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ABSTRACT Unmanned combat aerial vehicles (UCAVs) are preferred for regional electronic reconnais-
sance due to their versatility and stealth. This paper proposes a deep reinforcement learning (DRL) method
to enable UCAVs to complete regional multi-target electronic reconnaissance (MER) tasks with continuous
autonomous maneuvers. Distinguishing from traditional heuristic search algorithms, we first derive the
objective function of MER and elucidate sufficient conditions to improve the success rate of reconnaissance
recognition. Then, using the original cognitive electronic warfare framework, a three-dimensional MER
simulator named Scouer-N is created to satisfy the requirements of dynamic environment training for
DRL-based agents. To enable the processing of sequential situation awareness, a generative network is
constructed by introducing a partially observable Markov decision process (POMDP) model, which assists
the UCAV in filtering the observations from the sensor and predicting the actual states. Finally, we propose a
priority-driven state reward shaping method that provides normalized state representation and dense rewards
to the agent during training to improve the agent’s behavioral knowledge for MER. The experimental
results demonstrate a considerable improvement in the task success rate of the trained UCAV relative to
the benchmark, proving the efficacy of our approach in helping agents learn the optimal reconnaissance
strategy from the potential state space.

INDEX TERMS Multi-target electronic reconnaissance, cognitive electronic warfare, deep reinforcement
learning, 3D motion planning, POMDP model.

I. INTRODUCTION
Cognitive electronic warfare (CEW) favors the use of
unmanned aerial vehicles (UCAVs) to perform electronic
reconnaissance of emitter source information at sensitive
places to gain more electromagnetic initiative. The autonomy
and real-time performance of UCAV systems are currently
under very high demands from multi-target electronic
reconnaissance (MER) due to the unknown emission power
characteristics of the radar at sensitive places as well as the
unknown guidance radius of collateral air-defense threats.
In MER, a UCAV relies on passive detection to intercept
non-cooperative radar signals and integrate their contents,
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and then inference and decision-making based on posterior
information to reduce its maneuvering risk [1], [2], [3].

Typically, electronic reconnaissance within a target area is
characterized as an agent-environment interaction involving
limited prior knowledge, with error-introduced target coordi-
nates as the initial input. When performing reconnaissance
flights, the UCAV must create efficient flight patterns
based on adversary threat information and terrain data to
increase effectiveness and safety [4]. Consequently, many
studies classify the MER problem as a pure trajectory
or motion planning problem with some platform con-
straints added in to make certain real-world tasks can be
completed accordingly [5], [6], [7]. Heuristic evolutionary
computing techniques are frequently employed to solve the
non-deterministic polynomial hard issues such as trajectory
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planning that arise in MER [8], [9], [10]. Nonetheless,
poor real-time performance is a common fundamental
weakness of these heuristic algorithms, as they require
discretizing the 3D task space and solving each scene at an
extremely high computational cost. Even worse, the above
studies have overlooked the dynamic perception of UCAV’s
reasonable reconnaissance range, i.e., reconnaissance radius,
for the target radars, which is seriously inconsistent with
reality [11].

Functions of electronic reconnaissance include extracting,
classifying, grouping, and recognizing electromagnetic sig-
nal features from unknown radiation sources. Most of CEW’s
studies now focus on real-time analysis of reconnaissance
signals, and deep learning networks are considered very
useful [12], [13], [14]. However, these studies are heavily
biased toward the ability of the UCAV’s payload or system
to process and sense signals at the back end, which is not
closely related to the specific behavior of the UCAV during
reconnaissance operations. In other words, in CEW, UCAVs
must make good maneuvering judgments to intercept signals
from unknown emitter sources to meet the core requirements
of autonomous reconnaissance [15].

Recently, Deep reinforcement learning (DRL) technol-
ogy has attracted the attention of many scholars in the
field of CEW due to its excellent performance in com-
plex decision-making tasks [16], [17]. In particular, most
DRL algorithms has achieved outstanding achievements
in autonomous path planning and end-to-end control of
unmanned aerial vehicles or unmanned ships [18], [19].
Through DRL, unmanned agents can optimize control strate-
gies in real-world electronic warfare by shaping cognitive
tasks like target search and tracking into Markov processes
(MDPs) and tightly integrating the state, control actions,
and environmental feedback of UCAVs [20], [21], [22].
Unfortunately, because electronic reconnaissance simulation
depends not just on modeling mobile platforms but also
on passive receivers as sensors, it’s necessary to optimize
the partially observable Markov decision process (POMDP)
model to shape the electronic reconnaissance task into a
multi-layered state transition from perception to motion,
which increases the complexity of the MER task [23].

This work aims to determine the most effective strategy
for UCAVs to perform multi-target electronic reconnaissance
autonomously in a challenging environment. We are geared
toward the operational needs of sensitive areas, directing the
UCAVs to utilize their agility and reconnaissance capabilities
to lock on the target and capture enough electromagnetic
data without being destroyed in a constrained exploration
space and operational cycle. To handle the intelligent
decision-making required for UCAV reconnaissance, we the-
oretically model the MER problem as a POMDP and
develop a DRL network with generative states to solve it.
Moreover, an open-source regional MER simulator based
on the cognitive electronic warfare simulation framework
is developed to address the verisimilitude of the dynamic
simulation environment [21]. This simulator can map the

processes of physical platform maneuvering and passive
signal reception in digital space.

The following are the primary innovations of our work:
• The interaction between a UCAV and its reconnaissance
system and multiple radars in continuous space is
closed-looped using mathematical modeling, and the
dependence between the local optimal reconnaissance
strategy and the mission completion probability is
derived.

• Determine the state reward shaping equation for pursu-
ing benefits or avoiding threats to make themaneuvering
policies of the UCAV for executing MER more directed
while maintaining platform and payload constraints.

• A DRL network for MER is proposed to enable
UCAVs to comprehend end-to-end maneuvering poli-
cies through their own reconnaissance system, such as
approaching or escaping when the radar threat signature
is unknown.

The rest of this paper is structured as follows. Section II
discusses the objective function of local policy optimization
for MER tasks and emphasizes the importance of imple-
menting digital electronic reconnaissance models. A detailed
description of our DRL framework based on POMDP for han-
dling MER can be found in Section III. Section IV explains
the simulation methodology and associated experimental
results, followed by an analysis of the behavior recognized
by DRL agents based on these data. Finally, we provide a
profound summary of this paper in Section V.

II. MATHEMATICAL MODEL AND SIMULATOR OF MER
A. PROBLEM FORMULATION
In this paper, we investigate a unified mathematical model
for the MER problem. Typical scenarios for a UCAV
executing MER tasks are shown in Figure 1. All radar signals
encountered by the UCAV during reconnaissance are utilized
to define the electromagnetic environment in which they
operate [15]. Assuming there are M ground-based radars in
the task space, their pulse signal features satisfy a Gaussian
distribution. Thus the electromagnetic features of the nth
pulse generated by the mth radar at time step t can be
expressed as:

x̄m,n,t = κm,t∼t+1T xm,n,t∼t+1T κm,t∼t+1T ∈ {0, 1}

E
[
xm,t∼t+1T

]
= µm (1)

where κm,t∼t+1T is the flag bit for whether the signal can be
intercepted by the UCAV, and 1T is the processing cycle for
MER tasks. µm is the mean value of the pulse signal features
of themth radar, which can also be regarded as the centroid of
the radar signal feature space.E is the expectation calculation
function.

Assuming that the mth radar emits Nm signal pulses and
reaches UCAV within the time interval 1T , the contribution
of this radar to electromagnetic space can be defined as:

χm,t =

Nm∑
n=0

x̄m,n,t (2)
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FIGURE 1. Typical scenarios for a UCAV executing MER tasks. The effective reconnaissance range at
which the UCAV can intercept radar’s sidelobe signals is shown by a green hemisphere, and the
effective tracking and guidance range of the radar for the UCAV is shown by a red hemisphere.

where Nm satisfies the Poisson distribution with the pulse
flow density Fm of radar.

As a result, the MER environment in which a UCAV
operates can be described by the following formula:

χt =

M∑
m=1

Nm∑
n=0

x̄m,n,t , (3)

Given the possibility of pulse loss when the UCAV’s
passive receiver simultaneously receivesM radar signals with
their respective pulse widths τm,m = 1, 2, . . . ,M , and the
probability that any current pulse will not be lost is calculated
as:

pm =

M−1∏
m=1

(1 − τmFm)

≈ exp

(
−

M∑
m=1

τmFm

)
, τmFm < 1 (4)

Therefore, the actual electromagnetic space observed by
the UCAV is sampled by a joint probability

∏M
m=1 pm on χt :

χ̂t =

M∑
m=1

N ′
m∑

n=0

x̄m,n,t ∼

(
M∑
m=1

χm,t ,

M∏
m=1

pm

)
, N ′

m ≤ Nm

(5)

where N ′
m is the number of signal pulses actually sensed by

the UCAV, and its value satisfies a binomial distribution with
probability pm. These sampled signals will form M feature
cluster centroids.

The MER’s objective function for the UCAV is to improve
the similarity between reconnaissance sample points in each
cluster centroid generated during signal sorting, which can be

characterized by the metric Jt :

Jt =
1
N

M∑
m=1

N∑
n=0

∥∥∥∥xn,t −
χm,t

Nm

∥∥∥∥2

≥

M∑
m=1

∥∥∥∥∥ 1N
N∑
n=0

xn,t −
χm,t

Nm

∥∥∥∥∥
2

=

M∑
m=1

∥∥∥χt

N
− µm

∥∥∥2 (6)

where x̄n,t represents the nth feature sample of χ̂t , and
N =

∑M
m=1 N

′
m. Equation (6) indicates that the similarity

is measured by the Euclidean distance between the features
of the sampled signals and the statistical clustering centroids
of all intercepted radar signals. Consequently, minimizing Jt
is required to optimize the UCAV’s reconnaissance results
on target signals. However, (6) also establishes a bound
constraint on the value of Jt , demonstrating that Jt cannot be
minimized without limitation.

The rule of large numbers states that when N is large
enough, X̂t/N approaches µm with a fixed biased error,
meaning that the statistical feature distribution of intercepted
signals can approximate the actual feature distribution of
target signals in theMER environment. Applying (1), to attain
a smaller Jt , it is necessary tomaximizeN under the condition
κm,t∼t+1T = 1.

The mathematical expectation of N possesses the follow-
ing qualities:

E[N ]

= E

[
M∑
m=1

N ′
m

]

=

M∑
m=1

fN(1T/τm)∑
Nm=0

Nm∑
n=N ′

m

ζ nm exp(−ζm)
(n− 1)!

(
CNm
n

)
p
N ′
m

m (1 − pm)n−N
′
m
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≤ 1T
M∑
m=1

Fm exp

(
−

M∑
m=1

τmFm

)
(7)

where ζm = Fm1T , and fN(1T/τm) means to get the maxi-
mum integer smaller than 1T/τm. From (7), maximizing N
for UCAV can only be achieved by increasing 1T because
both Fm and τm are the inherent features of the mth radar and
independent of the UCAV’s reconnaissance abilities.

The essence of regional MER tasks is revealed by (1)
to (7) from a physical standpoint: extending the period
of reconnaissance (or processing cycle) of the UCAV to
each radar will enhance the ability to sort and recognize
unknown signals, which is compatible with real operations.
Even though the given formula can explain the interaction
between UCAV and radar in electromagnetic space, the MER
constraints in physical space still need to be rewritten. Based
on the spatial parameters of the UCAV, the following will
calculate the constraints for radar signal interception.

The coordinates of the mth radar observed by UCAV
conform to the following normal distribution:

p′
m,t ∼ N

(
pm, δm

)
(8)

where pm is the actual coordinate of the mth radar, and δm is
the corresponding positioning error.

Define the UCAV’s coordinates at time step t as po,t , and
the actual relative displacement between the mth radar and
the UCAV is pmo,t = pm − po,t . Then, in UCAV’s body
coordinate system, the line-of-sight (LOS) vector lm,t =

[lm,t,x , lm,t,y, lm,t,y] between the radar and the UCAV is
expressed as:

lm,t = Cx,y,zpmo,t (9)

where Cx,y,z is the coordinate transformation matrix from
the geocentric coordinate system to UCAV’s body coordinate
system.

As illustrated in Figure 1, the azimuth and pitch mainlobe
beamwidths of the UCAV’s receiving antenna are represented
as α and β, respectively, and the system sensitivity of
the UCAV’s passive receiver is defined as Pmin. Thus the
fundamental criteria for UCAV to intercept radar signals can
be described by:

κm,t =

{
1, if αm,t ≤ α, βm,t ≤ β,Pm,t ≥ Pmin

0, else
(10)

where t ∈ [t ∼ t + 1T ]. αm,t and βm,t represent the azimuth
and pitch angles of themth radar, respectively, in the UCAV’s
LOS direction: 

αm,t = arctan
losm,t,y

losm,t,x

βm,t = arcsin
losm,t,z∥∥pmo,t∥∥

(11)

In (10), Pm,t represents the radar signal power entering the
receiver, which can be calculated by:

Pm,t =
EmGmλ2m(

4π ||pmo,t ||
)2 (12)

where Em, Gm, and λm represent the effective radiated power
(ERP), ratio of the sidelobe to the mainlobe, and signal
wavelength, respectively, of the mth radar.

The optimization of the objective function (6) will
inevitably be an NP-hard problem if the time for UCAV
to execute electronic reconnaissance tasks is divided into
multiple uniform time segments and the constraints of (10)
are incorporated [1].

B. SIMULATOR ‘‘SCOUTER-N’’
The previous subsection reveals that the evaluation of UCAV
in MER processes can be represented by a continuous-time
mathematical model, necessitating a dynamic simulation
environment. Moreover, to handle the tasks of long-term,
time-continuous, and mixed scenarios, DRL-based control
decisions also have strict requirements for simulation envi-
ronments with complete state transitions [16], [24]. Thus,
using the classic CEW framework [21], [22], we develop a
simulator for MER called Scouter-N and make sure it meets
the functional mapping equations from (8) to (12).

As Figure 1 illustrated, the characteristics of a MER task
are described as follows:

• A 3D space with the dimensions of length L, width
W , and height H represents the target area. Two or
more radars exist in this area used for ground-to-air
surveillance, and air-defense firepower, such as anti-
aircraft missiles, is deployed near the radars to protect
them. The imprecise locations of these radars can
be obtained through satellites and other intelligence
sources, while their detection capabilities, the guidance
radius of air-defense firepower, and the strike conditions
remain unknown.

• Autonomous mobile platforms such as UCAV gradually
move toward the target with an electronic reconnais-
sance system, intercept the radar signals by changing
its position and orientation, and then do long-term
reconnaissance and surveillance as needed. Note that,
because of its inherent energy constraints, the UCAV
has a maximum amount of time, Ttextmax, to finish an
operation.

• There are three possible results for the conclusion of a
MER task: 1) when the UCAV intercepts signals from
all target radars, the task is considered complete and the
UCAV side wins; 2) if the UCAV is destroyed by the
radars’ air-defense firepower during reconnaissance, the
radar side wins; 3) it will be declared a draw if the UCAV
does not finish the task in the required time but returns
safely.

The activation of radar air-defense firepower is mainly
connected to the radar’s tracking threshold in a real-world
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FIGURE 2. Scouter-N’s interface displays the UCAV status panel on the left, the map dynamic display panel in the center,
and the radar status panel on the right.

scenario. In this case, the CEW framework’s parametric data
processing system (PDPS) [20] is used to determine the
conditions for activation as:

||pmo,t ||qt ≤ 1dm
Emλ2mσ

(4π)3 ||pmo,t ||4
≥ Pm,min

(13)

where qt is a finite-time convergent factor for describing
radar positioning inaccuracy and1dm is the required tracking
precision for air-defense firepower guidance. σ is the
UCAV’s radar cross section (RCS), and Pm,min is the system
sensitivity of the mth radar.

Equation (13) indicates that in order for the radar side
to win, two conditions must be satisfied: the UCAV must
access the radar’s detection range, and the radar must be
able to track the UCAV with less error than the guidance
threshold. Therefore, the UCAV in MER have the option of
maintaining a safe distance from radar stations or employ-
ing effective reconnaissance strategies to accomplish their
tasks.

Consider a circular deployment layout for multiple radars
to cover the core area. Generate the initial layout in ‘‘Scouter-
N’’ via the following equation:

pm = [xc + d cosϕm, yc + d sinϕm, z] (14)

where z =
√
de − (xc + d cosϕm)2 − (yc + d sinϕm)2, ϕm =

πm
2M (−1)m + 2π rand(0, 1). [xc, yc] is the core area’s
ground projection coordinate, d is the designed radar
shielding radius, de is the Earth radius (6371 km),
and function rand(0, 1) generates a number randomly
between 0 and 1.

High-speedmotion models in Scouter-N are independently
equipped with a thrust-vectoring controller that allows the

TABLE 1. Fundamental configuration parameters of Scouter-N.

UCAV to maneuver continuously within its dynamic acceler-
ation boundaries by using two-dimensional variables [ϑt , φt ]
as control inputs. The calculation of dynamic acceleration
boundaries is rely on the UCAV’s attitude as well as its
physical overload. Specific method for updating the UCAV’s
motion equations can refer to [21].

Figure 2 shows the interaction between the UCAV and
its target radars in physical and electromagnetic space.
Table 1 summarizes some fundamental configuration param-
eters for Scouter-N. Despite the fact that the simula-
tor’s setup is quite cumbersome, to promote collaboration
and knowledge sharing amongst scholars, we plan to
share the source code of Scouter-N through our team’s
email.
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III. DEEP REINFORCEMENT LEARNING NETWORK BASED
ON POMDP
Since the UCAV in MER detects the electromagnetic energy
of radar signals via a passive receiver, only a portion of the
environment is observable at anytime. Given the significant
difficulties in directly optimizing the objective function of
MER, we consider describing the MER tasks in Scouter-N
via a POMDP model and employing a novel DRL-based
approach to solve it.

A. POMDP MODEL
Define the POMDP by a 6-element tuple, i.e., ⟨S,A,P
,R,Z, γ ⟩, where S denotes the actual state space, and Z is
the observation set of the state space, A is the action space,
P is the probability distribution of state transition, R is the
reward function, and γ ∈ (0, 1] is the discount factor [25],
[26]. At time step t , the actual state of the UCAV in Scouter-N
environment is St = s ∈

{
s1, s2, . . . , s|S|

}
⊆ S, and

Zt = z ∈ Z is the observation processed by the UCAV’s
reconnaissance system. According to (10) to (12), there exists
a certain analytical relationship between the observation and
the radar’s ERP, which can be represent by:

Zt =
[
po,t , κ1,t ,P1,t , κ2,t ,P2,t , . . . , κM ,t ,PM ,t

]
(15)

As shown in (12), the dimension of Zt is 2M + 3, and Pm,t is
a function of ∥pmo,t∥, thus the following equation is satisfied:

Zt ∼
[
po,t , κ1,t , p1o,t , κ2,t , p2o,t , . . . , κM ,t , pMo,t

]
(16)

The UCAV chooses the optimal action At = a in the
action space A based on Zt and its controller’s policy
function π (·

∣∣Zt = z), and then transfers the current state
to the next stage St+1 = s′, the probability of describing
the state transition is pass′ = P[St+1 = s′ | St =

s,At = a] ∈ P . Meanwhile, a timely reward will be
provided by the environment to evaluate the action’s quality,
i.e., Rt+1 = r = R(St+1 = s′, St = s,At = a).
When environmental observation deviates significantly from
reality, the UCAV-generated action decisions will contain
a large number of unstable factors. Consequently, for a
continuous task, we expect to predict the current state
St by a sequence of observations and actions, i.e., h =

{A0,Z1,R1, . . . ,At+1,Zt ,Rt }, while evolving the POMDP
problem into a statistical MDP problem.

To reduce the quantity of historical data required for state
prediction, belief state Bt = b ∈ B is defined to characterize
the effect of h on s:

Bt (s) = {ps
1

h , ps
2

h , . . . , ps
|S|

h },
∑
s∈S

psh = 1 (17)

where psh is the probability of observing the sequence h and
predicting the actual state as s.
Even if psh and pass′ are unknown, a DRL-based agent can

still learn the prior distribution of the optimal policy from the
execution experience ofMER tasks through the accumulation
of a large number of historical state transition pairs and the
application of Monte Carlo sampling.

The objective function of a POMDP can be defined as [27]:

Qπ (Bt ,At) = Eπ,b

[
∞∑
k=0

γRt+k+1 | Bt = b,At = a

]
(18)

where Q is known as the action-value function in reinforce-
ment learning, and a higher value of the Q indicates that
the agent’s decision has a better influence on the future. The
optimal policy required to maximize Q-function for agent is:

π∗ (a|Bt = b) = argmaxQ
a∈A

(19)

Figure 3 shows the logical framework for modeling aMER
task in Scouter-N as POMDP.

Apparently, the observation feedback Zt and Bt in Scouter-
N is based on real-world operational situations, andwe expect
to use a DRL network to extract enough favorable policies to
guide the UCAV in completing MER tasks.

B. STATE REWARD SHAPING
According to (7), a UCAV executing MER must maintain
sufficient processing cycles 1T for each radar to intercept
a sufficient number of pulses to complete clustering and
recognition, and intermittent reconnaissance methods will
inevitably result in pulse loss. Due to the characteristics of
radar deployment, the UCAV can only intercepts intercept
radar signals rather than all within a given region, i.e.,
M∏
m=1

κm,t = 0, necessitating a deliberate search for the current

most important target.
The prerequisite for state reward shaping is how to train

the UCAV to learn a trade-off between pursuing benefits and
avoiding threats. Drawing on the priority-driven approach
proposed in [28], we can provide a new idea to define
the state and reward. Assuming that the most important
reconnaissance target at time step t is the m′-th radar, i.e., the
mth radar possesses the highest priority.

To avoid conceptual confusion, this work treats trained
UCAVs as intelligent agents capable of autonomous thinking
like humans. Define the input state vector of the DRL-based
agent as:

St =
[
po,t , κ̄1,t , p1o,t , κ̄2,t , p2o,t , . . . , κ̄M ,t , pMo,t

]
(20)

where κ̄m,t is a flag bit obtained using the formula below:

κ̄m,l =


1, if m = m′

−1, else if m = m′ and κm,t = 1
0, else

(21)

There are various methods for determiningm′, and here we
present a simple but reasonable design for radar’s priority:
the closer the target to UCAV the higher the priority. The
original intent of this design is to perform reconnaissance
on the nearest target first, allowing the MER task to be
accomplished more quickly and confidently. As a result, the
flag bit must be constantly updated by m′

t = argmin
m

∥p′
mo,t∥,

m = 1, 2, . . . ,M .
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FIGURE 3. The logical framework for modeling a MER task in Scouter-N as POMDP. The left describes the UCAV’s dynamic
interaction in the Scouter-N environment, and the right displays the corresponding state transition of POMDP.

With the completion of state shaping, rewards must be
designed to interpret the behaviors of pursuing benefits or
avoiding threats. we present the reward shaping of avoiding
threats as follows:

rd =



−

M∑
m=1


(
∥pmo,t∥−ρ

Lmap−ρ

)
clip

+(
ρ′

−∥pmo,t∥
ρ′

)
clip

 , if κ̄m,t = 1

−

M∑
m=1

(
ρ −

∥∥pmo,t∥∥
ρ

)
clip

, else if κ̄m,t = −1

0, else

(22)

where (·)clipis a operator for clipping variable values to
the range [0, 1], and Lmap =

√
L2 +W 2 + H2 is the

maximum distance between any two points in the target area.
ρ =

λ
4π

√
ErpiGm
Pm,t

∼ pmo,t and ρ′ are the agent-predicted
reconnaissance radius of the UCAV and guidance radius
of radar’s air-defense firepower, respectively. Note that
in this paper, we assume that the UCAV possesses the
same reconnaissance radius for each radar and is larger
than the threat radius of the radar’s air-defense firepower
because passive detection typically hasmuch smaller distance
attenuation than active detection, i.e., ρ > ρ′. Then, ρ can be
further defined as ρ′

= wρ,w = (0, 1).
The purpose of (22) is to enable the UCAV to agilely avoid

threatening radars and enter an area where it can perform
effective electronic reconnaissance on the m′-th radar while
maintaining its own security. The calculation for pursuing
benefits rewards is related to the UCAV’s maneuvering
policy. After intercepting the most important radar signals,
unmanned aerial vehicles must keep their attitude stable so
that the current target can be locked, thus We can design a

reward function to reinforce this type of conduct:

rp =


1 −

M∑
m=1

(
1 −

〈
lm,t , vt

〉
90

)
clip

, if
∥∥pmo,t∥∥ ∈ [wρ, ρ]

0, else

(23)

where
〈
lm,t , vt

〉
∈ (0, 90◦) is the angle formed by the UCAV’s

velocity vt and the LOS lm,t . ∥
〈
lm,t , vt

〉
−90◦

∥ can be referred
to as the reconnaissance angle (RSA).

As shown in Figure 1, for the UCAV, the normal direction
of the receiving antenna’s beam is perpendicular to the its
head direction, while the velocity vector is parallel to that
direction. Therefore, in order to align the beam mainlobe
of the receiving antenna with target radar, the maneuvering
direction of the UCAV should be as perpendicular as possible
to the LOS, as encouraged by (23).

Give the agent a one-time task completion reward as well:

ra =


100, if Nm = fN(1T/τm)
−100, else if Eq. (13) is satisfied
0, else

(24)

Equation (24) indicates that 100 points will be awarded if
the UCAV triumphs and 100 points will be deducted if it is
destroyed. If a stalemate occurs, no points are awarded.

The state reward of the UCAV can be calculated at any time
by summing the results of the three aforementioned reward
functions, i.e., Rt = rd + rp + ra.

C. DECISION-MAKING NETWORK BASED ON DRL
Using the network architecture of traditional DRL algorithms
along with the state, action, and reward functions designed in
the previous sections [25], we propose a new DRL network
to solve POMDP problems such as MER.
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TABLE 2. Software and hardware in the testing environment.

At time step t , the ideal input state is St , a (4M + 3)-
dimensional vector based on the UCAV’s observation, and
the output action is At = [ϑt , φt ], a two-dimensional
vector based on π (·|Bt ). Observation-based estimation of the
UCAV’s relative displacement between radars is p′

mo,t =

p′
m,t −po,t . Then, it can be inferred that p

′
mo,t ∼ N

(
pmo, δm

)
,

and Zt ∼ St holds using (8), (16), and (20). Furthermore,
based on the belief state defined in (17), we will use a
generative model to estimate the probability distribution of
the real states and use a particular length of h as input
sample to predict s. Simultaneously, consider employing a
Gaussian distribution to simplify the analysis of the model,
i.e., St ∼ N

(
fθµ
S

(Bt) , fθ6
S

(Bt)
)
, where θS =

{
θ

µ
S , θ6

S

}
represents the parameters of the generative network, which
corresponds to the mean and variance of the states. Similarly,
the reward function associated with the reconnaissance
radius ρ must be estimated by the sequence h, i,e.,
ρ ∼ N

(
fθµ

ρ
(Bt) , fθ6

ρ
(Bt)

)
.

Notably, ρ′ in the reward function is highly dependent
on the Pm,min of the mth radar, which cannot be measured
and has no prior knowledge and can only be learned
through the consequences of being shot down by air-defense
firepower. In practice, however, this is untenable because
the cost of obtaining posterior information is too high
and the environmental feedback is too sparse, neither of
which is conducive to the agent’s learning. To achieve a
flexible estimation of ρ′ and assist the agent in completing
reconnaissance tasks to the greatest extent possible, we regard
ρ′

−ρ = (1−w)ρ as a fixed tolerance that restricts the UCAV
maneuverability. A greater w will make the reconnaissance
behaviors of the agent more cautious and safe, but it will also
make it difficult to search for optimal maneuvering policies.

Based on the configuration parameters of Scouter-N listed
in Table 2, we can calculate that themaximumdetection range
of each radar to the UCAV is 25 km (ρ′

=25 km), while the
maximum reconnaissance range of the UCAV to each radar
is 30 km (ρ=30 km), which means that the space tolerance
necessary for the UCAV to conduct continuous electronic
reconnaissance of the target radar is a circle of 5km in width.
In light of the margin design, the value of w in this paper is
set to 0.9.

We adopt the rapidly convergent soft actor-critic (SAC)
algorithm as the primary body of the DRL network in
Scouter-N in order to equip the agent with superior explo-
ration capabilities and robustness [29]. The SAC algorithm
was proposed in 2018 and has demonstrated exceptional
performance in end-to-end continuous action control [30].
The network structure of the SAC consists of two critic
networks, two target critic networks, and one actor network,
with network parameters denoted by θQ,i, θ ′

Q,i, i ∈ {1, 2},
and θπ , respectively.

Each critic network can produce a precise estimation of
Q-function by off-policy training using the following loss
function:

1
|D|

∑
St ,At ,St+1,r∼D

(
Q(St ,At | θQ,i

)
− 1Qmin

)2 (25)

where D is a batch of transitions sampled from replay buffer
with a size of |D|, and 1Qmin is the targets of the Q functions
constructed by the critic networks:

1Qmin = r + γ (minQθQ,i(St+1,At+1)

− η log(πθπ (At+1|St+1))) (26)

where QθQ,i represents the action-value function’s estimation
for the ith critic network, and η represents the target entropy.
As replicas of the critic networks, the target networks

themselves do not participate in training and instead update
the network weights θ ′

Q,i via a soft update [31].
The actor network is primarily utilized to improve policies,

which can be updated by one step of gradient ascent using
∇θπ

1
|D|

∑
St∈D

1Q′

min, and 1Q′

min can be calculated as follows:

1Q′

min = minQθQ,i(St , Ã(St )) − η logπθπ (Ã(St )|St ) (27)

where Ã(St ) is a sample from the actor network πθπ (·|St ) via
the reparameterization trick.

Note that both inputs of the critic network and the actor
network involve the generative network’s state prediction St ,
thus the original input of these networks will be Bt , consistent
with the POMDP model described in (18) and (19). We train
a network as our MER agent, the basic DRL network frame-
work is shown in Figure 4, and the detailed hyperparameters
and configurations of all networks in Figure 4 are given
below.

• The generative network has four layers, from top to
bottom, a input layer of 16M+40 units, a long short term
memory (LSTM ) layer of 128 units, a fully connected
hidden layer of 300 units and an output layer with a
combination of four elements (two output sublayers of
4M + 3 units and two output sublayers of 1 unit).
The learning rate of the generative network is 0.002,
the batch size for training is 128, the output activation
function is ReLu, and the optimizer type is AdaDelta.

• Each critic network has four layers, with an input layer
of 4M + 5 units, two fully connected hidden layer of
300 units, and an output layer of 1 unit from bottom
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FIGURE 4. The DRL network framework.

to top. The learning rate of the critic network is 0.001,
the learning rate of the target entropy is 0.01, the batch
size for training is 128, the output activation function is
ReLu, and the optimizer type is Adam.

• The actor network has four layers, with an input layer
of 4M + 3 units, two fully connected hidden layer of
300 units, and an output layer of 2 units from bottom
to top. The learning rate of the actor network is 0.0004,
the batch size for training is 128, the output activation
function is Tahn, and the optimizer type is Adam.

IV. SIMULATION VERIFICATION
This section first introduces the simulation environment
and the hardware and software configuration used in the
experiment, then it designs multiple simulation scenarios of
different difficulty according to the required MER metrics,
and finally presents the results and analysis of these scenarios
to verify the effectiveness of our proposed DRL network in
Scouter-N.

Since the primary concern for DRL is the algorithm’s
computational burden, the software and hardware versions in
the testing environment must be guaranteed to be consistent
when comparing the performance of different algorithms
under the same conditions. In the experiment, we use the
software and hardware of the version/model shown in Table 2.

A. SIMULATION SETTINGS AND EVALUATION METRICS
Due to the concurrent amplification of state dimensions and
learning samples, an increase in the number of targets in
finite-time MER tasks not only raises the decision-making
complexity of the agent, but also dramatically enhances the
convergence difficulty of the DRL algorithm. Thus, three

TABLE 3. After training, the performance of the proposed DRL network at
different tasks, metrics includes the SR (%), MTD (km), CT (h), and
MDT (s).

MER scenarios with radar numbers of 2, 3, and 4 are set
up in Scouter-N, respectively, to investigate the variance
in the performance of the agent and the characteristics of
the reconnaissance behavior it mastered. Apparently, the
difficulty of the task increases as the radar number increases.

Based on a specific random seed, 21000 randomly initial-
ized episodes are carried out for each task, and each episode is
run independently for no more than 1000 operating steps. The
first 20000 episodes are used to train the DRL-based agent
while the remaining 1000 episodes are used to test it.

A real-time CEW requires signal processing to be com-
pleted in 1 s after the UCAV intercepts the target radar signal.
The operating cycle of all tasks in Scouter-N is therefore set
at 1 s, and the maximum time Tmax allowed for each task
is 1000 s. According to the conclusion in Section II-A, the
UCAV must choose a greater 1T as much as possible while
meeting the condition 1T < Tmax to complete MER, thus
We compromise between following the practical situation and
the convergence ease of DRL algorithms by setting 1T to
100 s, and Nm=100 s/1 s=100. Additionally, if the UCAV
reconnaissance of each target radar lasts for 100 cycles or the
UCAV is destroyed by anti-aircraft missiles, the episode will
be regarded as ending ahead of time.

To improve the generalizability of our proposed DRL
network, it is emphasized that the state information of
all objects in Scouter-N will be initialized randomly at
the beginning of each episode under the following reset
conditions:


κm,t = 0
||pmo,t ||qt > 1dm

Emλ2mσ

(4π)3 ||pmo,t ||4
< Pm,min

,m = 1, 2, . . . ,M (28)
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FIGURE 5. Evaluating the DRL network’s convergence performance in Scouter-N. The three subfigures of MAR represent the results of various tasks.

FIGURE 6. Evaluating the reconnaissance behaviors learned by agents in Scouter-N. The three subfigures of RSA represent the results of various tasks.

The following five metrics are employed to evaluate
the experiments for the three different scenarios mentioned
above:

1) Success rate (SR): SR refers to the proportion of
reconnaissance tasks that are completed successfully,
and its value can only be obtained after all test episodes
are exhausted.

2) Mean traveled distance (MTD): MTD refers to the
mean distance traveled by the agent to complete a task,
and its value can only be obtained after all test episodes
are exhausted.

3) Computation time (CT). CT refers to the time nec-
essary for the DRL network to complete all training
episodes, and its value can only be obtained after all
training episodes are exhausted.

4) Mean decision-making time (MDT). MDT is the time
it takes the agent to make a reconnaissance decision.
MDT is a measure of the processing time of the
algorithm at a single time step for each test episode and
can be used to characterize the algorithm’s complexity.

5) Mean accumulated reward (MAR). MAR is used to
evaluate the DRL algorithms’ convergence in different
scenarios, and its calculation method is given in [22].

A simulation test of three scenarios is run in Scouter-N
with the traditional algorithms for artificial potential
field (APF) [32], the regular deep deterministic policy
gradient (DDPG) [33], and the twin delayed DDPG (TD3)
as the comparison calculation examples [34]. Additionally,
we use a completely random strategy as a baseline in the
comparative experiment to verify the learning and cognitive
abilities of the agent.

B. CONVERGENCE ANALYSIS
During the training episode, we focus on the change in con-
vergence of a continuous metric like MAR. Effective agents
tend to show a convergence tendency before exhausting all
episodes. In other words, if the agent’s MAR value does
not converge within an appropriate number of iterations, the
agent is not competent for the current task.

Figure 5 shows the convergence results of the algorithms
on MAR. The detailed performance results of our DRL
network in three tasks, such as SR and MTD values, are
reported in Table 3. Although the number of radar stations and
the difficulty of the MER task are directly connected, DRL-
based agents are able to execute electronic reconnaissance
tasks with a high SR, which is at least 43.8% higher than
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traditional algorithms and up to 75.1% higher. Unfortunately,
the MAR curve does not converge in the given episodes
when four radars emerge in the Scouter-N environment.
A plausible explanation for this is that as the number of radars
gradually increases, the percentage of the radar air-defense
area compared to the overall task space increases, i.e., the
maneuverable space is compressed relative to the UCAV, and
the priority-driven reward shaping tends to trap the UCAV’s
maneuvering policy in a local optimum. Overall, our DRL
network is ultimately able to train the most potent UCAV
despite the severe performance loss in the most challenging
task.

Note that, although the traditional algorithms almost inef-
fective in Scouter-N, the deterministic-policy-based DDPG
and TD3 perform exceptionally well in the less difficult two
types of tasks [33], [34], and the SAC has slightly inferior
performance due to the enormous amount of action explo-
ration required [29]. However, in complex MER scenarios
with four radars, due to insufficient action exploration, DDPG
and TD3will overemphasize low-reward policies, resulting in
far inferior performance compared to SAC.

Although we propose a network framework that is
compatible with multiple DRL algorithms, its actor network
becomes more complicated than DDPG and TD3 due to
the computational requirements of the SAC for probability
distribution generation and action sampling. As verified
in Table 3, all DRL algorithms have significant time
consumption, and DDPG consumes less due to its simpler
network structure and faster convergence. Moreover, judging
from the changes in MTD and MDT values, the SAC
algorithm is better adapted to MER.

C. BEHAVIOR ANALYSIS
Table 2 reveals that the DRL-based agent has the most
advanced MER capabilities in Scouter-N, but we still wish
to investigate what kind of behavioral convergence drives it
to win and possess a high MAR value.

In this section, we employ the RSA mentioned in (23) as
the key metric to perform a behavior analysis for the UCAV.
Using data smoothing, Figure 6 illustrates that the trained
UCAV’s reconnaissance behavior changes significantly.

The mean RSA value for the benchmark strategy is 45◦

since it is completely random. The APF optimizes the local
policy based on vector navigation under limited capability
to reduce its RSA value compared to the baseline. From
the three subfigures in Figure 6, we can determine that the
DRL-based approaches enable the agent to understand RSA
minimization.

To guarantee that the target radar signal can be intercepted
continuously throughout the MER task, the converged RSA
value oscillates around 10◦, indicating that the UCAV
attempts to stabilize the orientation of its receiving antenna
mainlobe by attitude control (little oscillations in RSA

FIGURE 7. Reconnaissance trajectories of the agent in a MER task with
four radars. The white lines represent the flying path of the agent, while
the red dashed line indicates that the agent is intercepting radar signals
and has not been detected by any radar. The starting and ending
operating steps of the corresponding trajectory segments in three
subgraphs involving: (a) 1st to 238th; (b) 239th to 380th; (c) 381st to
522nd.
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indicate this same trend, even in the most challenging task
that ended in failure). Although the ideal RSA value from the
perspective of god should be 0, the existence of observation
errors makes this wish impossible to achieve. Furthermore,
a smaller RSA can enable the UCAV to perform circling
maneuvers, thereby allowing it to keep a safe reconnaissance
distance from the target.

We can extract and analyze the maneuvering patterns
of electronic reconnaissance preferred by the agent by
segmenting high-quality trajectories, a MER task of four
radars illustrated in Figure 7 is a good example:
(a) At the beginning of the task, the trained agent first aims

at the closest and highest-priority target for a quick
approach, then quickly adjusts its posture, conducting
reconnaissance in the form of a lateral circling flight
and turning back within a certain range, and smoothly
follows and locks in the leftmost radar.

(b) The agent detects a new radar in the forward direction,
but due to the incomplete reconnaissance of the current
target, it chooses a threat avoidance maneuver after eval-
uating the priority of the new target while maintaining an
effective reconnaissance distance from the current target
until the 100 times of electronic reconnaissance have
been completed. The agent then moves with the same
agility into the reconnaissance area of the next target in
a lateral surround.

(c) Maintaining a safe distance from each radar, the agent
continuously traverses the reconnaissance area of the
2nd, 3rd, and 4th radars using horizontal maneuvers.
Note that if the agent intercepts signals from other radars
before the locking of the current radar is over, the agent
will maneuver a short distance away from the target
area after weighing the pros and cons of continuous
reconnaissance and threat avoidance.

By comparing the trajectory segments in
Figure 7 (a), (b), and (c), we conclude that circling and
reciprocating turnback are the preferred behaviors for the
agent in Scouter-N, as they allow for a longer and more
stable MER with simpler maneuvers while ensuring that the
mainlobe of the receiving antenna is always aligned with the
target radar.

V. CONCLUSION
In this paper, we innovatively design a DRL network to solve
the problem of regional MER. Based on the test results at
three difficulty levels, the superior adaptability of the SAC
algorithm’s network for MER is verified. Meanwhile, we are
surprised to find that the trained agent’s electronic recon-
naissance behaviors match those of artificially manipulated
aircraft after behavior analysis on high-quality trajectories.
Unfortunately, because the behaviors of avoiding threats are
frequently coupled with the behaviors of pursuing benefits,
even though priority-driven rewards enable the agent to work
out MER quickly, this insufficiently greedy strategy makes
it difficult for the agent to excel in MER tasks with dense
radars. Consequently, the two most significant challenges

to be addressed for future MER implementations utilizing
artificial intelligence are designing more instructive reward
functions and creating DRL algorithms with better action
exploration.
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