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ABSTRACT The aiming accuracy of the Unmanned Aerial Vehicles (UAV) Steadicam head can be affected
by many factors, such as the state of the UAV during the actual flight and the installation error of the
system related hardware. In order to eliminate the influence of objective factors on the UAV Steadicam,
a Kalman filter aiming algorithm based on the coordinate transformation method is proposed to eliminate the
attitude error of the UAV Steadicam and improve the accuracy of the system. The algorithm uses coordinate
transformation to eliminate mounting errors and combines coordinate transformation and Kalman filtering
methods to eliminate objective errors of the UAV in flight. The experimental simulation results show that
our method can accurately give the amount of azimuth and pitch angle error compensation during the flight
of the UAV, improving the accuracy of the UAV Steadicam head. Ultimately, the method is applied to the
development of a real product.

INDEX TERMS Attitude error, coordinate transformation, error compensation, Kalman filtering, Steadicam
head.

I. INTRODUCTION
In recent years, most of the steady aiming systems have
been equipped on various types of aircraft, vehicles, ships
and mobile vehicles such as satellites [1], [2]. With the
continuous innovation and development of modern military
equipment and technology, steady aiming system are increas-
ingly used in military operations, for example in the aiming
and positioning of missiles and in the real-time tracking
and positioning of targets in military operations with land
vehicles such as tanks. The accuracy of the Steadicam plat-
form is inextricably linked to the inertial measurement unit
(IMU) installed. IMU’s include gyroscopes, accelerometers
and geomagnetism. These instruments are generally subject
to certain installation errors, which can be greater under the
influence of external factors, resulting in large deviations
in the measurement process and causing inaccurate attitude
information during steady state aiming [3].
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Currently, steady aiming system and related technologies
are widely used in a variety of aerospace equipment, includ-
ing vehicle-borne, airborne, naval, and bullet-borne [4].
For example, in the area of missile guidance, there are
many imaging-guided guidance heads that use gyro-stabilised
tracking platforms, such as the US AGM-65, the Russian
X-29T, and the Israeli Sudden Eye. In terms of airborne
stabilisation control equipment, the most representative is the
Israeli ESP-600C unmanned airborne electro-optical recon-
naissance platform, which leads the world in the accuracy of
azimuthal rotation range, pitch, maximum angular velocity
and angular acceleration.

The core technology of a steady aiming system is the
estimation of the object’s operational attitude and the design
of its aiming algorithm. Current mainstream pose estima-
tion methods generally include Kalman filtering, quaternion
estimator algorithm, complementary filtering, Mahony and
Madgwick algorithms [5], [6]. The Kalman filter is essen-
tially a real time recursive algorithm for noise removal,
delay reduction and target position estimation for dynamic
target tracking and is highly valued in practical engineering
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applications because of its simplicity and small memory
space requirements [7], [8], [9]. The Kalman filter and its
many modifications have been widely used in the study of
vehicle parameters and vehicle driving state estimation and
is a common and effective estimation tool [10], [11], [12].
Although the Kalman filter is simple and effective, it can
suffer from a lack of accuracy. For example, when the motion
of the target changes suddenly, the Kalman filter will become
less useful [13], [14], [15]. A natural question is: How can
other new techniques be combined with the Kalman filter
method so that the simplicity and practicality of the algorithm
can be guaranteed and its accuracy can be improved? This
paper will focus on this problem, and verify that the proposed
algorithm is an effective enhancement to the shortcomings
of the traditional Kalman filter algorithm through theoreti-
cal modeling, simulation experiments and application on the
spacecraft Steadicam head.

There have been some results of research on combining
Kalman filter methods with other new techniques. For exam-
ple, in the literature [16], a back propagation neural network
based fusion Kalman filtering algorithm is proposed for the
real-time position prediction of UAV target tracking, which
has higher accuracy and robustness in predicting the target
centre position coordinates, and the UAV can stably track
the moving targets on the ground. Then, for example, in the
literature [17], a high-precision UAV positioning system that
integrates an inertial measurement unit and ultra-wideband
(UWB) with an adaptive extended Kalman filter (EKF) is
proposed to solve the problem of unpredictable propagation
conditions and time-varying operating environments, where
oscillations in positioning performance caused by changes
in measurement noise may lead to instability of the UAV.
However, there are not many studies combining Kalman
filtering methods with measurement algorithms and other
related technologies in UAV Steadicam head. In fact, the
errors generated during the measurement process are not
only related to the accuracy of the instrument itself, but
the accuracy of the measurement algorithm and the com-
pleteness of the test method also affect the accuracy of the
measurement results to a large extent. One such measurement
method is the co-ordinate transformation algorithm, which
takes into account the co-ordinate links between different
carriers’ attitude information and uses a correlation matrix
to represent this link and compensate for the errors caused by
the installation. There are few reports on the combination of
coordinate transformed attitude methods with Kalman filter-
ing methods applied to Steadicam head and their associated
software development.

Based on the above discussion, this paper eliminates the
installation error by introducing the coordinate transforma-
tion algorithm to the input of the Kalman filter, and performs
parameter design and simulation experiments based on the
proposed algorithm, and finally applies the theoretical study
to the actual product development. The next organization
of this paper is as follows: in Section II, the Kalman filter
stabilization algorithm based on the coordinate transforma-

tion technique is proposed, the coordinate transformation
algorithm and the Kalman filter algorithm are introduced
respectively, and some parameters are set, and the data
obtained from the coordinate transformation algorithm is
used as the input of the Kalman filter for simulation exper-
iments; in Section III, the simulation experimental results
in Section II are firstly compared, analyzed and discussed
to verify the feasibility of the proposed In Section III, the
simulation results in Section II are compared and discussed
to verify the feasibility of the proposed method. Then, the
theoretical research results are applied to the actual product
development; Section IV concludes the whole paper

II. MODELING
The Kalman filter algorithm, mainly by applying the lin-
ear system state equation, with input and output observa-
tions, performs optimal predictive estimation of the system
state [18], [19], [20]. The optimal prediction estimation of
the system state can also be considered as a filtering process
because of the influence of system noise and interference in
the observation process. The ‘‘system state’’ is the set of all
inputs to the system in the past, i.e., the optimal estimate
obtained in each update and the minimum deviation from
the system perturbation. Each update is used as an input to
the next Kalman filter, so that the entire behavior of the
system can be determined through continuous iterations of
updates [21], [22], [23].

From a review of related materials, it is understood that
in the context of attitude parameter estimation selection for
UAVs, a virtual angular accelerometer (VAA) based on the
fusion of four MEMS IMU measurements was designed in
the literature [24] by using angular acceleration for estimation
and compensation of perturbations. In this paper, on the other
hand, from the aspect of eliminating the installation error, i.e.,
the non-coincidence of body and turntable coordinates due
to the installation error, an attitude solving model based on
coordinate transformation is developed for this problem, and
the attitude information measured by the inertial navigation
system is compensated for the error, and the solved attitude
information is also measured as the quantity of the filter
model. The following is the data model for processing the
Kalman filter input parameters.

The two-axis servo turntable and the electro-optical equip-
ment together from the steady aiming system, so the general
UAV Steadicam turntable is aligned in real time by con-
trolling the angular movement of two degrees of freedom:
azimuth and pitch. There are errors between the airframe
and the turntable due to the installation itself, as well as the
fact that the turntable is not guaranteed to be stable all the
time during the flight of the UAV due to the bumps, making
the errors even greater. The attitude information measured
by the inertial navigation system cannot be directly applied
to the coordinates of the turntable, which is measured here
using a micrometer installation. The representation of this
relationship matrix is described below, as well as a model
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FIGURE 1. The conversion relationship between the three postures.

for attitude solution based on the corresponding coordinate
transformation of this relationship matrix [25], [26].

From the above, it is clear that the coordinate systems we
need to use are the geographic coordinate system, the body
coordinate system and the turntable coordinate system. The
origin of each coordinate system is set as the projection of the
turntable center on the ground, the center of the body, and the
geometric intersection of the 2 rotation axes of the turntable.

Since the general vector projection between two different
rectangular coordinate system has a certain transformation
relationship, the transformation relationship is represented by
a matrix. Given any vector of geographic coordinate system,
the transformation relationship among geographic coordinate
system, turntable coordinate system and body coordinate
system is established, and then the relation matrix between
body coordinate system and turntable coordinate system is
obtained. The specific formula is as follows:

Transformation relations between vectors in different
right-angle coordinate systems:

L(α, β, γ ) = L(α)L(β)L(γ ), (1)

where, α, β and γ are respectively represented as the rotation
of α Angle around z axis, β Angle around x axis, and γ

Angle around y axis. L (α) ,L (β) and L(γ ) are correspond-
ing rotation matrices respectively. Following the principle of
which axis the vector rotates around and the coordinates of
which axis remain unchanged, there are the following rotation
matrices:

L(α) =


cosα − sinα 0
sinα cosα 0
0 0 1

 , (2)

L(β) =


1 0 0
0 cosβ sinβ

0 − sinβ cosβ

 , (3)

L(γ ) =


cos γ 0 − sin γ

0 1 0
sin γ 0 cos γ

 . (4)

The conversion relationship between the geographical
coordinate system, the turntable coordinate system and the
body coordinate system is as follows:

In Fig.1, L1,L2 and L3 represent the relationship matrices
for the conversion between the three attitudes respectively.

Where matrix L1 represents a relationship matrix for the
conversion from geographical coordinates to the body coor-
dinates; L2 represents a relationship matrix for the conversion
from geographical coordinates to turntable coordinates; and
L3 represents a relationship matrix for the conversion from
the body coordinates to turntable coordinates.

It is also clear from Fig.1 that given a geographic
coordinate system, the relationship between the body
coordinates and the turntable coordinates can be cal-
culated by taking any geographic coordinate vector as
η0 =

[
x0 y0 z0

]T
, setting the body coordinates as η1 =[

x1 y1 z1
]T and the turntable coordinates as η2

=
[
x2 y2 z2

]T
, then there is the following relationship

between the turntable coordinates and the body coordinates:

η1 = L1(α1, β1, γ1)η0, (5)

η2 = L2(α2, β2, γ2)η0. (6)

It can be obtained from Fig.1:

η2 = L3(α3, β3, γ3)η1. (7)

According to (5), (6) and E(7), it can be obtained:

L3(α3, β3, γ3)η1 = L3(α3, β3, γ3)L1(α1, β1, γ1)η0
= L2(α2, β2, γ2)η0, (8)

namely:

L3(α3, β3, γ3)L1(α1, β1, γ1) = L2(α2, β2, γ2), (9)

namely:

L3(α3, β3, γ3) = L2(α2, β2, γ2)L
−1
1 (α1, β1, γ1). (10)

L3 in the above equation represents a relationship matrix
for the non-coincidence of the body coordinates and the
turntable coordinates due to the installation error, i.e. the
relationship between the body coordinates and the turntable
coordinates can be found as long as the information about
them is known.
Then, the relation between geographic coordinates and

turntable coordinates can be obtained as:

L2 = L3L1, (11)

where L3 is denoted as:

L3 =

 l11 l12 l13
l21 l22 l23
l31 l32 l33

 . (12)

III. MAIN RESULT
A. COORDINATE TRANSFORMATION ALGORITHM
With the above matrix representation of body coordinates and
turntable coordinates, a coordinate transformation algorithm
based on this matrix representation is introduced here.
Through the above, it can be seen that the attitude infor-

mation of the airframe is measured by the inertial navigation
system as L1 (α1, β1, γ1), where α1, β1, γ1 are the yaw angle,
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pitch angle and roll angle respectively, then it can be obtained
from (1):

L1(α1, β1, γ1) = L1(α)L1(β)L1(γ ), (13)

namely:

L1 =

cosα1 − sinα1 0
sinα1 cosα1 0
0 0 1

 1 0 0
0 cosβ1 sinβ1
0 − sinβ1 cosβ1


×

cos γ1 0 − sin γ1
0 1 0

sin γ1 0 cos γ1

 . (14)

From (11), (12) can be obtained in order to eliminate the
installation error, so that the stability of the rotary table and
calculate the need to turn to the angle αr and βr , the specific
calculation steps are as follows.

According to (11) and (12), angles αr and βr needed to
be turned can be calculated in order to eliminate installation
errors and make the turntable stable. The specific calculation
steps are as follows.

Azimuth Angle α0 and pitch Angle β0 are used to define a
unit vector I0 in the geographic coordinates system:

I0 = [ sinα0 cosβ0 cosα0 cosβ0 sin β0]T . (15)

The projection of vector I0 in the body coordinate system is:

I1 = L1I0. (16)

The projection of vector I0 in the turntable coordinate
system is:

I2 = L2I0. (17)

According to (11), (12), and simultaneous (16), (17), it can
be obtained:

I2 = L3L1I0 = [ x2 y2 z2 ]T . (18)

According to (18) and the basic theory of trigonometric
functions in spatial coordinates, the azimuthal angle, and the
pitch angle, can be obtained as shown in (19) below:

αr = arctan(
x2
y2
), βr = arcsin(z2). (19)

In this way, under the unit vector I0, when the body attitude
information is L1 (α1, β1, γ1), the azimuth and pitch angles
of the turntable need to be turned to αr angle and βr angle,
respectively, to eliminate the error caused by the installation
and make the attitude information used for turntable control
more accurate.

The attitude information for turntable control obtained by
eliminating installation errors is taken as the input of Kalman
filter parameters. Here, the errors of each attitude Angle are
introduced as the deviation of prediction state, which is called
Gaussian noise deviation, denoted byW , also known as mean
white noise.

At this point, the equation of state can be set as:

X̂ = AX + BU +W , (20)

where U is the current state of control, which we won’t
discuss here, set to 0; A and B are system parameter matrices;
X̂ is the predicted value of the system state, X is the predicted
value of the current state, where:

X = [α β γ ]T , X̂ = [αr βr γ ]T , (21)

withW is process noise, and each element can be regarded
as zero-mean white noise during simulation, so the final state
equation is:

X̂ = AX +W . (22)

B. THE OBSERVATION EQUATION
The attitude information of the airframe measured by the
inertial navigation system carried by the UAV is taken and
used directly for the control of the turntable as the input of the
observation parameters. However, considering that the UAV
does not guarantee that the coordinates of the airframe will
not change slightly at each brief moment during targeting
and positioning, it is necessary to introduce a bias to offset
this change, which is called Gaussian noise bias, denoted
by V . This error is also called observation noise, which can
be initially considered as zero. The observed value after the
introduction of the error is used as an observed parameter
input to the final Kalman filtering algorithm.

To sum up, the observation equation can be obtained as:

Z = HX + V , (23)

where H is the measurement system parameter, here is
the observation matrix, V is the measurement noise, Z is
the observation value of the current system, where Z =[
α′ β ′ γ ′

]T .
V is observation noise, and each element can be regarded

as zero-mean white noise during simulation.

C. KALMAN FILTERING ALGORITHM
Discretization of the above established equation of state and
observation equation can be obtained [27]:

Xk = 8k,k−1Xk−1 + 0k−1Wk−1, (24)

Zk = HkXk + Vk , (25)

where, Xk is the system state vector at k moment, Xk−1 is
the optimal value of the system state vector obtained at the
last moment; 8k,k−1 is the system transition matrix, 0k−1 is
the system noise matrix; Zk is the measured value at time k ,
andHk is the measurement matrix;Wk−1 and Vk represent the
process noise and measurement noise respectively, that is, the
zero-mean measurement white noise vector of the discretized
system. Xk ,Wk−1, and Vk are unrelated.

Then, the basic equation of uncontrolled discrete Kalman
filter is as follows:

• One-step prediction equation of state:

X̂k/k−1 = 8k,k−1X̂k−1. (26)

• One-step prediction of mean square error:
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Pk/k−1 = 8k,k−1Pk−18
T
k,k−1 + 0k−1Qk−10

T
k−1. (27)

• Filter gain equation (weight):

Kk = Pk,k−1HT
k (HkPk/k−1H

T
k + Rk )−1. (28)

• Filter estimation equation (K time optimal value):

X̂k = X̂k/k−1 + Kk (Zk − Hk X̂k/k−1). (29)

• Mean square error update matrix(K time optimal mean
square error):

Pk = (I − KkHk )Pk/k−1. (30)

IV. SIMULATION AND DISCUSSION
A. SIMULATION
In the UAV Steadicam head, due to a variety of factors such
as the bumpiness of the body caused by weather changes
during the flight of the UAV, and the error of the installation
instrument and other factors, it will cause the body and the
coordinates of the turntable not to overlap and not to complete
the control of the turntable accurately, and its main influ-
encing factor is the selection of attitude information for the
turntable control.
In order to verify the effectiveness of the above proposed

algorithm, it is assumed that two attitude parameters are set
as the input to the Kalman filter for a given system state.
One is to not apply the algorithm of coordinate transforma-
tion mentioned above, i.e., the body attitude information is
directly used for the control of the turntable as the input of
the Kalman filter. The other one is to apply the coordinate
transformation algorithm mentioned above to eliminate the
error of the airframe attitude information, and the final solved
attitude information is used as the input of Kalman filter.To
make the research in this paper more convincing, the article
simulates the variation of pitch and azimuth angles in the
attitude angle of the UAV in a weak wind as well as in a
strengthened wind environment, respectively.
Finally, the Kalman filter for this Steadicam head is sim-

ulated using MATLAB. The prediction estimation of the
optimal attitude angle based on the elimination of the attitude
angle error and the estimation of the optimal deviation value
between the optimal attitude angle and the observed value
are performed, and the simulation results are used to analyze
whether the algorithm meets the requirements.
In this paper, several groups of parameters were designed

through univariate analysis to simulate the above model. The
specific design parameters are shown in Table 1:

1) SIMULATION OF A UAV IN A WEAK WIND
It is assumed that the initial estimate of the turntable coor-
dinates in the above system state is the attitude information
obtained after error compensation by the coordinate trans-
formation algorithm after simulating the UAV flight process
affected by a weak wind. However, for a real control system,
it is not a strictly linear time-varying system, which leads to
some deviation in the estimated state values. Therefore the

TABLE 1. Specific Parameter Settings for System State Assumptions.

FIGURE 2. Optimum azimuth estimation before coordinate
transformation.

key values P, Q, R are introduced here. P is the initial value
of the error covariance, which affects the initial convergence
rate, the smaller the P, the more confidence in the current
state, so set toP = 1;Q is the process variance, which reflects
the angular variance of two consecutive moments, the smaller
theQ, the easier the system converges, so set toQ = 1e−4; R
is the measurement variance, which reflects the measurement
accuracy of the inertial navigation system; ifR is set too large,
the Kalman filter response becomes slower, so it is set to
R = 0.09.

The simulation results for the optimal attitude angles, i.e.
azimuth and pitch, are shown below:

As can be seen from Fig.2-5, the true attitude angle of
the UAV in its original flight state is (120◦, 60◦, 80◦), when
encountering weak winds, the state of the UAV suddenly
changes, resulting in a certain deviation in its attitude angle,
i.e. (118◦, 63◦, 80◦), so the amount of error compensation
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FIGURE 3. Estimation of optimum azimuth deviation before coordinate
transformation.

FIGURE 4. Estimation of optimal pitch Angle before coordinate
transformation.

FIGURE 5. Optimal deviation estimation of pitch Angle before coordinate
transformation.

needed for azimuth and pitch angle in an ideal state should
be around and, but the error compensation obtained by the
traditional Kalman algorithm is and, it can be seen that when

FIGURE 6. Optimum azimuth estimation after coordinate transformation.

FIGURE 7. Optimum estimation of azimuth deviation after coordinate
transformation.

stored without considering When the installation error is
not considered, the traditional Kalman filtering algorithm
becomes less useful and does not provide an accurate error
compensation due to the sudden change of the target state
caused by the external environment, and the error com-
pensation obtained is much smaller than the actual error
compensation required.

Under the same conditions, the initial estimate of the
coordinates of the turntable is obtained by using the coor-
dinate transformation method to eliminate installation errors
(120.2◦, 60.1◦, 80◦), then the simulation results for the opti-
mal attitude angles, i.e. azimuth and pitch, are shown in the
following figures:

As can be seen from Fig.6-9, it can be seen that the
error compensation of azimuth and pitch angles should be
0.2◦ and 0.1◦ under ideal conditions, and the simulation
results show that the error compensation obtained by the
Kalman Filter algorithm with coordinate transformation is
0.165◦ and 0.083◦, which is close to the expected error

VOLUME 11, 2023 63789



Y. Lu et al.: Development of Steady Aiming System Based on Kalman Filter and Coordinate Transformation

FIGURE 8. Estimation of optimal pitch Angle after coordinate
transformation.

FIGURE 9. Optimum estimation of pitch Angle after coordinate
transformation.

compensation value and can solve the shortcomings of the
traditional Kalman Filter algorithm very well.

2) SIMULATION OF A UAV IN A STRONG WIND
In order to make the experimental results more convincing,
the target state is abruptly changed by simulating a change in
the external environment, i.e. an increase in wind, i.e. strong
wind, under the same conditions. The simulation results for
the optimum attitude angles, i.e. azimuth and pitch, in the case
of strong winds are then shown in the following figures:

As can be seen from Fig.10-13, without considering
the elimination of installation errors, the flight state of
the UAV changes abruptly when the wind is simulated to
increase, and the attitude angle produces a larger deviation
into (116◦, 66◦, 80◦), so the amount of error compensation
required for azimuth and pitch angles in the ideal state is 4◦

and 6◦ around, as shown by simulation experiments, the error
compensation obtained by the traditional Kalman algorithm
is 0.015◦ and 0.008◦, which is still far less than the expected
The values. Therefore, it can be found that the traditional

FIGURE 10. Optimum azimuth estimation before coordinate
transformation.

FIGURE 11. Estimation of optimum azimuth deviation before coordinate
transformation.

FIGURE 12. Estimation of optimal pitch Angle before coordinate
transformation.

Kalman Filter algorithm does have the problem of insufficient
accuracy.
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FIGURE 13. Optimal deviation estimation of pitch Angle before
coordinate transformation.

FIGURE 14. Optimum azimuth estimation after coordinate
transformation.

Under the same conditions, the installation error is elim-
inated by means of a coordinate transformation, at which
point the initial estimate of the turntable coordinates
(120.5◦, 60.4◦, 80◦) based on the coordinate transformation
is obtained, and the simulation results for the optimal attitude
angles, i.e. azimuth and pitch, are shown in the following
figures:

As can be seen from Fig.14-17, it can be seen that the error
compensation for azimuth and pitch angles required by the
co-ordinate transformed attitude angles in ideal conditions is
around 0.5◦ and 0.4◦, and the simulation results show that the
error compensation obtained by the co-ordinate transformed
Kalman filter algorithm is 0.455◦ and 0.357◦, which is also
close to the expected error values. It can be found that the
Kalman Filter algorithm based on the coordinate transfor-
mation can still provide accurate error compensation when
the wind environment is enhanced, which also proves that
the research method of this paper is more effective than the
traditional Kalman Filter algorithm.

FIGURE 15. Optimum estimation of azimuth deviation after coordinate
transformation.

FIGURE 16. Estimation of optimal pitch Angle after coordinate
transformation.

B. DISCUSSION
The comparative graphs of the experimental simulation
results in Section II above lead to the following table of
simulation results:

As shown in Table 2, within a targeting time period of
60s, when the effects of error are not taken into account,
the measured optimal estimates of attitude angle are close to
coincident with the true values (i.e. those measured directly
by the inertial navigation system before the Kalman Filter
input) most of the time, i.e. the error compensation of the
resulting azimuth and pitch angles is very small when the
external environment is influenced by weak or strong winds,
i.e. 0.003◦ and 0.005◦ in the case of weak winds and 0.015◦

and 0.008◦ in the case of strong winds. As discussed at the
beginning of our paper, the values measured directly by the
inertial navigation system are subject to errors and cannot be
used directly for control of the turn table, so the calculated
optimal estimates almost coincide with the true values and do
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FIGURE 17. Optimum estimation of pitch Angle after coordinate
transformation.

TABLE 2. Simulation Results.

not match the ideal state; when the coordinate transformation
algorithm is used to consider eliminating the effects of errors,
also under the influence of external environments such as
weak or strong winds, it is found that the measured optimal
estimates of attitude angle and the true The error compensa-
tion of the obtained azimuth and pitch angles is 0.165◦ and
0.083◦ in the case of weak wind and 0.455◦ and 0.357◦ in
the case of strong wind, which is the error compensation for
the attitude angle in our designed algorithm and coincides
with the above mentioned non-coincidence between the ideal
attitude information and the actual measured attitude infor-
mation of the airframe.

Therefore, the above simulation results also verify that the
research method in this paper overcomes the shortcomings of
the traditional Kalman Filter algorithm and is more accurate
and effective than the traditional Kalman Filter algorithm
in compensating for the errors in azimuth and pitch angles
when the UAV is affected by the external environment and
undergoes sudden changes in state during flight.

FIGURE 18. The application of Kalman filter stabilization algorithm in
servo controller based on coordinate transformation technology.

FIGURE 19. Application of servo controller in aircraft and Steadicam head.

Through the above theoretical research, practical products
can be developed to eliminate installation errors and facilitate
the acquisition of more accurate attitude positioning informa-
tion, as shown in Fig.18 and Fig.19 below.

V. CONCLUSION
In the UAV Steadicam head, the basic problem of precise
control of the turntable is not achieved due to the influence
of the weather and installation errors during the flight of the
UAV, the Kalman filter algorithm is currently one of the most
mainstream algorithms used for attitude estimation, however,
the biggest problem of using this method is the lack of
accuracy, so this paper proposes a Kalman filter stabilization
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algorithm based on the coordinate transformation method,
this algorithm combines the coordinate transformation and
Kalman filter algorithm together, so that the practicality
and accuracy of the algorithm can be effectively improved.
Algorithms based on coordinate transformations are used
to eliminate the effects of mounting errors. The calculated
attitude information is then used as attitude parameters for
the input of Kalman filter to achieve more accurate prediction
estimates. Experimental simulations show that the attitude
information obtained from the attitude solution model based
on a coordinate transformation is used as the input parameter
of the Kalman filter to achieve more accurate turntable con-
trol, improve steady-state accuracy, and verify the reliability
of the proposedmethod. Finally, it can be applied to the actual
product development. This paper focuses on the design and
analysis of a steady aiming algorithm to improve the aiming
accuracy of the UAV by performing an azimuth and pitch
angle error compensation for the rotational motion of the
UAV. In future research work, we will also take into account
the translational motion of the UAV and develop a more
optimal algorithm design for the UAV’s Steadicam head in
all aspects.
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