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ABSTRACT Big data is generated from various sources, such as the Internet of things, social media,
databases, wearables, smart cars, and so on, and is characterized by five V’s: volume, value, variety, velocity,
and veracity. Transmitting big data to secondary users (SUs) over a cognitive cloud radio access network
(CRAN) offers multiple benefits and critical challenges. To address these limitations, we have designed
two deadline-aware, non-preemptive algorithms that maximize the sum of weighted data transferred by the
network over admission, time scheduling, spectrum, and remote radio head (RRH) allocation decisions.
Each data request can have a different size, target bit error rate (BER), minimum signal-to-noise ratio (SNR)
requirement, and deadline, incorporating the simultaneous provision of various types of big data and ordinary
data jointly. Furthermore, our formulation considers all five V’s of big data. The first algorithm we propose
is an offline batch scheduling (OFB) algorithm, which assumes that all data requests are available at the time
of optimization. While this sub-optimal algorithm has a lower complexity and can be implemented in larger
networks than the global optimum algorithm, it is not practical for real-time applications since it requires
collecting all data requests beforehand for joint scheduling. Thus, our second one is a sub-optimal online
real-time scheduling (ONR) algorithm that performs admission and resource allocation on-the-fly using
predictions of upcoming data requests and future availability of spectrum channels. After deriving these
two algorithms, we conduct a thorough performance analysis and derive bounds on their objective values
compared to the global optimum.We then demonstrate their effectiveness in achieving higher weighted sums
of transferred data and prioritizing SUs with big data requests over existing alternatives through extensive
numerical comparisons.

INDEX TERMS Scheduling, resource allocation, user selection, cloud radio access network (CRAN), big
data, total transferred data.

I. INTRODUCTION
We are in the big data era. In the past decade, immense
amount of new data generated by the proliferation of smart
mobile phones, the internet of things, wireless smart meters
and cloud computing has led to wireless big data [1], [2].
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approving it for publication was Quansheng Guan .

Data generation rates are neither decreasing nor stable [3],
and on the contrary, it is expected that wireless networks
face significant growth in wireless big data due to future
emerging services such as the internet of everything (IoE)
and holographic telepresence. According to the International
Telecommunication Union Radio (ITU-R) [4], total mobile
data traffic is expected to experience 77-fold growth in ten
years such that it increases from 57 exabytes (1018 bytes)
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per month in 2020 to 4394 exabytes per month in 2030. The
accuracy of this estimation is confirmed in [5] where it reports
that the total mobile traffic has reached 59 exabytes permonth
at the end of 2020. In fact, Quarter 3 of 2021 has witnessed a
data generation rate of 80 exabytes per month. It is predicted
that each subscriber will demand and/or generate almost
257.1 gigabytes of data traffic per month by 2030 [4].

Big data refers to large, complex datasets that are difficult
to process and analyze using traditional methods. Some of the
main categories of big data include:

(i) High-resolution audio and video streaming (ii) Data
generated by social networking websites such as Instagram,
Facebook, Twitter, and Flickr, (iii) Mobile TV, (iv) Real-time
gaming and control, (v) High-speed downloading, (vi) Online
remote monitoring.

These categories are expected to continue growing in
the coming years, and they are characterized by five main
features, often referred to as the ‘‘5 V’s of big data’’ [6], [7]:

1) Volume: Big data sets are typically massive, ranging
from hundreds of gigabytes to petabytes in size.

2) Velocity: Big data must be transmitted quickly to meet
the time-sensitive needs of various applications.

3) Variety: Big data comes in many different forms, from
structured data in databases to unstructured data in
social media feeds.

4) Value: Big data has significant priority and usefulness
with the potential to create value for businesses and
organizations, but it must be properly analyzed and
interpreted.

5) Veracity: Big data quality can be compromised by
errors, inconsistencies, or biases, so it’s important to
ensure data accuracy and reliability.

A fundamental challenge is to support these big data
characteristics in future wireless networks. In fact, they
impose tremendous technical burdens on designing efficient
networks [8]. Traditional networks are inadequate for dealing
with big data. The traditional cellular network, also known
as Radio Access Networks (RAN), consists of numerous
standalone base stations (BSs). Each BS covers a limited
geographical area, and multiple BSs work together to provide
seamless network coverage. Each BS is responsible for
processing and transmitting its own signal to and from the
mobile device, and forwarding data to and from the mobile
device to the core network through the backhaul. However,
the current RAN architecture has some drawbacks. Each
BS has its own cooling system, backhaul transportation,
backup battery, and monitoring system, which can be costly
to build and maintain. Moreover, due to limited spectral
resources, network operators ‘‘reuse’’ the frequency among
different base stations, which can lead to interference
between neighboring cells and affect network performance.

To address the challenges posed by big data, new
technologies such as cloud radio access network (CRAN) [9]
offer a flexible and promising infrastructure. The CRAN
comprises three main components: a centralized pool of
baseband processing units (BBUs), distributed remote radio

heads (RRHs), and high-bandwidth, low-latency wired or
wireless fronthaul links that connect the BBUpool andRRHs.
In contrast to traditional base stations, the BBU is separated
from its corresponding RRH, providing an efficient structure
for cloud-based resource sharing.

The CRAN architecture has several distinct characteristics
that set it apart from other cellular architectures. First,
it promotes large-scale centralized deployment by enabling
many RRHs to connect to a centralized BBU pool. Second,
it supports collaborative radio technologies, allowing any
BBU to communicate with any other BBU within the
BBU pool with high bandwidth and low latency. Finally,
it provides real-time virtualization capability, which ensures
that resources in the pool can be dynamically allocated to base
station software stacks, such as 4G/3G/2G function modules
from different vendors, based on network load.

This paper tackles the significant challenges of downlink
big data transmission for unlicensed or secondary users (SUs)
in cognitive CRANs. The aim is to maximize the total sum
weighted transferred data while taking into account the five
V characteristics of big data. To achieve this, the paper
simultaneously optimizes SU selection, the association of
remote radio heads (RRHs) with selected SUs, allocation
of temporarily available spectrum, deadline-aware non-
preemptive time scheduling, and adaptive modulation to
account for time-varying channels between each SU and the
connected RRHs. This is a complex and challenging problem,
involving a high-dimensional mixed continuous and integer
program of highly non-convex nature.

Before summarizing the contributions of this paper,
we review current prior art on this topic.

A. RELATED WORKS
Given our design focus, we classify the relevant literature into
four categories: Big data transmission, RRH and spectrum
allocation, user selection, and time scheduling.

1) BIG DATA TRANSMISSION
Reference [10] focuses on utilizing big data for machine
learning applications that require large amounts of data.
To reduce the transmission of wasteful data that does not
significantly impact the learning algorithm’s performance,
they combine edge and cloud computing. This approach
involves caching selected data content on various RRHs and
BBU pools, which is determined based on predictions of the
demanded data’s content.

In [11], the big data transmission problem in a wireless
network is addressed, taking into account link capacity
constraints, current loads of links, requested data sizes, and
network delay limits. The goal is to optimize service/waiting
time and throughput of the network. To achieve this, a new
centralized algorithm is designed to carry out routing and
scheduling simultaneously.

In multimedia big data wireless services, meeting deter-
ministic constraints on service delay is challenging, espe-
cially when bandwidth and transmit power are constrained.
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To tackle this issue, reference [12] substitutes the determinis-
tic delay constraint with a statistical one for software-defined
radios over 5G networks. They solve the optimization
problem over routing, cache placement, and power allocation
decisions and demonstrate that three techniques should be
jointly utilized. Specifically, (i) network function virtualiza-
tion is exploited to find optimal data transmission paths,
(ii) information-centric network concept derives optimal
caching locations for big data, and (iii) software-defined
networks (SDN) help allocate resources dynamically.

Overall, these references propose innovative approaches
to address the challenges of big data transmission in
wireless networks. By utilizing edge and cloud computing,
designing centralized algorithms for routing and scheduling,
and leveraging techniques such as network function virtu-
alization, information-centric networking, and SDN, these
approaches aim to optimize performance and throughput
while reducing wasteful data transmission and meeting
service delay constraints.

A variety of techniques have been proposed to address the
challenges associated with transmitting big data wirelessly.
For instance, Terahertz transmission has been suggested
in [13] as a way to communicate big data between
autonomous vehicles, thereby increasing network capacity
due to its tremendous bandwidth. In [14], the authors
study multiple parts of a wireless network infrastructure to
efficiently transmit geographically distributed big data to data
centers, including servers inside a data center, different data
centers, backbone, and access networks.

Big data transmission has also been investigated under
different wireless network architectures such as CRANs,
SDNs, 5G, wireless sensor networks, D2D communication,
and 6G integrated space-air-ground networks, as discussed
in [2], [15], [16], [17], [18], [19], and [20], respectively.
Reference [21] introduces a cooperative cache-based strategy
on ground stations to reduce the load on satellite links
and their latency. To ensure the confidentiality of big data
transmission while sharing tasks between graphic processing
units across various ground stations, compression techniques
were adopted.

Moreover, transfer control protocol (TCP) with simul-
taneous data transmission in multiple paths is introduced
as a promising transport layer protocol for big data appli-
cations in [22]. This approach offers improved reliability
and throughput over traditional TCP, making it a suitable
candidate for large-scale big-data transmission.

Reference [23] treats video traffic as the dominating
real-time big data application, and designs a new scheduling
policy for packet transmission such that more users are
simultaneously served without degrading current users’
experiences. This algorithm offers a guaranteed improvement
in the total number of served users. This achievement is a
result of the proper assignment of big data requests and the
corresponding bandwidth on each server on a small time
scale. The problem of deadline-aware bandwidth allocation
is investigated in a wired setup by [24], where both an offline

batch scheduling algorithm and online dynamic scheduling
were derived to ensure acceptance of a maximum number
of big data requests. Upon solving the posed optimization
problem, admission and scheduling decisions, data rates, and
path selection for every admitted request are determined. The
allocated bandwidth may be varied in an adaptive fashion
at any time during big data transmission. Contrary to [24],
we consider a scenario where both big data and non-big
data requests arrive simultaneously and we aim to assign a
larger priority to big data requests. Furthermore, our model
is wireless instead of wired. Finally, we strive to maximize
the weighted sum of transferred data instead of the number
of served users.

2) RRH AND SPECTRUM ALLOCATION
Reference [25] jointly assigns RRHs and allocates virtual
machines (VMs) to minimize the total delay including task
execution time on BBU pool and transmission delay to the
corresponding RRH cluster over programmable hierarchical
CRANs. Energy consumption for CRANs is minimized in
[26], [27], [28], and [29] where RRH selection is considered.
The BBU pool performs joint RRH selection, RRH-user asso-
ciation, transmit beamforming, and VM allocation in [26]
over CRANs with limited fronthaul capacity. A new model
of energy usage for the BBU pool is derived by using
collected empirical data from a programmable CRAN testbed
in [27]. Upon model fixation, power-bandwidth assignment
and active VMs selection are carried out. The goal of the
power-bandwidth assignment is to meet the quality of service
(QoS) for users, while VM assignment is performed to
minimize energy usage. Heuristic green energy-aware RRHs
selection algorithm is derived for coordinated multi-point
(CoMP) communication over CRANs in [28]. In [30], a RRH
clustering algorithm is proposed to jointly perform load
balancing and maximize coverage range in the CRAN. RRH
clusters are formed by mapping as large a number of RRHs as
possible with different traffic to each BBU while minimizing
the number of active BBUs. Furthermore, the optimal
spectrum assignment problem is solved in each cluster by
a genetic algorithm to maximize communicated traffic load
under overall energy consumption. The RRH-BBU mapping
is also studied in [31] and [32]. A traffic anticipation model
is leveraged to assign every BBU with certain RRHs in [31].
In addition to this offline approach, a real-time BBU-RRH
mapping is also derived to provide load balancing while
maintaining QoS upon the arrival of every data request. Joint
user association and RRH-BBU mapping subject to QoS
constraints are carried out in [32]. Orthogonal frequency-
division multiple access (OFDMA) based CRAN is used
for downlink data transmission in [33], where the weighted
sum rate is maximized in two successive steps. First, RRHs,
spectrum, and users are allocated given a fixed transmission
power. Then, transmit power is optimized for the given
spectrum, RRHs, and users. Reference [34] enhances sum
capacity by jointly assigning time-frequency resources and
RRHs where RRH cooperation, i.e., CoMP, is assumed
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over CRAN. Spectrum trading between network and service
providers in a virtual CRAN is investigated by [35]. Virtual
CRAN is comprised of a set of separate RRH-BBUs but one
assumes that the BBUs are integrated into one BBU pool. Full
duplex CRANs are looked at by [36] and [37], where RRH
selection is carried out.

3) USER SELECTION
The concept of user selection in wireless communications
involves selecting the users with the best channel quality at
any given time to allocate system resources to those who can
best exploit them. This approach leads to improved system
capacity and performance. While this concept has been
around for a long time, recently machine learning has been
deployed to reach it. For example, in [38], power allocation
using deep unsupervised learning is performed first, followed
by user selection.

In addition to this, several studies have been conducted
on user selection in CRANs. One such study [39] focuses
on maximizing the weighted sum rate in CRAN by jointly
selecting users and their corresponding beamforming vectors.
To achieve this, the study finds the maximal independent sets
in the user selection graph while optimizing the beamforming
vectors for every possible user to multi-antenna RRH assign-
ments. Similarly, user selection has also been performed
in conjunction with RRH and spectrum allocation [33].
Additionally, another study [40] performs user selection to
minimize network power consumption in full duplex CRANs
while meeting QoS requirements.

4) TIME SCHEDULING
Reference [41] performs time and power allocation when
users’ requests arrive in real-time and must be served within
a specific deadline and signal-to-interference plus noise ratio
(SINR). This work strives to maximize power efficiency
while minimizing per-processor power consumption. Thus,
it formulates a maximization problem with a weighted sum
of power efficiency and processors power consumption.
Optimization parameters are power allocation and processor
scheduling in CRANs. A maximum transmission time mini-
mization with constraints on spectrum and power resources
and tolerable delay is studied in [42] where VMs are
optimally allocated. A real-time BBU and RRH assignment
is considered in [43]. The backhaul design problem of the
CRAN is formulated in [44] to maximize a weighted sum of
energy and spectral efficiency by a joint allocation of power
and time slots for RRHs.

B. OUR CONTRIBUTION
Our proposed approach addresses several challenges in
wireless big data transmission that have not been jointly
investigated in existing literature. Specifically, we optimize
jointly over SU selection, RRHs association to selected SUs,
allocation of temporarily available spectrum, deadline-aware
non-preemptive time scheduling, and adaptive modulation to

maximize the weighted sum of transferred data. In addition,
we take into account the 5 V features of wireless big data
in our optimization problem. To address the Volume feature,
we include data size in the objective function. To address
the Value feature, we assign different priorities to each data
request. To address the Velocity, Variety, and Value features,
we consider different hard deadlines for the completion of
data delivery to various users. Finally, to address the Veracity
and Variety features, we use minimum signal-to-noise ratio
(SNR) and a target bit error rate. By considering these
factors in our optimization problem, we can better allocate
resources and improve the efficiency of wireless big data
transmission.

Wireless big data transmission requires a significant
amount of bandwidth, which makes unlicensed spectrum
allocation particularly challenging. The spectrum crunch is
caused by both primary user activity and spectrum scarcity.
To address this issue, we propose an offline, non-preemptive
scheduling algorithm that assumes all requests are collected
by the BBU pool and then jointly scheduled. However,
real-time user admission and online resource allocation are
also needed. Therefore, we leverage predictions of possible
upcoming data requests and spectrum availability to make
decisions on the fly. For example, by analyzing data request
history, we can reserve resources for SUs that have a higher
impact on the objective function. In addition, we constrain
the maximum number of SUs that an RRH can serve based
on the energy supply of each RRH. Finally, we use adaptive
modulation to adjust the transmission rate due to the variable
nature of RRH-SU links. To summarize, we face several
challenges in wireless big data transmission, and we propose
remedies for each of these challenges, which are summarized
in Table 1.

Before delving into our proposed algorithms, it is impor-
tant to highlight the main differences between our work and
the algorithm proposed in [45]. While our system model
and optimization problem remain the same, our contribution
lies in the development of new algorithms. Reference [45]
presents a dynamic programming algorithm that achieves
global optimality but suffers from high complexity, making
it suitable only for small networks. Additionally, it is an
offline algorithm that requires all upcoming data requests to
be collected before scheduling, causing unacceptable delays
for real-time applications.

In contrast, we present two new algorithms: an offline
sub-optimal algorithm with lower complexity that can handle
larger networks than [45], and an online algorithm that can
schedule new requests as they arrive without any delay. Our
main novelty lies in these new algorithms, rather than the
system model. However, there are two minor differences in
our system model compared to [45]. Firstly, we consider
a frequency-selective fading model, whereas [45] assumes
frequency-flat fading across all subcarriers. Secondly, our
proposed algorithms are non-pre-emptive, meaning they can
stop serving a low-priority user midway to serve a higher-
priority user, while [45] uses a pre-emptive algorithm that
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TABLE 1. Challenges and our proposed solutions.

serves each admitted user completely before serving the
next.

Regarding the objective function, [45] considers the
weighted sum of data transferred divided by the largest
service time of admitted users. In this work, we focus solely
on the weighted sum of data transferred, as omitting the
largest service time from the objective function leads to
more favorable, low-complexity, and real-time algorithms.
Nevertheless, our objective function still emphasizes serving
big data requests in twoways. Firstly, big data requests lead to
a large increase in transferred data, which explicitly appears
in the objective. Secondly, we can assign higher priority
weights to big data requests to ensure they are served first.

Given the points mentioned above, the contributions of our
work can be summarized as follows.
• We propose an objective function that prioritizes

big data requests while still accommodating ordi-
nary data requests. Our objective function maximizes
the weighted sum of transferred data over decisions
involving SU selection, SU-RRH associations, channel
allocations, and deadline-aware time scheduling, subject
to minimum SNR and maximum target bit error
rate (BER) constraints. We have incorporated all five
characteristics of big data in our optimization problem
as follows:
1) Volume: The objective function directly encour-

ages larger volumes of data.
2) Velocity:We have incorporated velocity by consid-

ering the deadline parameter of each data request.
3) Variety: We have modeled variety by allowing for

different types of data demands with varying BER,
SNR requirements, and deadlines.

4) Value: The priority factor assigned to each user in
the objective function captures the value aspect of
big data.

5) Veracity: The priority factor, target BER, and dead-
line for each data request are used to incorporate
veracity.

To the best of our knowledge, the proposed objective
function has not been previously reported in big
data literature. Furthermore, the set of parameters we
optimize over is novel and not covered in the literature
except for [45], whose major differences with current
work were elaborated before.

• We present two algorithms to solve the optimization
problem in different scenarios. Firstly, assuming all data
requests arrive before running the scheduling algorithm,
we propose an offline batch method to sub-optimally
solve the problem. Secondly, we consider a scenario
where real-time decisions are made on admission and
resource allocation upon the arrival of every data
request. In this case, we propose an online algorithm that
takes advantage of probabilistic predictions of upcoming
data requests and the availability of channels. Our online
algorithm is designed to adapt to any prediction method,
regardless of its quality.

• We rigorously analyze the performance of both the batch
and real-time algorithms, and derive a bound on their
performance compared to the globally optimal solution.
We also evaluate the complexities of both algorithms.
To further validate our proposed algorithms, we conduct
extensive simulations and compare their performance
to existing alternatives using various metrics. Our
simulation results demonstrate the superior performance
of our proposed algorithms over existing alternatives.

C. PAPER ORGANIZATION
The rest of this paper is organized as follows. Section II
introduces the system model. Section III poses the opti-
mization problem. Section IV presents the proposed offline
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TABLE 2. Definitions of all acronyms used in the paper.

batch (OFB) scheduling algorithm, while online real
time (ONR) scheduling algorithm is derived in Section V.
Section VI carries out the rigorous analysis of our two
proposed algorithms in terms of both performance and
complexity. Simulation results are illustrated in Section VII
and conclusions are drawn in Section VIII.
All the acronyms used in the paper are enlisted in Table 2.

Table 3 presents the notations of the following sections.

II. SYSTEM MODEL
Our network is composed of a macro cell, which is overlaid
with the cognitive CRAN architecture based on set R of
small cell RRHs. Macro and small cells are deployed to serve
licensed primary users (PUs) and unlicensed SUs belonging
to setU , respectively. This model uses mutually synchronized
time slot structure for PUs and SUs, in which time slot t
spans the time interval [(t − 1)1t, t1t). The value of 1t
generally depends on subcarrier spacing, for example in IEEE
802.11 family, 1t = 9 µseconds [46], and recommended
1t for 5G is reported in [47]. Time is divided into periods,
where each period is comprised of many time slots. It is
assumed that data requests at each period are scheduled
independently, set aside our online algorithm, and thus the
proposed optimization is carried out independently for each
period. To serve selected SUs, RRHs are distributed in the
service area and connected to the BBU pool via high speed
and low latency ideal fronthaul links [48]. The symbol rn,t

denotes the maximum number of SUs that RRH r ∈ R can
serve in time slot t of period n. The BBU pool has perfect
knowledge of path loss and shadowing between every SU and
all RRHs. However, it has access to statistics of small scale
fading only. It should be mentioned that once scheduling is

completed, every RRH estimates the channel to its assigned
SUs with almost perfect accuracy in order to carry out the
needed precoding. However, only statistical knowledge is
utilized for our scheduling algorithms.

The available spectrum in the network is divided into
S equal channels, each with bandwidth 1f . The channel
s ∈ {1, . . . , S} is denoted by 1fs. The unused channels
are available for SUs and are arranged in the spectrum
pool [49], [50], where set Sn,t denotes these available
channels in time slot t of period n. To ensure tractability of
the problem formulation, we utilize an orthogonal multiple
access scheme, where only one SU or PU can use a particular
frequency band s belonging to {1, 2, . . . , S} at each time
slot. Every SU u may request a different types of data with
different QoS requirements. We model the QoS requirements
by target bit error rate, BERtar

u , minimum satisfactory SNR,
γu, priority of SU, αu, and T nu as the deadline to receive the
whole requested data in period n. We suppose SU u requests
data with length Lu × L, where Lu ∈ N presents number
of data frames, and L is the standard frame size. Frame
size is about 1500 bytes for Ethernet II and IEEE 802.3,
or 2304 bytes for WLAN, and may be higher for extended
versions [46]. This user can start to receive data from time
slot tnu of period n. Subsequently, we describe every user’s
QoS demandwith a 6-tuple:

(
BERtar

u ,Lu × L, tnu ,T
n
u , γu, αu

)
.

Let Rn,t
u and Sn,tu denote allocated RRHs and channels

to SU u in time slot t of period n. Also, define Rn
u :=

∪
t
Rn,t
u and Snu = ∪t S

n,t
u as allocated resources to SU u in

period n. To ensure fairness in resource allocation, maximum
number of channels allocated to each SU is limited to smax.
Moreover, the set of time slots that u receives service in
period n is denoted by T n

u :=
{
t | Rn,t

u ̸= ∅ ∧ Sn,tu ̸= ∅
}
.

T n
u may be comprised of several separate time slots due to

unavailability of spectrum for unlicensed users in certain time
slots.

For simplicity, we assume all RRHs and SUs have a
single antenna. Let us denote small-scale fading between
RRH r and SU u in frequency band s by hsr,u ∈ C.
Furthermore, we represent the combined effects of transmit
and receive antenna gains as well as path loss and shadowing
by d sr,u ∈ R+. The instantaneous SNR in the receiver of SU
u ∈ U when associated with RRH r and channel s, γ sr,u,
is given as

γ sr,u =
d sr,u | h

s
r,u |

2 Pr,u
0σ 21fs

. (1)

In (1), Pr,u is the transmit power of RRH r to SU u,
σ 2 denotes the background noise power spectral density, and
0 is the SNR gap which represents the mismatch between
theoretical and practical SNR values for achieving a given
information rate [51], [52]. Assuming adaptive modulation
and coding (AMC) is utilized for each SU and maximum
ratio beamforming is performed by the associated RRHs to
each SU, the approximated spectral efficiency for user u at
frequency s at period n and time slot t , defined simply by
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TABLE 3. List of symbols used in the paper.
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TABLE 3. (Continued.) List of symbols used in the paper.

kn,t,su , is given by

kn,t,su = Eh

log2
1+

1.5

ln 0.2
BERtar

u

×

∑
r∈Rn,t

u

γ sr,uIR+
(
γ sr,u − γu

) , (2)

where h denotes the set of all small-scale fading coefficients
hsr,u. It should be mentioned that we also use an indicator
function IX (x) which returns 1 if x ∈ X is true, and
0 otherwise. Subsequently, the number of bits communicated
to user u at time slot t of period n is given by

LR
n,t
u ,Sn,tu

u

=

∑
s∈Sn,tu

1t1fskn,t,su =

∑
s∈Sn,tu

1t1fs

× E

log2
1+

1.5
∑
r∈Rn,t

u

γ sr,uIR+
(
γ sr,u − γu

)
ln 0.2

BERtar
u


 .

(3)

III. PROBLEM FORMULATION
Our optimization problem simultaneously performs SU
admission as well as assignment of RRHs, channels, and time
slots to admitted SUs so that their QoS demands are satisfied.
To rigorously define our optimization problem, we need to
provide the concept of a disjunctive set of SUs. In period
n, set U ⊆D U is a disjunctive set of SUs if they can be
served simultaneously in that single period with the available
resources. Thus, any disjunctive set of SUs should satisfy the
following constraints for a given set ofRn,t

u , Sn,tu , and T n
u :

T n
u ⊆ [tnu ,T

n
u ], (4a)∑

t∈T n
u

LR
n,t
u ,Sn,tu

u ≥ LuL, (4b)

Sn,tu

⋂
Sn,tv = ∅, ∀u ̸= v ∈ U , ∀t, (4c)⋃

u∈U

Sn,tu ⊆ Sn,t , ∀t, (4d)

|Sn,tu | ≤ s
max, ∀t, (4e)∑

u∈U

IRn,t
u
(r) ≤ rn,t , ∀r, t. (4f)

Equation (4a) ensures that the service time slots for SU u
all fall in the acceptable integer interval given by [tnu ,T

n
u ].

Constraint (4b) ensures that the allocated resources to SU
u is sufficient for communicating all its requested data
bits. Equation (4c) enforces orthogonal frequency allocation
among SUs, while (4d) guarantees that only PU’s unused
spectrum bands are allocated to SUs. Constraint (4e) limits
the number of channels allocated to SU u by smax. Finally, (4f)
ensures that every RRH does not exceed its service capacity.
We utilize the symbol ⊆D to denote a disjunctive subset.
Our optimization goal is to find a disjunctive set of SUs

and their corresponding resource allocation and schedules
such that sum weighted data transfer is maximized in a given
period

max
U⊆DU , {Rn

u,Snu ,T n
u }u∈U

∑
u∈U

αuLu . (5)

The QoS for the admitted SUs are guaranteed as we optimize
over disjunctive sets only. In period n, the optimal disjunctive
set of the selected SUs is denoted by U∗n , and corresponding
optimal allocated resources are shown by Rn

u∗ , S
n
u∗ , and T

n
u∗

for u∗ ∈ U∗n . When available time/spectrum/RRH resources
are sufficient to serve all SUs, the maximum value for the
objective function is achieved which equals to

∑
u∈U αuLu,

i.e., U∗n = U . However, resource scarcity introduces a
bottleneck. Thus, only a subset of SUs is usually admitted
and served. Given that Lu appears in the objective in (5), big
data requests are favored as serving them will lead to larger
objective values. Priority coefficients αus add another degree
of flexibility to our optimization. These coefficients allow us
to change the priorities of different SUs as necessary. For
example, they can be set to favor big data users, or to favor a
subset of premium users over others and so on.

The problem investigated in this paper is similar to the
one studied in [45], where it was proven to be NP-hard.
Although [45] solved the problem to global optimality using
dynamic programming, their approach is only suitable for
small networks with few resources and SUs. To address
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this limitation, we propose a low-complexity sub-optimal
offline batch (OFB) scheduling algorithm that aims to solve
the optimization problem in a greedy manner. However,
to prevent a significant loss in performance compared to
the global optimum, we also incorporate a substitution
mechanism into OFB. This technique allows OFB to replace
previously admitted users with low utilities with a user of
significantly higher utility [53].

The OFB algorithm assumes that all data requests from the
secondary users for a given period (denoted as n) are received
during the previous period (denoted as n−1). These requests
are then processed jointly in a batch mode to determine their
admission and scheduling variables. However, this approach
can become a bottleneck, particularly when the period length
is long. To address this issue, we propose an online real-time
(ONR) scheduling algorithm that evaluates and either accepts
or rejects new requests as soon as they arrive. Additionally,
the required resources are reserved immediately. In this paper,
we provide a detailed description of the OFB algorithm in
Section IV and introduce the ONR algorithm in Section V.
We also conduct a comprehensive performance evaluation of
both algorithms in Section VI.

IV. PROPOSED OFFLINE BATCH SCHEDULING (OFB)
Both the OFB and ONR scheduling algorithms are non-
preemptive, which means that data transmission to any user
can be delayed or interrupted to serve other users. These
delays may occur if other users have stricter deadlines, higher
priorities for receiving service, or there is a lack of spectrum
channels due to PUs’ activity.

OFB operates at the Baseband Unit (BBU) pool where
all incoming data requests are collected for the next service
period. At the end of the current service period, OFB sched-
ules all requests jointly and provides the list of admitted users
alongwith their allocated RRHs, spectrum channels, and time
slots for the next service period. By using this approach,
OFB can optimize system performance by considering all
incoming data requests together and allocating resources
accordingly. However, since it is non-preemptive, there is
a possibility of some requests being delayed or interrupted,
which can result in higher latency for some users.

Scheduling algorithms sort and schedule SUs in some
order based on some criterion. The sorting criterion varies
greatly for different algorithms. For example, SUs may be
sorted based on T nu in an ascending order, which gives
priority to the SUs with the earliest deadline. This leads
to the well-known offline greedy earliest deadline first
(EDF) algorithm [54], [55]. In another approach, SUs are
sorted based on their achievable data rate per unit resource,
which is equivalent to greedily solving a Knapsack problem.
Based on our objective function in (5), we use scaled
requested data size or αuLuL as our sorting criterion. Upon
denoting sorting order by ⪯, we have u ⪯ u′ if αuLu ≥
αu′Lu′ . It means that u has priority over u′ and should be
scheduled first. We hasten to add that when an algorithm
reaches global optimum, as in [45], sorting is unnecessary.

Algorithm 1 The Proposed OFB for Period n.

Input: ∀u ∈ U :
(
BERtar

u ,Lu × L, tnu ,T
n
u , γu, αu

)
,

∀t : Sn,t , ∀(r, t) : rn,t , and ζ .
Output: UOFB

n and corresponding allocated
resources.

1 UOFB
n ← ∅, U temp

n ← ∅

2 Sort U based on αuLu in a descending order
3 te← minu∈U tnu
4 while te ≤ maxu∈U T nu do
5 forall u ∈ U do
6 if tnu ≤ te ≤ T

n
u then

7 t1←−∞
Case 1

/* Are remaining resources
sufficient to serve u? */

25 if t1 = −∞ then
Case 2

/* Is it possible to
replace some of already
selected SUs by this
present SU u who has
faced insufficient
resources? */

56 te← te + 1

57 return UOFB
n , and for ∀u ∈ UOFB

n : (Rn
u,Snu , T n

u )

For sub-optimal approaches, initialization is critical as it
can lead to sub-optimal solutions with significantly different
objective values. Thus, sorting ensures that we start the
algorithm with a good initialization.

Algorithm 1 summarizes the OFB scheduling algorithm.
First, SUs are sorted based on the earliest time slot that they
can receive service which is tnu . OFB starts from the earliest
time slot and iteratively increments time slots. At each time
slot, OFB attempts to schedule as many SUs as possible up
to the current time slot by considering all unscheduled SUs
in the sorted order.

For every unscheduled SU and every time slot, OFB goes
through two cases. In case 1, OFB attempts to schedule the
SU whose turn has come by utilizing the remaining available
resources. If there are enough resources, the SU is scheduled,
and OFBmoves to the next unscheduled SU. If the remaining
resources are not sufficient, case 2 is invoked. In case 2, OFB
checks to see if any set of previously admitted users, whose
contribution to the objective is considerably lower than the
current SU, can be dismissed so that the current SU can be
scheduled instead.

Once all SUs have been considered, OFB returns the set
of admitted users, denoted by UOFB

n , along with the cor-
responding resource allocations. OFB is run independently
at the beginning of each service period. Overall, the OFB
scheduling algorithm aims to optimize the cognitive CRAN’s
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Case 1 in Algorithm 1

8 foreach su ⊆ {1, . . . , S} with |su| = smax do
9 t ′1←−∞

10 t ′1← maxi
{∑te

t=i
∑

s∈su L
s,t
u ≥ LLu

}
11 if t ′1 > t1 ∧ t ′1 ≥ t

n
u then

12 t1← t ′1
13 for t ← t1 to te do
14 Sn,tu ← Sn,t ∩ {1fs | s ∈ su}
15 Rn,t

u ←{
r | IR+

(
γ sr,u − γu

)
IN
(
rn,t − 1

)
= 1

}
16 T n

u ← {t | Sn,tu ̸= ∅ ∧Rn,t
u ̸= ∅}

17 if t1 ̸= −∞ then
18 UOFB

n ← UOFB
n ∪ {u}

19 U ← U \ {u}
20 U temp

n ← U temp
n ∪ {u}

21 ∀t /∈ T n
u : Sn,tu ← ∅,Rn,t

u ← ∅

22 for t ← t1 to te do
23 Sn,t ← Sn,t \ Sn,tu
24 ∀t ∈ Rn,t

u : rn,t ← rn,t − 1

performance by efficiently allocating resources to all SUs in
order to maximize the weighted sum rate of SUs.

We elaborate on OFB algorithm pseudo-code next. OFB
first sorts the SUs in a descending order of αuLu in line 2.
Scheduling is performed iteratively for time slots between
minu∈U tnu and maxu∈U T nu . OFB begins with the smallest
acceptable time slot minu∈U tnu , checks if it can schedule
any new SUs and then increments the time slot until it
reaches the largest value maxu∈U T nu . The parameter te keeps
track of the time slot currently being considered. In Line 5,
every unscheduled SU is considered in the sorted order.
In Line 6, those SUs whose acceptable data communication
interval [tnu ,T

n
u ] contains te but are not yet scheduled, are

considered. For any such SU, Case 1 and Case 2 are
performed successively.

In Case 1, each subset su of {1, . . . , S} with size
smax becomes a spectrum resource candidate for SU u.
Considering each su sequentially, latest possible starting
service time of SU u, referred to as t ′1, is evaluated such that
te will become the service ending time slot. The su which
yields maximum t ′1, i.e., t1 = maxsu t

′

1 = maxsu mint∈T n
u
t ,

will be selected as the allocated channels. It is obvious that the
starting service time, i.e., mint∈T n

u
t , should be greater than or

equal to tnu . For each t ∈ [t1, te], we store {1fs | s ∈ su}∩Sn,t
in Sn,tu , if there is at least one RRH that meets minimum
received SNR requirement for this SU. When Sn,tu ̸= ∅, each
RRH r that meets γ sr,u > γu and has free capacity to serve
SU u, is associated with u, and its identity is stored in Rn,t

u .
Finally, if Sn,tu ̸= ∅, t is stored in T n

u .
If no such combination of su and assigned RRHs can be

found that can complete serving u before te, then Case 2 is
executed. We define the replacement factor, 0 ≤ ζ < 1,

Case 2 in Algorithm 1

26 Sort UOFB
n based on starting time of service in a

descending order
27 K← {+∞}
28 for u′ ∈ UOFB

n do
29 if T n

u′ ∩ [t
n
u , te] ̸= ∅ then

30 K← K ∪
{
min
t∈T n

u′

t + 1

}
31 w+∞← 0, U ′+∞ = ∅, wmin←+∞

32 ∀k ∈ K \ {+∞}: wk ←+∞, U ′k ← ∅
33 for u′ ∈ UOFB

n do
34 H = min

k∈K
{k > max

t∈T n
u′

t}

35 for k ∈ K ∩ T n
u′ do

36 wk ← min {wH + αu′Lu′ ,wk}
37 If the first term in the RHS of the above

relation is selected, U ′k ← U ′H ∪ {u
′
}

38 Sort wks in an ascending order, and apply this order to
U ′

39 for k ∈ K do
40 Sort U ′k based on starting service times in an

descending order
41 ∀t : Rn,t

u ← ∅, Sn,tu ← ∅, S
n,t
k ← Sn,t ,

rn,tk ← rn,t

42 for u′ ∈ U ′k do
43 ∀t : Sn,tk ← Sn,tk ∪ S

n,t
u′

44 ∀(r, t) | r ∈ Rn,t
u′ : r

n,t
k ← rn,tk + 1

45 Run Lines 8-16 in Case 1, by considering rn,tk and
Sn,tk as available resources

46 if t1 ̸= −∞ then
47 wmin = wk
48 U ′ = U ′k
49 go to Line 50

50 if wmin < ζαuLuL then
51 U ← U ∪ U ′ \ {u}
52 UOFB

n ← UOFB
n ∪ {u} \ U ′

53 U temp
n ← U temp

n ∪ {u}
54 ∀t,Sn,t ← Sn,tk \ Sn,tu
55 ∀(r, t)|r ∈ Rn,t

u : r
n,t
← rn,tk − 1

where ζ = 0 enforces no substitution, and ζ near 1 increases
chance of replacement. Case 2 determines the subset of
admitted SUs, with minimum sum of weighted data lengths,
denoted by U ′, which can be removed from UOFB

n in order
to provide enough resources to serve SU u. The following
optimization problem is solved to determine aforementioned
U ′ if it exists:

min
U ′⊆UOFB

n

∑
u′∈U ′

αu′Lu′ , (6a)

s.t. {UOFB
n \ U ′} ∪ {u} ⊆D U, (6b)
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T n
u ⊆ [tnu , te], (6c)∑
u′∈U ′

αu′Lu′ < ζαuLu. (6d)

Search space for findingU ′ can be further limited by implicit
constraints. Constraint (6d) means that every U ′ such that
∃u′ ∈ U ′ : αu′Lu′ > ζαuLu can not be substituted. Moreover,
we should exclude U ′ that ∃u′ ∈ U ′ : T n

u′ ∩ [tnu , te] = ∅.
Therefore, U ′ should also satisfy the following:

αu′Lu′ < ζαuLu, ∀u′ ∈ U ′,

T n
u′ ∩ [t

n
u , te] ̸= ∅, ∀u′ ∈ U ′. (7)

The substitution of U ′ found in Case 2 with the current SU
u is performed only if

∑
u′∈U ′ αu′Lu′ is smaller than ζαuLu.

This means that substitution is carried out if the objective
function is increased by at least (1 − ζ )αuLu. Next, let us
elaborate on how Case 2 works. By executing Lines 26-49,
OFB finds a ‘‘sub-optimal’’ solution for U ′ in the following
manner. First, for each SU u′ such that T n

u′ ∩ [tnu , te] ̸= 0,
time slot mint∈T n

u′
t + 1 is stored in auxiliary set K for future

processing, in Line 30. The stored time slots in K are sorted
in a decreasing order. The dynamic program is performed in
Lines 31-38. For each k ∈ K, we will form candidate SUs
for replacement or U ′k to free the time slots [k, te]. Candidate
U ′ks are initialized by empty set, and their corresponding
contribution to objective in (5), denoted by wk , is initialized
to+∞. Utilizing the dynamic relation in Line 36, U ′k and wk
for all k ∈ K are iteratively updated. Once these iterations
are completed, U ′ks are sorted in ascending order of their
weights wk . Beginning with the smallest weight wmin, one
checks if dismissing the corresponding set U ′min can free up
enough resources to serve u. This is checked in Lines 45-49.
If the answer is positive and if ζ times αuLuL has a greater
value than wmin, then the substitution is carried out in Lines
51 to 55. Otherwise, next smallest weight wk is checked in
Lines 38 and 39. The set U temp

n is an auxiliary set that stores
all those SUs that were admitted at least once when OFB was
running. If a SU is deleted from UOFB

n in Case 2, it is not
deleted from U temp

n . This set will be used for performance
evaluation in Section VI.
Our proposed OFB is a generalization of the greedy

method in [53] for weighted interval selection problem.
OFB is sub-optimal from several aspects: (i) It greedily
schedules SUs who can be served at the earliest deadline.
(ii) Rejections are greedy and permanent at every given time
slot te. Once rejected for a given te, the SU should wait for
te to be incremented before it gets a second chance of being
scheduled. (iii) The dynamic program in Case 2 provides only
a sub-optimal solution of (6). Still, it performs satisfactorily
in our numerical results compared to existing schemes.

A. A SIMPLE EXAMPLE FOR CASE 2 OF ALGORITHM 1
We consider a simple CRAN where S = 3, smax

= 1, and
∀u ∈ U : αu = 1. To maintain the simplicity of exposition,
we assume all three spectrum channels are available in all
time slots. Furthermore, we assume RRHs have enough

capacity to serve all demanding SUs in every time slot as
long as the minimum SNR requirement is satisfied. Since we
focus on Case 2 in this example, we assume that the answer
to Case 1 was negative meaning that there are not enough
channels to serve SU u alongside the already scheduled users.
Therefore, Case 2 aims to find a subset of low-utility users
which can be dropped in favor of the to be scheduled user u
thus increasing the objective value.

We assume UOFB
n = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

and their corresponding number of requested frames are
Lu′ = {1, 2, 2, 1, 2, 3, 5, 3, 3, 2, 4, 3}. Fig. 1 shows the
allocated time slots and channels for these selected SUs.
In addition, the time duration that new user u may be
scheduled is plotted as a horizontal dotted line on top of
the figure. First, SUs in UOFB

n are sorted in descending
order of their starting service times, i.e., min

t∈T n
u′

,
t for all

u′ ∈ UOFB. According to Fig. 1, SUs are sorted as
5, 1, 9, 6, 2, 10, 11, 3, 7, 4, 8, 12. Then, we determine K in
Lines 27-30 of Algorithm 1, and show this set of time
slots in Fig. 1 by vertical dashed lines, and label them by
k1, k2, · · · , k12. Initialization in Lines 31 and 32 of Case 2 is
carried out as w+∞ ← 0, wk1 ← +∞, · · · ,wk12 ← +∞,
U ′+∞ ← ∅, U ′k1 ← ∅, · · · ,U ′k12 ← ∅. In the following
paragraphs, we execute Lines 33-37 of Case 2 for each u′ ∈
UOFB
n , and calculate wk and U ′k for each k ∈ K ∩ T

n
u′ .

For u′ = 5, we determine that H = +∞. Hence, we have
wk1 = min{wH + L5,wk1} = min{0 + 2,+∞} = 2, and
U ′k1 = {1}.

For u′ = 1, we determine that H = +∞. Hence, we have
wk1 = min{w+∞+L1,wk1} = min{0+1, 2} = 1,U ′k1 = {1},
wk2 = min{w+∞ + L1,wk2} = min{0 + 1,+∞} = 1, and
U ′k2 = {1}.
For u′ = 9, we determine H = +∞. Hence, we have

wk1 = min{w+∞+L9,wk1} = min{0+3, 1} = 1,U ′k1 = {1};
wk2 = min{w+∞+L9,wk2} = min{0+3, 1} = 1,U ′k2 = {1},
wk3 = min{w+∞ + L9,wk3} = min{0 + 3,+∞} = 1, and
U ′k3 = {9}.
For u′ = 6, we determine H = k1. Hence, we have wk2 =

min{wk1 + L6,wk2} = min{1+ 3, 1} = 1, U ′k2 = {1}, wk3 =
min{wk1 + L6,wk3} = min{1+ 3, 3} = 3, U ′k3 = {9}, wk4 =
min{wk1 + L6,wk4} = min{1 + 3,+∞} = 4, and U ′k4 =
{1, 6}.

For u′ = 2, we determine H = k2. Hence, we have wk3 =
min{wk2 + L2,wk3} = min{1+ 2, 3} = 3, U ′k3 = {9}, wk4 =
min{wk2 + L2,wk4} = min{1 + 2, 4} = 3, U ′k4 = {1, 2},
wk5 = min{wk2 + L2,wk5} = min{1 + 2,+∞} = 3, and
U ′k5 = {1, 2}.

For u′ = 10, we determine H = k5. Hence, we have wk6 =
min{wk5 + L10,wk6} = min{3 + 2,+∞} = 5, and U ′k6 =
{1, 2, 10}.

For u′ = 11, we determine H = k6. Hence, we have wk7 =
min{5+ 4,+∞} = 9, and U ′k7 = {1, 2, 10, 11}.
For u′ = 3, we determine H = k6. Hence, we have wk7 =

min{5 + 2, 9} = 7, U ′k7 = {1, 2, 10, 3}, wk8 = min{5 +
2,+∞} = 7, and U ′k8 = {1, 2, 10, 3}.
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FIGURE 1. Simple example for Case 2 of OFB.

For u′ = 7, we determine H = k4. Hence, we have wk5 =
min{3 + 5, 3} = 3, U ′k5 = {1, 2}, wk6 = min{3 + 5, 5} = 5,
U ′k6 = {1, 2, 10}, wk7 = min{3 + 5, 7} = 7, U ′k7 =
{1, 2, 10, 3}, wk8 = min{3 + 5, 7} = 7, U ′k8 = {1, 2, 10, 3},
wk9 = min{3+ 5,+∞} = 8, and U ′k9 = {1, 2, 7}.
For u′ = 4, we determine H = k9. Hence, we have wk10 =

min{8+ 1,+∞} = 9, and U ′k10 = {1, 2, 7, 4}.
For u′ = 8, we determineH = k10. Hence, we havewk11 =

min{9+ 3,+∞} = 12, and U ′k11 = {1, 2, 7, 4, 8}.
Finally, for u′ = 12, we determine H = k8. Hence,

we have wk9 = min{7 + 3, 8} = 8, U ′k9 = {1, 2, 10, 3},
wk10 = min{7 + 3, 9} = 9, U ′k10 = {1, 2, 7, 4}; wk11 =
min{7 + 3, 12} = 10, U ′k11 = {1, 2, 10, 3, 12}; wk12 =
min{7+ 3,+∞} = 10, and U ′k12 = {1, 2, 10, 3, 12}.

Subsequently, {wk1 , · · · ,wk12} = {1, 1, 3, 3, 3, 5, 7, 7, 8,
9, 10, 10}, and {U ′k1 , · · · ,U

′
k12
} = {{1}, {1}, {9}, {1, 2},

{1, 2}, {1, 2, 10}, {1, 2, 10, 3}, {1, 2, 10, 3}, {1, 2, 10, 3},
{1, 2, 7, 4}, {1, 2, 10, 3, 12}, {1, 2, 10, 3, 12}}.
Finally, Lines 39-49 are executed. By starting from wk1

as the minimum sum weight of dropped users, we check to
see if the released resources of users in U ′k1 is enough to
serve u. If the answer is positive, we store wk1 in wmin and
U ′k1 in U

′ as candidate SUs for substitution. If the answer is
negative, wk2 and U ′k2 are considered next. If the answer is
still negative, we repeat this question for wk3 and U

′
k3
and so

on. As soon as the answer for this question becomes positive,
we set wmin and U ′, and go to Line 50 of Algorithm 1. In this
Line, we check if wmin is lower than ζαuLuL. If answer is
positive, then u is added to UOFB

n , and U ′ is removed from
UOFB
n . This means that the users in U ′ are not admitted while

user u will be accepted in their place.

V. PROPOSED ONLINE REAL-TIME SCHEDULING (ONR)
The OFB scheduling algorithm assumes that all data requests
for time period n + 1 arrive at period n. Hence, in the
worst case, a user should wait for one period before it is
either scheduled or rejected. If the time periods are large, this
waiting time is unacceptable for most real-time applications.
Thus, we consider the same optimization problem as in
(5) but assume that any arriving request in period n +
1 should be either scheduled in period n + 1 or immediately

rejected. Unlike the OFB, the ONR assumes that the BBU
pool has no prior knowledge of which SUs will request
to be served in period n+ 1. Furthermore, the BBU pool
has no knowledge about availability of channels in period
n + 1. As soon as the ONR receives a data request with the
6-tuple description

(
BERtar

u ,Lu × L, tn+1u ,T n+1u , γu, αu
)
in

period n+1, it executes a real-time admission control to check
if sufficient resources are available to admit this request. If the
request is accepted, the ONR allocates the corresponding
resources immediately. Lack of prior knowledge on the
number and specification of upcoming data requests degrades
performance of the ONR compared to that of OFB. To reduce
the degradation, statistics of SUs’ activities and channels
availability, will be exploited in the ONR as we will describe
next.

A. SU’s ACTIVITIES AND SPECTRUM AVAILABILITY
PREDICTION MODEL
To enhance ONR performance, the algorithm employs
statistical information of both SUs’ request arrivals and
channels availability in previous periods. Let Pn(u) and
Pn(s) denote the probabilities for arrival of a request by
SU u and availability of channel s in period n, respectively.
We assume that these probabilities are independent across
SUs and channels. In our model, confidence intervals are
considered for the ratio of each of these probabilities over
two consecutive periods. We assume

1
√

α
≤
Pn+1 (u)
Pn (u)

≤
√

α, (8)

where α ≥ 1 is the confidence interval factor. When α is
close to one, we have achieved a very good prediction of
SU’s request arrival probability for the next period. When
α gets large, our prediction has a very low accuracy and
request arrival probability ranges from near zero to close to
one. Nevertheless, our proposed ONR can work with any
general prediction algorithm as long as a bound like (8) can be
obtained with a specific known α. Similarly, for availability
of channel s, we have

1
√

β
≤
Pn+1 (s)
Pn (s)

≤
√

β, (9)
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where β ≥ 1 is the confidence interval factor for channel
availability. Equation (9) accepts the same properties as (8).
A similar confidence interval model has been used in [23].
However, the bounds are with respect to the expected values
instead of probabilities. In the literature, different models
have been investigated for wireless traffic prediction [56].
Yet, our proposed algorithm can work with any general traffic
anticipation approach. The inaccuracy of the predictions can
be well modeled by α and β. Here, we assume time invariant
(or fixed) uncertainty factors for all periods.

ONR is presented as Algorithm 2 and it works as follows.
As soon as a SU u′’s data request arrives in tn+1u′ , ONR first

Algorithm 2 Proposed ONR for Period n+ 1

Input: UOFB
n , and correspondig resource allocation,

α, β, smax

Output: UONR
n+1 , and correspondig resource allocation

1 U ′n+1← ∅, U
op
n+1← ∅, U

sp
n+1← ∅, U

ONR
n+1 ← ∅

2 for arriving SU u′ do
3 Run Algorithm 1 with inputs: UOFB

n ∪ {u′},
∀u ∈ UOFB

n : tnu , T
n
u , Lu, γu, ∀t : Sn,t , rn,t (for u′

use tn+1u′ and T n+1u′ ) and store selected SUs in
U ′n+1

4 if u′ ∈ U ′n+1 then
5 Uop

n+1← Uop
n+1 ∪ {u

′
}

6 The Bernoulli experiment with success
probability of p is done

7 if above experiment is successful then
8 U sp

n+1← U sp
n+1 ∪ {u

′
}

9 Run Algorithm 1 with inputs:
∀u ∈ UONR

n+1 ∪ {u
′
}: tn+1u and T n+1u , Lu, γu,

∀t: Sn,t and store selected SUs in U ′n+1
10 if u′ ∈ U ′n+1 then
11 UONR

n+1 ← U ′n+1
12 Rn+1,t

u′ , Sn+1,tu′ , and T n+1
u′ are derived

by executing Line 9.

13 return UONR
n+1 and for

∀u ∈ UONR
n+1 : (R

n+1
u ,Sn+1u , T n+1

u )

runs the OFB on the set of selected SUs in the previous, i.e.
nth, period onUOFB

n ∪{u′}, by assuming the same availability
of channels and RRHs as in the n’th period. In fact, ONR first
checks to see that if this request had arrived in the previous
period, it would be admitted or not. If the answer is positive,
we assign u′ to Uop

n+1 as a candidate for acceptance in period
n+ 1. This decision is made based on the available resources
in the nth period, so it will incur a performance degradation
in period n+ 1. It is possible that given the already admitted
requests in period n + 1, Uop

n+1 is not a disjunctive subset
of U . Thus, we perform two more purging steps. If the new
data request passes these two steps successfully, it will be
admitted and scheduled. First, we run a Bernoulli experiment
with success probability p that we will optimally tune later.

If the Bernoulli experiment is a success we will keep the
new request as a possible scheduling candidate, otherwise
the request is rejected. Finally, we run the OFB on the set
of already accepted requests UONR

n+1 plus the u′ given by
UONR
n+1 ∪ {u

′
} with resources in period n. If the new request

is selected by OFB, we will admit the new request. Then,
we drop all SUs that belonged to previous UONR

n+1 but are no
longer in the new UONR

n+1 . Resources for this new UONR
n+1 are

allocated by OFB. The complexity and performance of both
OFB and ONR are rigorously derived in the next section.

VI. PERFORMANCE AND COMPLEXITY ANALYSIS FOR
OFB AND ONR
Here, we rigorously evaluate OFB and ONR performance,
where we derive bounds on how far the objective function
of these algorithms are from the global optimum given by∑

u∈U∗n
αuLu. Here, U∗n denotes the set of admitted users at

the global optimum of the n-th period. The following theorem
summarizes our results on OFB performance.
Theorem 1: The proposed OFB algorithm is guaranteed to

achieve an objective value bounded below by 0.17 times the
global optimum of (5), that is∑

u∈UOFB
n

αuLu ≥ 0.17
∑
u∈U∗n

αuLu. (10)

where the optimum value for ζ is given by−1+
√
2 ≈ 0.414.

Proof: Please see Appendix A.
Performance analysis for ONR is summarized in the

following theorem.
Theorem 2: The proposedONR algorithm is guaranteed to

achieve an expected objective value lower bounded by

E

 ∑
u∈UONR

n+1

αuLu

 ≥ 71− 17
√
17

4
(
4αβs

max) 32 E

 ∑
u∈U∗n+1

αuLu

 .

(11)

The optimal values for p and ζ are given by 7−
√
17

8
√

αβs
max ≈

0.36√
αβs

max , and
√
17−3
4 ≈ 0.28, respectively.

Proof: Please see Appendix B.
It needs to be mentioned that the bound in Theorem 2 is

derived assuming p < 1. Thus, the Bernoulli experiment has
a nonzero probability of rejecting a particular user. If p = 1,
the bound in Theorem 2 becomes trivial as it will amount to
left hand side of (11) to be greater than some negative value
which is obvious; Please check Appendix B to verify this. If a
stronger bound is derived then we can also allow for p = 1.
To summarize, the Bernoulli experiment is not a fundamental
block of our proposed algorithm. It only allows us to derive a
non-trivial bound on ONR performance.

A. COMPLEXITY ANALYSIS
OFB’s complexity is given byO

(
| U | log2 (| U |)+maxT nu

× | U | × (A1 + A2)), where A1 and A2 are computational
complexity of Case 1 and Case 2, respectively. A1 is given
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by A1 =
( S
smax

)
× max

(
T nu − t

n
u
)
× | R |. In Case 2,

complexity of for in Line 28, and also Line 32 is on the
order of | U |. Moreover, complexity of the sort instruction in
Lines 38 and 40 is in order of | U | log2 (| U |). Furthermore,
complexities of Lines 33-37, and Lines 39-49 are O

(
| U |2

)
,

and O
(
| U |2 ×maxT nu+ | U |2 log2 (| U |)+ | U | ×A1

)
,

respectively. To sum up, overall complexity of OFB is on
the order of O

(
maxT nu× | U |2 ×max{| U | maxT nu , | U |

log2 | U |,A1}
)
.

ONR runs OFB in Lines 3 and 9 for | U |

times. Thereby, ONR’s complexity is on the order of
O
(
maxT nu× | U |3 ×max{| U | maxT nu , | U | log2 (| U |) ,

A1}).
To find the global optimum of the optimization problem

in (5), one should resort to exhaustive search. The number
of possible resource allocations for SU u is given by
Nu =

(∑smax

s=1
(S
s

))
×

(∑|R|
r=1

(
|R|
r

))
×
(
T nu − t

n
u
)
. So,

the computational complexity of an exhaustive search is
5u∈UNu.

VII. NUMERICAL RESULTS
Our proposed OFB and ONR algorithms outperform existing
alternatives in the literature, and we present a comprehensive
numerical analysis to support this claim. We perform our
analysis using two different setups. Firstly, we generate a
sample CRAN to demonstrate the significant differences
between OFB and the currently available alternatives. Sec-
ondly, we conduct Monte Carlo simulations to evaluate the
average performance of OFB and ONR. These simulations
enable us to assess their performance under various scenarios
and network conditions.

We investigate the ratio of transferred data over total data
requests, the percentage of scheduled SUs, and the percentage
of allocated channels and assigned RRHs as performance
metrics in both setups. Moreover, our main focus is on
the impact of the proposed algorithms on big data users.
To address this, we select a suitable value for Lu in the range
of
[
25, 220

]
for each SU u. We partition this range into 5 equal

sub-intervals, with each sub-interval represented by a distinct
value of ρ. Specifically, we obtain ρ by dividing the rightmost
point in each sub-interval by 220, and the resulting values of
ρ are 0.2, 0.4, 0.6, 0.8, and 1, respectively. Notably, larger
values of ρ indicate higher data demands for the SUs in that
sub-interval, and the sub-interval with ρ = 1 corresponds to
the big data SUs.

Simulation setups are determined next. We consider the
service area of the CRAN to be within a 2000×2000 m2 area
with multiple RRHs serving the SUs and a single RRH
serving the PUs. The RRHs and SUs are uniformly and
independently distributed within this square area. These
SUs are assumed to be either static or have low mobility.
Simulation parameters are summarized in Table 4. The
capacity of backhaul and fronthaul links are assumed to be
sufficiently large to support all data flow in the CRAN with
negligible delay. Upon assuming an urban environment, the

TABLE 4. Simulation parameters and their values.

RRH-SU channel coefficients follow the path loss model
PL[dB] = 30.58 + 36.7 log10 dr,u − a0 where dr,u >

1.135m is the distance betweenRRH r and SU u. Log-normal
shadowing with 8 dB variance is considered [58]. Parameter
a0 is a correction factor that accounts for different RRH and
SU antenna heights. The total bandwidth is 20 MHz, which
is divided into S = 100 channels having equal bandwidth of
200 KHz each. The utilization rate of each channel by PUs
varies from 40 to 60 percent [59]. The duration of channel
occupation by PU is modeled by an exponential random
variable with mean dwell time 103×1t . Finally, we consider
BERtar

u to be from the set
{
10−3, 10−5, 10−6

}
, and γu from

the set {0, 3, 5} [dB] for requests with audio, video, and text,
respectively [60].

The global optimum of (5) can be determined through
efficient exhaustive search methods like branch and bound.
However, these approaches become impractical for medium
to large network sizes. Therefore, we compare our pro-
posed methods against existing suboptimal alternatives.
Specifically, we evaluate two scheduling algorithms, earliest
deadline first (EDF) [55], [61], [62], [63], [64] and earliest
ending time first (EEF). EDF has been proven to achieve
a total number of admitted SUs at least half of the global
optimum [65]. Thus, we compare against three different
algorithms: EDF, EDF_ζ , and EEF. EDF_ζ is an algorithm
that allows for some users to be dropped in favor of users
who increase the objective by at least a 1− ζ value.
Furthermore, we compare our proposed ONR against

ONR/EDF_ζ , ONR/EDF, and ONR/EEF. It should be noted
that ONR utilizes successive applications of OFB to deter-
mine the admitted users and their resource allocations. Hence,
ONR/EDF, for instance, represents the online algorithm that
utilizes successive EDF runs instead of OFB runs as the
primary building block.

A. ONE CRAN REALIZATION
An instance realization of the coverage area is shown in
Fig. 2a for a CRANwith | R | = 20 RRHs of small cells and |
U | = 15 SUs. Here, we assume there are only S = 5 channels
with 1f = 1 MHz. Parameters tnu and T nu for these SUs
are shown in Fig. 2b when they make requests with lengths
that are shown in Fig. 2c. Every RRH has enough capacity
to simultaneously support all SUs, i.e., ∀r, t : rn,t ≥ 15.
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FIGURE 2. (a) Instance of the considered CRAN with 20 small cell RRHs which are labeled by RRH r for r ∈ {1, 2, · · · , 20}, and 15 SUs which are labeled
by SU u when u ∈ {1, 2, · · · , 15}, and a single macro cell RRH that is fixed in center of the service area, (b) Values of tn

u and T n
u with respect to u,

(c) Number of requested frames, Lu, with respect to u, and (d) Percentage of total transferred data as crosshatch bars corresponding to the left vertical
axis, and percentage of scheduled SUs as dotted bars corresponding to the right vertical axis, with respect to different resource scheduling algorithms.

Furthermore, when SU u is selected, it is assigned to all
RRHs with indicator function IR+(γ sr,u − γu) = 1. For
this CRAN, the percentage of total transferred data and the
percentage of scheduled SUs are shown for different resource
scheduling algorithms in Fig. 2d. As illustrated in this figure,
the proposed OFBs with ζ = 0.41 and ζ = 1 achieve the
highest transferred data percentages, respectively. However,
these two algorithms serve a smaller percentages of SUs with
respect to the EEF. The selected SUs by the algorithms EEF,
OFB with ζ = 0.41, OFB with ζ = 1, and EDF are,
respectively {10, 13, 4, 1, 5, 9, 11}, {10, 13, 4, 7, 9, 11},
{10, 8, 7, 5, 11, 9}, {10, 2, 1, 5, 9, 11}. These results show
that algorithms with ζ ̸= 0 serve those SUs requesting larger

volumes of data with a higher priority, while algorithms with
ζ = 0, namely EEF, serve a larger number of SUs.

B. MONTE CARLO SIMULATIONS
Next, we evaluate average performance of OFB and ONR
over 104 random CRAN realizations. These results are
averaged over different values of U , R, S, smax, rn,t and
availability distribution of channels. As mentioned earlier,
the performance of OFB depends on ζ . Fig. 3 illustrates
the percentages of total transferred data, scheduled SUs,
and usage of channels and RRHs for all offline algorithms
with respect to ζ . It should be mentioned that OFB and
EDF_ζ with ζ = 0 are equivalent to the EEF and
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FIGURE 3. Percentage of total (a) transferred data, (b) scheduled SUs, (c) usage of channels, and (d) usage of RRHs, versus ζ for the offline batch
algorithms.

FIGURE 4. Percentage of total (a) transferred data, (b) scheduled SUs, (c) usage of channels, and (d) usage of RRHs, for the offline batch algorithms
(in optimum ζ ) with respect to η.

FIGURE 5. Total transferred data by the proposed ONR for (a) (α, β) = (1, 1), and (b) (α, β) = (1.1, 1.1), versus ζ and p.

EDF, respectively. Fig. 3 plots our four performance criteria
for various algorithms versus ζ . It is demonstrated that

OFB performs better in the percentage of total transferred
data over the whole range of ζ and its maximum occurs
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FIGURE 6. Percentage of total (a) transferred data, (b) scheduled SUs, (c) usage of channels, and (d) usage of RRHs, for the online real-time
algorithms when (α, β) =

(
1, 1

)
with respect to ζ for optimum value of p = 0.36.

at ζ ≈ 0.41 that is also expected from Theorem 1.
This improvement in OFB’s performance is also a direct
consequence of the fact that OFB makes a more efficient
utilization of spectrum as corroborated in Fig. 3c. The best
percentage of the transferred data are 35.00%, 32.99%,
29.92%, and 28.93% which are achieved by OFB with ζ =

0.41, EEF, EDF_ζ = 0.6, and EDF, respectively. Fig. 3b
shows that EDF_ζ achieves approximately 2% more total
scheduled SUs compared to OFB. However, OFB performs
better in terms of transferred data percentage as it achieves
29.38% versus EDF_ζ ’s 29.00%. Upon increasing ζ , both
algorithms become inclined to schedule SUs with higher
volumes of data requests. As a result, the percentage of
the total scheduled SUs decreases. We have observed that
the EEF and EDF algorithms utilize more channels and
RRHs compared to our proposed OFB and ONR algorithms.
However, they lack the flexibility to properly select SUs
with higher data requests. These algorithms are designed to
maximize the number of scheduled SUs, often at the cost of
lower data transfer percentages. This inflexibility results in
suboptimal solutions for big data transmission, as they do not

take into account the data prioritization andQoS requirements
of the selected SUs.

Given that PUs’ activity pattern vary in time, they cause the
available spectrum for SUs to vary in time as well.We use η to
express the availability of channels. The percentages of total
transferred data, of scheduled SUs, of usage of channels and
RRHs are depicted in Fig. 4 versus η for OFB with ζ = 0.41,
EEF, EDF with ζ = 0.6, and EDF. It illustrates that OFB
achieves a better percentage of total transferred data while
maintaining the percentage of total scheduled SUs near to
that of the EDF_ζ = 0.6. By increasing ζ , the percentages of
total transferred data, scheduled SUs, and RRHs utilization
improve for all algorithms. Yet, OFB maintains the best
performance in the percentage of total transferred data for all
η values.
The performance of ONR is a function of ζ and p

as well as the parameters α and β. Fig. 5 illustrates the
percentage of total transferred data with respect to ζ and
p for (α, β) = (1, 1) and (1.1, 1.1), respectively. It can
be observed that maximum performance is achieved when
(ζ, p) = (0.28, 0.36) and (ζ, p) = (0.28, 0.33), in these two
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FIGURE 7. Percentage of total (a) transferred data, (b) scheduled SUs, (c) usage of channels, and (d) usage of RRHs, for the online real-time
algorithms when (α, β) =

(
1.1, 1.1

)
with respect to ζ for optimum value of p = 0.33.

scenarios. ONR algorithm is simulated with these optimal
values of p and plotted in Fig. 6 and Fig. 7 for (α, β) = (1, 1)
and (1.1, 1.1), respectively. By comparing these two figures,
it is deduced that by increasing α and β, all performance
criteria degrade. This is a direct consequence of increased
uncertainty about requesting SUs and availability of channels
in period n + 1, which was also predicted by Theorem 2.
In Fig. 6, for (α, β) = (1, 1), the maximum percentage of
total transferred data is given by 23.31%, 16.03%, 19.38%,
and 13.59% for ONR, ONR/EEF, ONR/EDF_ζ = 0.71, and
ONR/EDF, respectively. In Fig. 7, for (α, β) = (1.1, 1.1), the
maximum percentage of the total transferred data is given by
16.20%, 10.01%, 11.87%, and 7.49% for ONR, ONR/EEF,
ONR/EDF_ζ = 0.79, and ONR/EDF, respectively. The
results corroborate a higher percentage of total transferred
data for ONR versus all alternatives. This improvement
occurs due to a higher utilization of channels, flexibility in
SUs’ selection due to ζ , and applying our prior knowledge of
SUs activity and channels availability probabilities. Similar
to offline batch algorithms, ONR/EEF and ONR/EDF have
better performances in percentage of total scheduled SUs.

According to Fig. 6, the percentage of total scheduled SUs,
when (α, β) = (1, 1) is 26.63%, 28.24%, 24.29%, and
31.34% for ONR, ONR/EEF, ONR/EDF_ζ = 0.71, and
ONR/EDF, respectively. Curiously, ONR performs better
than ONR/EDF_ζ . The latter result is also inferred from
Fig. 7.

C. BIG DATA REQUESTS
BothOFB andONRwere designed to improve service quality
for big data requests. Here, we evaluate both OFB and
ONR for big data services. Upon recalling that all requested
data sizes are divided into five equal ranges in the interval
[25, 220], where each range is recognized by a different ρ,
one deduces that the sub-interval with ρ = 1 contains 20%
of the largest requested data sizes and represents big data
users. In Fig. 8, the percentage of the totaled scheduled SUs
is plotted versus ρ. The results are plotted for ζ = 0, 1,
and ζ ’s optimal values of Theorems 1 and 2 for OFB and
ONR respectively. The results determine that both OFB and
ONR schedule more big data requests compared to existing
alternatives. By increasing ζ , OFB and ONR exert a higher
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FIGURE 8. Percentage of total scheduled SUs of the (a) OFB and (b) ONR algorithms, with respect to ρ.

priority for big data requests, so the largest percentage of
admitted big data demands occur at ζ = 1. However,
ζ = 0.41 also performs satisfactorily on big data. these
observations are corroborated numerically in Figs. 8a and 8b
for OFB and ONR respectively.

VIII. CONCLUSION
We addressed the problem of selecting SUs, associating them
with RRHs, allocating channels, and performing deadline-
aware non-preemptive time scheduling over the cognitive
CRAN. Our objective is to find an optimal disjunctive set
of SUs with corresponding resource allocation to maximize
overall weighted data transmission while ensuring QoS
parameters for big data transmission. We prioritized SUs
based on the requested big data type, which is multiplied by
data length in the objective function, to customize this prob-
lem for big data transmission. Furthermore, we considered
the 5V characteristics of big data in our work.

To solve this problem, we proposed the OFB and ONR
algorithms, which support QoS for data requests of selected
SUs, including target bit error level, minimum signal-to-noise
ratio (SNR), and deadline to receive data. The performance of
these algorithms is at most a factor of 3−2

√
2 and 71−17

√
17

4(4αβs
max

)
3
2

away from the globally optimal solutions, respectively.

We evaluated the performance of our proposed algorithms
through simulations, which demonstrate that they outperform
the EEF and EDF algorithms in total transferred data and
big data transmission. Specifically, our proposed algorithms
achieve better performance in terms of maximizing overall
weighted data transmission, ensuring QoS for data requests,
and improving the efficiency of spectrum utilization.

APPENDIX A
PROOF OF THEOREM 1
First, we analyze the relation between UOFB

n and U temp
n .

According to OFB algorithm

UOFB
n ⊆ U temp

n −→

∑
u∈UOFB

n

αuLu ≤
∑

u∈U temp
n

αuLu. (12)

Each u ∈ UOFB
n has been admitted either through Line 18

or 52 of Algorithm 1. Obviously, each SU u that is finally
admitted belongs to UOFB

n . These users are all members
of U temp

n as well. However, U temp
n also contains those SUs

that were once admitted but were later dropped according
to Line 52 of OFB. In this Line, u is accepted and the set
U ′ of previously admitted SUs are rejected if ζαuLu >∑

u′∈U ′ αu′Lu′ . Due to this substitution, the objective function
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increases by at least (1− ζ ) αuLu. We can write this as∑
u∈U temp

n

αuLu ≤
∑

u∈UOFB
n

αuLu +
∑

u∈U temp
n \UOFB

n

αuLu

≤

∑
u∈UOFB

n

αuLu +
∑

u∈UOFB
n

ζαuLu

≤

∑
u∈UOFB

n

αuLu +
∑

u∈U temp
n

ζαuLu.

Finally, we arrive at∑
u∈UOFB

n

αuLu ≥ (1− ζ )
∑

u∈U temp
n

αuLu. (13)

Next, we derive a bound between U temp
n andU∗n . We can write

the following inequality∑
u∈U∗n

αuLu =
∑

u∈U∗n∩U
temp
n

αuLu +
∑

u∈U∗n \U
temp
n

αuLu

≤

∑
u∈U temp

n

αuLu +
∑

u∈U∗n \U
temp
n

αuLu. (14)

For every u ∈ U∗n \ U
temp
n , this SU was not admitted because

there was a set of usersU ′ ∈ U temp
n such that

∑
u′∈U ′ αu′Lu′ ≥

ζαuLu. We need to show that for different u, v ∈ U∗n \ U
temp
n ,

the corresponding sets U ′,V ′ ⊂ U temp
n are disjoint. To show

this, we consider two cases. Either u, v schedules in the global
optimum share a time slot or do not share any time slots.
If they share time slots, then they should be scheduled on
different frequency channels. Hence, they will interfere with
disjoint U ′,V ′. If they do not share time slots, then they
can be scheduled on the same frequency channels. Let us
assume there exists a SU w ∈ U temp

n which belongs to both
U ′,V ′. Then, either u or v will end before w. According to
the while loop in line 4 of Algorithm 1, either u or v should
belong toU temp

n which is not the case voiding this assumption.
As a result, U ′ and V ′ are guaranteed to be disjoint. Given
the disjoint assumption, we can write ζ

∑
u∈U∗n /U temp

n
αuLu ≤∑

u∈U temp
n

αuLu. Combining this with (14), we arrive at

∑
u∈U∗n

αuLu ≤
(
1+

1
ζ

) ∑
u∈U temp

n

αuLu. (15)

Finally, we combine (13) and (15) to arrive at

∑
u∈UOFB

n

αuLu ≥
(

ζ
1− ζ

1+ ζ

) ∑
u∈U∗n

αuLu. (16)

By taking the derivative of ζ
1−ζ
1+ζ

and set it to zero, we
obtain two values for ζ as−1−

√
2 and−1+

√
2. The first one

is negative and hence not a valid choice. Thus, ζ = −1+
√
2

leading to ζ
1−ζ
1+ζ
= 3− 2

√
2 ≈ 0.17.

APPENDIX B
PROOF OF THEOREM 2
To derive the performance bound for ONR, we derive
successive bounds on how much objective value we loose
in going from U∗n+1 to UONR

n+1 at every step of Fig. 9. Then,
we combine the corresponding losses to derive Theorem 2.
This proof idea is borrowed from [66]. However, our ONR
is different from their proposed online algorithm and thus
demands a separate in-depth analysis. First, we assume that
all admitted users can only be scheduled on a set Sa ⊂ S of
size |Sa| = smax. It is notable that data request probability for
SUs and availability of channels are independent, so the joint
probability of data request by SU u at period n and availability
of set Sa of channels in nth period of the CRAN is given by

Pn (u,Sa) = Pn (u) 5s∈SaPn(1fs). (17)

Lemma 1: By using (8) and (9) in (17), we have
1√

αβs
max
=

1√
αβ

∑
s ISa (s)

≤
Pn+1 (u,Sa)
Pn (u,Sa)

≤

√
αβ

∑
s ISa (s) =

√
αβs

max
. (18)

First, we characterize the loss in going from U∗n+1 to U
∗
n .

Lemma 2: The following inequality holds

E

 ∑
u∈U∗n+1

αuLu
∣∣∣Sa
 ≤ √αβs

maxE

∑
u∈U∗n

αuLu
∣∣∣Sa
 . (19)

Proof:

E

 ∑
u∈U∗n+1

αuLu
∣∣∣Sa


=

∑
u∈U

E
(
IU∗n+1 (u)αuLu

∣∣∣Sa)
=

∑
u∈U

P
(
IU∗n+1(u)

∣∣∣Sa)αuLu ≤
∑
u∈U

Pn+1 (u,Sa) αuLu

≤
√

α
∑
u∈U

√
β
∑

s∈Sa I (s)Pn (u, su) αuLu

≤

√
αβs

max
∑
u∈U

Pn (u,Sa) αuLu

=

√
αβs

max
∑
u∈U

P
(
IU∗n (u)

∣∣Sa)αuLu
=

√
αβs

max
∑
u∈U

E
(
IU∗n (u)αuLu

∣∣Sa)
=

√
αβs

maxE

∑
u∈U∗n

αuLu
∣∣∣Sa
 , (20)

where in the second inequality, Lemma 1 was applied.
Next, we characterize the loss in going from U∗n to UOFB

n .
Taking expected values from both sides of (16) we arrive at

E

 ∑
u∈UOFB

n

αuLu
∣∣∣Sa
 ≥ ζ

1− ζ

1+ ζ
E

∑
u∈U∗n

αuLu
∣∣∣Sa
 . (21)
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FIGURE 9. Performance degradation of the proposed ONR scheduling algorithm from optimal solution; which shows how much successive
bounds on objective value is degraded in going from U∗

n+1 to UONR
n+1 at every step.

The following lemma determines the loss in going fromUOFB
n

to Uop
n+1:

Lemma 3: The following inequality holds

E

 ∑
u∈UOFB

n

αuLu
∣∣∣Sa
 ≤ √αβs

maxE

 ∑
u∈Uop

n+1

αuLu
∣∣∣Sa
 .

(22)

Proof: We define Au as event that u is disjunctive
with UOFB

n \ {u}. Based on Algorithm 2, u ∈ UOFB
n if u

requests data in period n, Sa is available in period n, and u is
disjunctive with UOFB

n \ {u}. Subsequently, P(u ∈ UOFB
n ) =

Pn(u,Sa,Au). As well, u is a member of Uop
n+1, if u requests

data in period n + 1, Sa is available in period n + 1, and u
is disjunctive with UOFB

n \ {u}. As a result, P(u ∈ Uop
n+1) =

Pn+1(u,Sa,Au). So, we have:

E
(
IUOFB

n
(u)αuLu

∣∣Sa) (23a)

= P
(
IUOFB

n
(u) = 1

∣∣Sa)× αuLu = Pn (u,Sa,Au) αuLu

= P (Au)Pn (u,Sa | Au) αuLu = P (Au)Pn (u,Sa) αuLu

≤

√
αβs

maxP (Au)Pn+1 (u,Sa) αuLu

=

√
αβs

maxP (Au)Pn+1 (u,Sa|Au) αuLu

=

√
αβs

maxPn+1 (u,Sa,Au) αuLu

=

√
αβs

maxP
(
u ∈ Uop

n+1

∣∣Sa)αuLu
=

√
αβs

maxE
(
IUop

n+1
(u)αuLu

∣∣∣Sa) . (23b)

It should be mentioned that we assumeAu is independent of
u requesting data and availability of channels in n and n + 1
periods. Summing (23a) and (23b) over all u ∈ U will yield
the lemma’s inequality.
Lemma 4: We have the following equality

E

 ∑
u∈U sp

n+1

αuLu
∣∣∣Sa
 = p E

 ∑
u∈Uop

n+1

αuLu
∣∣∣Sa
 . (24)

Proof: We know that if u ∈ Uop
n+1, then u ∈ U

sp
n+1 with

probability p. So, we have

E

 ∑
u∈U sp

n+1

αuLu
∣∣∣Sa
 =∑

u∈U
αuLuE

(
IU sp

n+1
(u)
∣∣∣Sa)

= p
∑
u∈U

αuLuE
(
IUop

n+1
(u)
∣∣∣Sa)

= pE

 ∑
u∈Uop

n+1

αuLu
∣∣∣Sa
 . (25)

Lemma 5: We have the following inequality

E

 ∑
u∈U sp

n+1

αuLu
∣∣∣Sa
 ≤ p√αβs

maxE

 ∑
u∈UOFB

n

αuLu
∣∣∣Sa
 .

(26)

Proof: Upon applying Lemma 4 to the left hand side
(LHS) of (26), it suffices to prove the following

E

 ∑
u∈Uop

n+1

αuLu
∣∣∣Sa
 ≤ √αβs

maxE

 ∑
u∈UOFB

n

αuLu
∣∣∣Sa
 .

(27)

According to the proof of Lemma 3, we have P(u ∈ UOFB
n ) =

Pn(u,Sa,Au) and P(u ∈ Uop
n+1) = Pn+1(u,Sa,Au). So,

similar to (23) we have:

E
(
IUOFB

n
(u)αuLu

∣∣Sa) (28a)

= P
(
IUOFB

n
(u) = 1

∣∣Sa)× αuLu = Pn (u,Sa,Au) αuLu

= P (Au)Pn (u,Sa | Au) αuLu = P (Au)Pn (u,Sa) αuLu

≥
1√

αβs
max

P (Au)Pn+1 (u,Sa) αuLu

=
1√

αβs
max

P (Au)Pn+1 (u,Sa|Au) αuLu

=
1√

αβs
max

Pn+1 (u,Sa,Au) αuLu

=
1√

αβs
max

P
(
u ∈ Uop

n+1

∣∣Sa)αuLu
=

1√
αβs

max
E
(
IUop

n+1
(u)αuLu

∣∣∣Sa) . (28b)

Summing (28a) and (28b) over all u ∈ U will yield (27).
Lemma 6: The following inequality holds

E

 ∑
u∈UONR

n+1

αuLu
∣∣∣Sa
 ≥ (1− p√αβs

max

1− ζ

)

× E

 ∑
u∈U sp

n+1

αuLu
∣∣∣Sa
 . (29)
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Proof: The set UONR
n+1 is obtained when OFB is applied

to U sp
n+1 and a disjunctive subset of SUs in U

sp
n+1 are selected.

Subsequently, we have the following

E

 ∑
u∈U sp

n+1

αuLu
∣∣∣Sa


= E

 ∑
u∈UONR

n+1

αuLu
∣∣∣Sa
+ E

 ∑
u′∈U sp

n+1\U
ONR
n+1

αu′Lu′
∣∣∣Sa


= E

 ∑
u∈UONR

n+1

αuLu
∣∣∣Sa


+ E

 ∑
u′∈U sp

n+1,D̄
(
u′,UONR

n+1

)αu′Lu′
∣∣∣Sa
 (30a)

≤ E

 ∑
u∈UONR

n+1

αuLu
∣∣∣Sa
+ p√αβs

max

× E

 ∑
u′∈UOFB

n ,D̄
(
u′,UONR

n+1

)αu′Lu′
∣∣∣Sa
 , (30b)

where D̄
(
u′,UONR

n+1

)
means that u′ is not disjunctive with

UONR
n+1 . The inequality in (30b) is derived by an application

of Lemma 5:

E

 ∑
u′∈U sp

n+1,D̄
(
u′,UONR

n+1

)αu′Lu′
∣∣∣Sa


≤ p
√

αβs
max
× E

 ∑
u′∈UOFB

n ,D̄
(
u′,UONR

n+1

)αu′Lu′
∣∣∣Sa
 . (31)

Now, we simplify the second term in the right hand side
(RHS) of (30b). We know that members of

{
u′ ∈ UOFB

n ,

D̄
(
u′,UONR

n+1

) }
are disjunctive, and are jointly admitted and

scheduled in period n given the available resources in period
n. Therefore, the reason these SUs do not belong to UONR

n+1 is
that their weighted data size is smaller than those appearing
in UONR

n+1 . Next, we assume each SU ν ∈ UONR
n+1 have caused

the absence of set Cν ⊆ UOFB
n in UONR

n+1 . In other words,
Cν is the part of

{
u′ ∈ UOFB

n , D̄
(
u′,UONR

n+1

)}
that are omitted

from UONR
n+1 due to not being disjunctive with ν ∈ UONR

n+1 .
Consequently, we have∑

u′∈Cv

αu′Lu′ < ζαvLv.

UONR
n+1 is a disjunctive set. So, for two different SUs ν and ν′

in UONR
n+1 , we have Cv ∩Cν′ = ∅. Therefore, we can write the

following

(1− ζ )
∑

u′∈UOFB
n ,D̄

(
u′,UONR

n+1

)αu′Lu′
≤

∑
u′∈UOFB

n ,D̄
(
u′,UONR

n+1

)αu′Lu′
=

∑
u′∈

⋃
v∈UONR

n+1

Cv,D̄
(
u′,UONR

n+1

)αu′Lu′

≤ ζ
∑

v∈UONR
n+1

αvLv

≤

∑
v∈UONR

n+1

αvLv

≤

∑
v∈U sp

n+1

αvLv.

Subsequently, we have∑
u′∈UOFB

n ,D̄
(
u′,UONR

n+1

)αu′Lu′ ≤
1

1− ζ

∑
v∈U sp

n+1

αvLv.

Upon substituting this inequality in the second term on the
RHS of (30b), proof of Lemma 6 is completed.
Next, we combine Lemmas 1-4 and Lemma 6 to arrive at

E

 ∑
u∈UONR

n+1

αuLu

≥( pζ (1− ζ )
(1+ ζ )αβs

max

−
p2ζ

(1+ζ )
√

αβs
max

)
E

 ∑
u∈U∗n+1

αuLu

 .

(32)

We maximize the RHS of bound in (32) with respect to both
p and ζ . Taking the derivative of RHS with respect to p and
setting it equal to zero will yield p = 7−

√
17

8
√

αβs
max . Then, we take

the derivative with respect to ζ and set it equal to zero which
yields ζ =

√
17−3
4 . Substituting these values for p, ζ into (32)

will complete the proof of Theorem 2.
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