

A0
, δ ̸= δ1(1). Let t0

be the lowest index such that δ = δ1(t). Due to δ ̸= bt and
δ1(t0 − 1) > δ1(t0), δ1(t0) = at0 < δ2(t0 − 1) and ct0 < rjt0 .
It is obvious that π ′

̸= π∗ under △ = g < 0 implies
π ′

̸= π∗ under △ ≤ g < 0 for some real number g.
Now we assume that −δ2(t0 − 1) < △ < −δ, and apply
the SRPT rule to the modified data r ′

k = rk + △. From
δ2(1) ≥ · · · ≥ δ2(t0 − 1) > −△ and δ1(1) ≥ · · · ≥

δ1(t0 − 1) ≥ δ2(t0 − 1) > −△, there is no idle time, and
the job sequence by the SRPT rule does not destroy π∗ in
interval [r ′

k ,C
∗

t0−1+△]; moreover, job jt0−1 completes at time
C∗

t0−1 + △. Following from −△ > δ = at = S∗
jt0

− rjt0 and
ct0 < rjt0 , there is some job jt with t > t0 that starts in interval
(C∗

t0−1+△, rjt0). This contradictsπ ′
= π∗. Finally, the output

is △
1

= −δ and △
1 < △ on condition that S∗

k − δ ≥ C∗
A0
,

and δ equals some bt . We suppose that △ = △
1. Let t0 be the

lowest index such that δ = bt0 and j0 is the first job in 8t0 ,
and such that bt0 = Rjt0 (rj0) − pj0 . Job j0 will not start at S

∗
j0
,

which follows from rj0 > rjt0 . This contradicts that π
′
= π∗.

Case (ib2)△ ≥ 0.We show this by contradiction. Suppose
that △ is different from the output by Algorithm 2. There are
two cases to consider. First, the output is△

2
= S∗

k −rk+δ and
△ ≤ △

2 on condition that δ ̸= bt . Let t0 be the lowest index
such that δ = δ(t). If t0 = 1 and δ(1) = c1, we assume that
△ > S∗

k −rk+δ. From S∗
k ≤ S∗

k +c1 < △+rk = r ′
k , it follows

that there is a piece of some job jt with t > 1 that starts before
r ′
k . This contradicts that π

∗
′

= π∗. If t0 = 1 and δ(1) = a1 <

c1, we assume that S∗
k − rk + a1 < △ < min{S∗

k − rk +

b1, S∗
k − rk +c1}. From the SRPT rule, job j2 starts before the

completion of job k . This contradicts thatπ∗
′

= π∗. If t0 > 1,
we assume that S∗

k −rk+at0 < △ < min{S∗
k −rk+bt0 , δ(t0−

1)}. Similarly, we can find a contradiction. Second, the output
is △

2
= S∗

k − rk + δ and △ < △
2 on condition that δ equals

some bt . We only assume that △ = S∗
k − rk + δ, and then can

find a contradiction.
We now look at the computational complexity of Algo-

rithms 1 and 2. Because σ ∗ contains no more than n − 1
preemptions, π∗ is composed of at most 2n − 1 jobs or job
pieces. And then it takes O(nlogn) time to sort the jobs or
job pieces in π∗ (or a subsequence of π∗) according to their
corresponding values.

In Algorithm 1, it takes constant time to compute
a1 = S∗

j1
− C∗

A0
. It takes O(nlogn) time to compute

b1 = min{Rj1 (rj) − pj|j ∈ 81, j ̸= j1}, which is the time
to sort the jobs or job pieces in 81 \ j1 according to their
corresponding values. Given a1 and b1, δ1(1) and δ2(1) takes
constant time to compute. Thus, Step 1 takes O(nlogn) time.
In Step 5, it takesO(n) time to verify S∗

k−δ = C∗
A0

and δ ̸= bt .
It takes O(n) time to compute min{t|t ≤ C∗

A0
, I (t,C∗

A0
) = 0}

and max{t|Rj(t) ≥ pk for some j ∈ A0}. Thus, Step 5 takes
O(n) time. Steps 2 to 4 is iterated m − 1 times. Inside
the iteration loop, the most time-consuming calculation is
for bt = min{Rjt (rj) − pj|j ∈ 8t , j ̸= jt } and ct =

min{rjt+1 , · · · , rjm}. Given bt and ct , the other variables takes
constant time to compute. Since it takes O(nlogn) time to
compute min{Rjt (rj)−pj|j ∈ ∪

m
t=28t \{jt }}, it takesO(nlogn)

time to compute b2, b3, . . . , bm. It takes O(nlogn) time to
compute c2, c3, . . . , cm because it takes O(nlogn) time to
computemin{rj2 , rj3 , . . . , rjm}. In summary, it can be seen that
the computational complexity of Algorithm 1 is O(nlogn).
Similarly, we can show that the computational complexity

of Algorithm 2 is O(nlogn).
Case (ii) job k preempts some job, say i, at rk in σ ∗.
Before we present our main result for case (ii), we first

briefly describe the condition-forming process. We adopt an
iterative method according to the job blocks to generate the
condition.

In case △ ≤ 0, there is no gap between two adjacent job
blocks in σ ∗, and the parameter change does not result in a
gap between them. All the shifting backward quantities of
job blocks are the same. We use Algorithm 3 to compute the
lower bound of △ such that the optimal sequence π∗ remains
optimal. When running the tth iteration, we need to compute
two quantities, i.e., at and bt , where at denotes the maximum
shifting backward quantity of job block Bt , bt is the maximal
shifting backward quantity of job block Bt that ensures the
processing order of jobs in job block Bt undergoes no change,
and we output quantity δ(t) that describes the maximum lead
time to start processing job k that ensures the job sequence
before C∗

jt − δ(t) undergoes no change. We also compute
the α value that prevents some job in A1 from appearing
before i2.
In case △ ≥ 0, there is no a gap between two adjacent

job blocks in σ ∗, and the parameter change does not result
in a gap between them. All the shifting forward quantities of
job blocks are the same. We use Algorithm 4 to compute the
upper bound of △ such that the optimal sequence π∗ remains
optimal. When running the tth iteration, we need to compute
two quantities, i.e., at and bt , where at denotes the maximal
shifting forward quantity of job block Bt that ensures the
processing order of job jt and jt+1 undergoes no change; bt is
both the maximum shifting forward quantity of job block Bt
that prevents job piece j1t from disappearing and the maximal
shifting forward quantity of job block Bt that prevents job
piece i2 from disappearing. We also compute the c1 value that
prevents some job in {j2, · · · , jm} from appearing before j1.
We output δ(t), which describes the maximum delay time to
start processing job k that ensures the job sequence before
min{C∗

jt + δ(t), r8t+1} undergoes no change.

64626 VOLUME 11, 2023

X. Li, S. Li: Sensitivity Analysis for the Single-Machine Preemptive Scheduling Problem

Theorem 2: For some k ∈ J , let r ′
k = rk + △ be a

parameter change for 1|rj, pmtn|
∑
Cj. Suppose that job k

preempts some job, say i, at rk in σ ∗. Then, π∗ is optimal
for the modified scheduling problem if and only if △

3
≤

△ ≤ △
4, where △

3 and △
4 are provided by Algorithm 3

and Algorithm 4, respectively. The specifications of strict or
weak inequalities in △

3
≤ △ ≤ △

4 will be pointed out in
the following algorithms. The computational complexity of
algorithms 3 and 4 is O(nlogn).

Algorithm 3: In the following algorithm description,
we use the notation

α =


min{pj − Ri(rj)|j ∈ A1} if rj < S∗

i2
,

and pj < Ri(S∗

i1
);

+∞, otherwise.

Moreover, bt = +∞ if 8t = ∅.
1. Let δ(1) = min{a1, b1}, and t = 2, where a1 =

S∗
j1

− S∗

i1
and b1 = min{Rj1 (rj)− pj|j ∈ 81, j ̸= j1}.

2. If t = m+ 1, then go to step 5.
3. Compute at = S∗

jt−rjt , and bt = min{Rjt (rj)−pj|j ∈
8t , j ̸= jt }.

4. Let δ(t) = min{at , bt , δ(t − 1)}, and t = t + 1, and
then return to step 2.

5. Output △3
= −min{δ(m), α} and △

3
≤ △ if △

3
̸=

bt for t = 1, 2, . . . ,m, and △
3

̸= a1. Otherwise,
output △3

= −min{δ(m), α} and △
3 < △.

Algorithm 4: In the following algorithm description,
we use the notation for t = 1, 2, . . . ,m− 1,

at =

{
pjt+1 − Rjt (rjt+1) if pjt+1 < pjt ;
+∞, otherwise.

Furthermore, r8t −S∗
jt = +∞ if8t = ∅; c1 = +∞ ifm = 1;

and am = C∗

i2
− S∗

i2
.

1. Let δ(1) = min{a1, b1, c1}, and t = 2, where b1 =

min{r81 − S∗
j1
,Ri(rj1) − pj1}, and c1 = min{rj −

S∗
j1
|j ∈ {j2, · · · , jm}}.

2. If t = m+ 1, then let δ = δ(t − 1), and go to step 5.
3. Compute at , bt = min{r8t − S∗

jt ,Ri(jt) − pjt }.
4. Let δ(t) = min{at , bt , δ(t − 1)}, and t = t + 1, and

then return to step 2.
5. If δ ̸= bt for t = 1, 2, . . . ,m, then output △

4
= δ

and △ ≤ △
4. Otherwise, output △

4
= δ and

△ < △
4.

Proof. (⇐). We will check the correctness of the con-
dition step by step in time order. There are two cases to
consider: (iia1) △ ≤ 0, and (iib1) △ ≥ 0.
Case (iia1)△ ≤ 0. According to the output of Algorithm 3,

there are two cases to consider.
First, the output is △

3
= −min{δ(m), α} and △

3
≤ △ on

condition that △
3

̸= bt for t = 1, 2, . . . ,m, and △
3

̸= a1.
Without loss of generality, we assume that △ = △

3
=

−min{δ(m), α}. Clearly, σ ∗
′

and σ ∗ are identical in interval
[0, r ′

k). Since −△ < a1 = S∗
k − S∗

i1
, and Ri(S∗

k) > pk , and job
i being processed in interval [r ′

k , S
∗
k) in σ ∗, job k is processed

in interval [r ′
k , S

∗
k) in σ ∗

′

, and job i is processed in interval
[S∗

i1
, r ′
k) in σ ∗

′

. In interval [S∗
k ,C

∗
k +△), the available jobs and

the remaining processing time of each available job at each
point in time in the interval are the same as those for original
parameter data other than the remaining processing time of
job k decreased by −△ and the remaining processing time
of job i increased by −△. The condition −△ ≤ δ(1) < b1
ensures that σ ∗

′

and σ ∗ are identical in the interval. Note that
if rj ≤ S∗

j2
with j ∈ {j3, · · · , jm}∪A1, then either Rj(S∗

j2
) > pj2

or j2 < j when Rj(S∗
j2
) = pj2 . Then, job j2 is processed in

interval [C∗
k + △, S∗

j2
] in σ ∗

′

, which follows from condition
−△ ≤ δ(2) ≤ a2. Similarly, the job sequence before
C∗
jm +△ in σ ∗

′

does not destroy π∗. From condition−△ ≤ α,
it follows that job i is processed in interval [C∗

m + △, S∗

i2
] in

σ ∗
′

. Because the sets of the unscheduled jobs are the same,
and each job in the set has the same remaining processing
time at time S∗

i2
and the same release time in σ ∗

′

and σ ∗,
respectively, σ ∗

′

and σ ∗ are identical in interval [S∗

i2
,C∗

A1
].

This and the results obtained earlier imply that π∗
′

= π∗.
The proof of the second case is similar to that of the first

case.
Case (iib1)△ ≥ 0. According to the output of Algorithm 4,

there are two cases to consider.
First, the output is △

4
= δ and △ ≤ △

4 on condition
that δ ̸= bt for t = 1, 2, . . . ,m. Without loss of generality,
we assume that△ = △

4
= δ. Clearly, σ ∗

′

and σ ∗ are identical
in interval [0, S∗

k]. Note that pj > Ri(S∗

i1
) if rj ≤ ri with j ∈ A1

and pj ≥ Ri(S∗
k) if S

∗

i1
< rj ≤ S∗

k + δ with j ∈ A1. Job
i is processed in interval [S∗

k , S
∗
k + △], which follows from

the condition △ ≤ c1 = min{rj − S∗
j1
|j ∈ {j2, · · · , jm}}.

By △ < b1 ≤ r81 − S∗
k , we have S∗

k + △ < r81 . From
condition △ ≤ min{a1,Ri(rj1) − pj1} and the fact that if
rjt ≤ S∗

j2
with t > 2, then pjt ≥ pj2 , and it follows

that job k is processed in interval [S∗
k + δ, r81). In interval

[r81 ,C
∗
k) the available jobs and the remaining processing

time of each available job at each point in time in the interval
are the same as those for original parameter data other than
the remaining processing time of job k increased by △ and
the remaining processing time of job i decreased by △. σ ∗

′

and σ ∗ are identical in interval [r81 ,C
∗
k), which follows from

△ < Ri(rj1) − pj1 < Ri(rj) − pj for j ∈ 81, j ̸= j1. From
conditions △ < b2 ≤ r82 − S∗

j2
and △ ≤ a2, C∗

k + △ < r82 ,
and job k is processed in interval [C∗

k ,C
∗
k + △). Similarly,

we can verify that the job sequence before C∗
jm + △ in σ ∗

′

does not destroy π∗. Since △ < am = C∗

i2
− S∗

i2
, we have

C∗
jm + △ < C∗

i2
. Then, since the sets of the unscheduled jobs

are the same, and each job in the set has the same remaining
processing time at time C∗

jm + △ and the same release time in
σ ∗

′

and σ ∗, respectively, σ ∗
′

and σ ∗ are identical in interval
[S∗

i2
,C∗

A1
]. This and the results obtained earlier imply that

π∗
′

= π∗.
The proof of the second case is similar to that of the first

case.
(⇒). We show this by contradiction. There are also two cases
to consider here: case (iia2) △ ≤ 0 and case (iib2) △ ≥ 0.
Case (iia2) △ ≤ 0. Suppose that △ is different from the

output of Algorithm 3. If △
3

= −α > −δ(m), we assume

VOLUME 11, 2023 64627

X. Li, S. Li: Sensitivity Analysis for the Single-Machine Preemptive Scheduling Problem

that −δ(m) < △ < −α. If △
3

= −at0 and △
3

̸= bt for
t = 1, 2, . . . ,m, where t0 > 1 is the lowest index such that
△

3
= −at , we assume that −at0−1 < △ < −at0 . If △

3
=

−bt0 , where t0 is the lowest index such that △
3

= −bt , we
assume that △ = −bt0 . If △

3
= −a1, we assume that △ =

−a1. Similar to the argument in case (ia2), each of the four
assumptions above will result in a contradiction.

Case (iib2) △ ≥ 0. Suppose that △ is different from
the output of Algorithm 4. If △

4
= c1, we assume that

c1 < △ < c1 + ϵ, where ϵ is an arbitrarily small positive
number. If △

4
= at0 and △

4
̸= bt for t = 1, 2, . . . ,m, where

t0 is the lowest index such that △
4

= at , we assume that
at0 < △ < at0 + ϵ, where ϵ is an arbitrarily small positive
number. If △

4
= bt0 , where t0 is the lowest index such that

△
4

= bt , we assume that △ = bt0 . Similar to the argument in
case (ib2), each of the three assumptions above will result in a
contradiction.

We now look at the computational complexity of Algo-
rithms 3 and 4. In Algorithm 3, since it takes O(nlogn) time
to compute min{pj − Ri(rj)|j ∈ A1, rj < S∗

i2
, pj < Ri(S∗

i1
)},

the preprocessing step takesO(nlogn) time. In Step 1, it takes
constant time to compute a1 = S∗

j1
− S∗

i1
. It takes O(nlogn)

time to compute b1 = min{Rj1 (rj) − pj|j ∈ 81, j ̸= j1}.
Given a1 and b1, δ(1) takes constant time to compute. Thus,
Step 1 takes O(nlogn) time. In Step 5, it takes O(n) time to
verify △

3
̸= bt for t = 1, 2, . . . ,m, and △

3
̸= a1. Thus,

Step 5 takes O(n) time. Steps 2 to 4 is iterated m − 1 times.
Inside the iteration loop, the most time-consuming calcula-
tion is for bt = min{Rjt (rj)− pj|j ∈ 8t , j ̸= jt }. Given bt , the
other variables takes constant time to compute. Since it takes
O(nlogn) time to compute min{Rjt (rj)−pj|j ∈ ∪

m
t=28t \{jt }},

it takes O(nlogn) time to compute b2, b3, . . . , bm. In sum-
mary, it can be seen that the computational complexity of
Algorithm 3 is O(nlogn).

Similarly, we can show that the computational complexity
of Algorithm 4 is O(nlogn).

IV. CONCLUSION
We present in this paper a sensitivity analysis for the single-
machine preemptive scheduling problem of minimizing flow
time. First, we focus on the effects of a parameter change on
the optimal sequence. We find that the result of the parameter
change is closely related to the movement of job blocks.
Thus, we rewrite the optimal sequence in job block form,
and its basic characteristics are investigated bit by bit. The
results show that a correct necessary and sufficient condition
is provided for the optimal sequence to remain optimal after
a single release data changes. This is generated by four
O(nlogn) iterative time algorithms in the order of the job
blocks.

Our future work will explore how to apply the results and
analysis methods of this paper to practice, and investigate the
robust performance in the optimal sequence after multiple
release data change, and further study and develop the theory
and methods of sensitivity analysis for scheduling problems.

REFERENCES
[1] T. Gal, Postoptimal Analysis, Parametric Programming and Related Top-

ics. New York, NY, USA: McGraw-Hill, 1979.
[2] T. Gal and H. J. Greenberg, Advances in Sensitivity Analysis and Paramet-

ric Programming. Boston, MA, USA: Kluwer Academic, 1993.
[3] S. Van Hoesel and A. Wagelmans, ‘‘On the complexity of postoptimal-

ity analysis of 01 programs,’’ Discrete Appl. Math., vol. 91, nos. 1–3,
pp. 251–263, Jan. 1999.

[4] M. Libura, ‘‘Sensitivity analysis for minimum Hamiltonian path and
traveling salesman problems,’’ Discrete Appl. Math., vol. 30, nos. 2–3,
pp. 197–211, Feb. 1991.

[5] R. E. Tarjan, ‘‘Sensitivity analysis of minimum spanning trees and shortest
path trees,’’ Inf. Process. Lett., vol. 14, no. 1, pp. 30–33, Mar. 1982.

[6] J. Schulte and V. Nissen, ‘‘Sensitivity analysis on constraints of combina-
torial optimization problems,’’ in Learning and Intelligent Optimization
(Lecture Notes in Computer Science) vol. 12931. Cham, Switzerland:
Springer, 2021, pp. 394–408.

[7] J. Chen, C. Du, P. Han, and Y. Zhang, ‘‘Sensitivity analysis of strictly
periodic tasks in multi-core real-time systems,’’ IEEE Access, vol. 7,
pp. 135005–135022, 2019.

[8] Y. N. Sotskov, V. K. Leontev, and E. N. Gordeev, ‘‘Some concepts of
stability analysis in combinatorial optimization,’’ Discrete Appl. Math.,
vol. 58, no. 2, pp. 169–190, Mar. 1995.

[9] E. Michael, T. A. Wood, C. Manzie, and I. Shames, ‘‘Sensitivity analysis
for bottleneck assignment problems,’’ Eur. J. Oper. Res., vol. 303, no. 1,
pp. 159–167, Nov. 2022.

[10] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th ed. Engle-
wood Cliffs, NJ, USA: Prentice Hall, 2012.

[11] N. V. R. Mahadev, A. Pekec, and F. S. Robert, ‘‘On the meaningfulness
of optimal solutions to scheduling problems: Can an optimal solution be
nonoptimal?’’ Operation Res., vol. 46, no. 3, pp. 120–134, 1998.

[12] B. Penz, C. Rapine, and D. Trystram, ‘‘Sensitivity analysis of scheduling
algorithms,’’ Eur. J. Oper. Res., vol. 134, no. 3, pp. 606–615, Nov. 2001.

[13] S. Chanas and A. Kasperski, ‘‘Sensitivity analysis in the single-machine
scheduling problem with max-min criterion,’’ Int. Trans. Oper. Res.,
vol. 12, no. 3, pp. 287–298, May 2005.

[14] Z.-D. Jiang, S.-J. Sun, and Z.-G. Wu, ‘‘Sensitivity analysis for some
scheduling problems,’’ J. Shanghai Univ., vol. 12, no. 1, pp. 20–25,
Feb. 2008.

[15] C. A. Tovey, ‘‘Rescheduling to minimize makespan on a changing num-
ber of identical processors,’’ Nav. Res. Logistics Quart., vol. 33, no. 4,
pp. 717–724, Nov. 1986.

[16] A. W. J. Kolen, A. H. G. R. Kan, C. P. M. van Hoesel, and
A. P. M. Wagelmans, ‘‘Sensitivity analysis of list scheduling heuristics,’’
Discrete Appl. Math., vol. 55, no. 2, pp. 145–162, Nov. 1994.

[17] S. Maqsood, S. Noor, M. K. Khan, and A. Wood, ‘‘Hybrid Genetic
Algorithm (GA) for job shop scheduling problems and its sensitivity
analysis,’’ Int. J. Intell. Syst. Technol. Appl., vol. 11, nos. 1–2, pp. 49–62,
2012.

[18] G. M. Schrage, ‘‘A proof of the optimility of the shortest remaining pro-
cessing time discipline,’’ Operation Res., vol. 16, pp. 687–690, Jun. 1968.

[19] N. G. Hall and M. E. Posner, ‘‘Sensitivity analysis for scheduling prob-
lems,’’ J. Scheduling, vol. 7, no. 1, pp. 49–83, Jan. 2004.

XIAOXI LI received the Ph.D. degree in surgery
from Shanghai Jiao Tong University School of
Medicine (SJTUSM), Shanghai, China, in 2018.
She is currently an Orthopedic Surgical Resident
with the Shanghai Sixth People’s Hospital. Aside
from clinical research, she is also interested in
healthcare management and scheduling theory.

SHANLIN LI received the M.S. degree in
applied mathematics from Chongqing University,
Chongqing, China, in 1988. He is currently an
Associate Professor with the School of Electronics
and Information Engineering, Taizhou University.
His research interests include scheduling theory,
operations research, and healthcare management.

64628 VOLUME 11, 2023

