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ABSTRACT Structural identifiability determines the possibility of estimating the parameters of a model
by observing its output in an ideal experiment. If a parameter is structurally locally identifiable, but not
globally (SLING), its true value cannot be uniquely inferred because several equivalent solutions exist.
In biological modeling it is sometimes assumed that local identifiability entails global identifiability, which
is convenient because local identifiability tests are typically less computationally demanding than global
tests. However, this assumption has never been investigated beyond demonstrating the existence of counter-
examples. To clarify this matter, in this paper we began by asking how often a structurally locally identifiable
parameter is not globally identifiable in systems biology. To answer this question empirically we assembled
a collection of 102 mathematical models from the literature, with a total of 763 parameters. We analysed
their identifiability, determining that approximately 5% of the parameters are SLING. Next we investigated
how the SLING parameters arise, tracing their origin to particular features of the model equations. Finally,
we investigated the possibility of obtaining false estimates. Some of the solutions that are mathematically
equivalent to the true one involved parameters and/or initial conditions with negative values, which are not
biologically meaningful. In other cases the true solution and the equivalent one were in the same range.
These results provide insight about a previously unexplored hypothesis, and suggest that in most (albeit not
all) systems biology applications it suffices to test for structural local identifiability.

INDEX TERMS Computational methods, dynamic models, nonlinear systems, observability, structural
identifiability, systems biology.

I. INTRODUCTION
Dynamic mathematical models are extensively used for
understanding, describing, and predicting the behavior of
biological processes over time [1], [2]. In many applications
model dynamics are given by nonlinear ordinary differential
equations (ODEs) with unknown parameters, whose values
are obtained by finding the best fit between model output and
measured data obtained from identification experiments [3].
The outcome of this task, known as model calibration or
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parameter estimation, may be termed successful if the result-
ing estimates correspond to the true values of the unknown
model parameters [4]. A requirement for successful param-
eter estimation is structural identifiability, which is the
theoretical possibility of determining the parameter values
from data in an ideal experiments [5]. Lack of identifiability
may lead to inaccurate estimates of mechanistically mean-
ingful parameters, as well as to the inability to make correct
predictions about certain variables.

If a model is structurally globally identifiable (SGI), the
structural identifiability problem has a unique solution in the
whole parameter space, corresponding to the true parameter
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FIGURE 1. Illustration of the difference between a SGI and a SLING parameter. For a SGI parameter θ (upper row), the cost
function (left column) that measures the distance between the measured data and the model simulation has a unique
minimum, that corresponds to the nominal value θC . Hence, model simulations with parameter values other than the
nominal differ from the measured data (center column), and the model calibration process correctly estimates θC . This
enables the correct simulation of unmeasured state variables, or of output variables in different conditions (right column).
In contrast, if a parameter is SLING (lower row) there are at least two indistinguishable minima of the cost function, one for
θC and another for θE (left). As a result, the calibration process may infer the correct parameter value θC , but it could also
erroneously infer the value that yields an equivalent solution, θE (center). The latter case may lead to wrong simulations
(right).

vector. This is the most desirable situation. In contrast, if a
model is structurally unidentifiable (SU), there are infinite
parameter vectors that generate identical output trajecto-
ries [6]. When there is a finite number of parameter vectors
that yield the same input-output data, the model is structurally
locally identifiable (SLI). If the number of possible solutions
of a SLI parameter is exactly one, then the parameter is
also SGI. When there are multiple solutions (each of which
may lead to different dynamic responses of the unmeasured
variables of the model), the model is structurally locally but
not globally identifiable (SLING). The difference between
SGI and SLING models is illustrated in Fig. 1.

Assessing whether a model (or a specific parameter) is
SLI is typically easier than checking whether it is SGI [7].
Furthermore, it is often the case that a SLI parameter is
also SGI. Hence in many applications only structural local
identifiability is checked. However, the question of whether
such test is actually sufficient, or it may lead to confounding
results, has seldom been investigated. An early example of
investigation of the sources of structural non-uniqueness in
parameter estimation of local identifiable models appeared
in [8], where a large family of compartmental models was
analysed. More recently, a method to find all numerical solu-
tions for local identifiable parameters was presented in [9].
The method was applied to two different biological models,
a simple compartmental model with three states and a HIV
model [10], which we include in our analyses.

In many studies the goal is to estimate parameters and state
variables that are not directly measurable [11], [12], [13].
It is important to determine whether a parameter is SLING,
and, if that is indeed the case, to find if there are multiple
local solutions within the physically meaningful parameter
bounds – a situation that could lead to wrong parameter esti-
mates. In a biomedical context, some parameter values may
be used to discriminate a pathological state from a normal
state, and failing to estimate their true values could result in
wrong diagnoses or treatments.

However, the extent to which a SLI parameter in a bio-
logical model can be expected to be SGI or SLING is still
unclear. Here we aim at shedding light on this matter. To this
end, we begin by collecting and curating a large collec-
tion of mathematical models from the literature of several
biological areas. We analyse their structural identifiability,
classifying their parameters as either SU, SGI, or SLING, and
quantifying the percentage of parameters belonging to each
class. Next, we have a closer look at the SLING parameters,
in order to investigate themodeling practices fromwhich they
originate.

The remainder of this paper is organized as follows.
Section II describes the theoretical background and the
methodologies used to analyse structural identifiability,
locally and globally. Section III presents the results of our
analyses. Lastly, Section IV discusses the results and sum-
marizes the conclusions.
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II. METHODS
A. MODELING FRAMEWORK
We consider deterministic models described by ordinary dif-
ferential equations, which are typically nonlinear. We restrict
ourselves to models with rational equations, since it is gener-
ally not possible to analyse the structural global identifiability
of nonrational models. Most systems biology models are of
this type, and some of those that are not can be rewritten in
rational form. That is, our models will be of the form:

M :


ẋ(t) = f (x(t), u(t), θ),
y(t) = h(x(t), u(t), θ),
x(0) = x0(θ )

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rq is the input
vector, θ ∈ Rp is the parameter vector, and y(t) ∈ Rm

is the output vector. The output represents the measurement
functions, which are typically but not always a subset of the
state variables. Both input and output are known, while the
parameters are unknown. Vector elements will be writtenwith
subindices, e.g. θi, xj. We will sometimes omit the depen-
dence on time for convenience, i.e. we may write x instead
of x(t).

B. STRUCTURAL IDENTIFIABILITY CONCEPTS
We will analyse the structural identifiability of models of the
type (1). We distinguish between local and global identifia-
bility as follows:
Definition 1: Structural Global Identifiability: a param-

eter θi of a dynamic model M is structurally globally
identifiable (SGI) or uniquely structurally identifiable if, for
any admissible inputs and almost all parameter vectors θ∗

i
in the parameter space 2, the equation y(t, θi) = y(t, θ∗

i )
implies θi = θ∗

i . A model, M, is said to be globally
structurally identifiable if every parameter θi is globally struc-
turally identifiable.
Definition 2: Structural Local Identifiability: a parameter

θi of a dynamic modelM is structurally locally identifiable
(SLI) if, for almost all values θ∗

i and almost all initial con-
ditions, the equation y(t, θi) = y(t, θ∗

i ) implies that θi has
a finite number of solutions that generate identical output
trajectories, y(t).
Note that SGI parameters are also SLI. If a parameter is SLI

but not SGI, we call it SLING (structurally locally but not
globally identifiable). If none of the above conditions hold,
the parameter is structurally unidentifiable (SU). A model is
said to be SGI (respectively, SLI) if all its parameters are SGI
(resp., at least SLI). If it has at least one SU parameter, the
model is called SU.

C. THE DIFFERENTIAL ALGEBRA APPROACH TO
STRUCTURAL IDENTIFIABILITY ANALYSIS
A differential algebra approach can be used to distinguish
between local and global identifiable models [6], [14]. Dif-
ferential algebra relies on finding algebraic equations that
relate the model parameters with the inputs and outputs. Let

us denote the input-output map of the system (1) given an
initial state x0 [9] as:

y = 8x0 (θ, u) (2)

The input-output map is the core of the research on struc-
tural identifiability of dynamical models such as (1). We will
define the number of solutions of locally identifiable models
by means of equation (2). Thus, an alternative characteriza-
tion of a locally identifiable model is as follows:
Definition 3: Structurally locally identifiable model. Con-

sider a mathematical model (1) with a parameter space2 and
a parameter vector θ̃ . The model is locally identifiable at θ̃
if there exists an open neighborhood 20 of θ̃ in 2 such that
for all initial conditions x0 ∈ Rn, there is a unique parameter
vector θ̂ in 20 satisfying the following equation:

8(x0, θ̂ , u) = 8(x0, θ̃ , u) (3)

This definition implies that it is possible to uniquely deter-
mine the parameter vector within an open neighborhood of a
point in the parameter space. Likewise, this definition states
that there is a finite number of solutions that are isolated in
different open sets of the entire parameter space.

Let us introduce an equivalence class [9] characterized as
an isomorphism relationship between the vector of solutions
of the equality (3). We write the binary relation known as the
equivalence relation on the parameter space2 asℜ. Given an
element θ̃ ∈ 2, ℜ defines some disjoint sets as equivalence
classes in2. The equivalence class associated to a parameter
vector θ̃ is the set

[θ̃ ] = {θ i ∈ 2 | θ i ℜ θ̃} (4)

Two parameter vectors θ i and θ j belong to the same equiv-
alence class if and only if they are equivalent, so the
equivalence class of a vector θ j is:

[θ j] = {θ i ∈ 2 | θ i ∼ θ j} (5)

In SGI models there is no equivalence class, since no θ i

exists that satisfies the ℜ relation with θ̃ . In SLI models, each
member of these equivalence classes represents a numerical
solution for the identification problem, and all such solutions
yield the same output trajectories.

D. ANALYZING STRUCTURAL GLOBAL IDENTIFIABILITY
WITH SIAN
There are currently a number of methodologies that adopt
a differential algebra approach to structural identifiability
analysis [7]. Here we have used SIAN (Structural Iden-
tifiability ANalyser), an open-source software tool that
combines differential algebra methods with the Taylor series
approach [15], [16]. We have chosen it for its speed and
reliability, as well as for the possibility of including as a
parameter in the analysis the initial conditions of the state
variables, x0.
SIAN introduces a numeric-randomized algorithm [15]

based on Taylor series and Zarisky topology. It constructs a
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map that relates parameter values and initial conditions with
the output functions of the model (1). After reducing the
map by applying Taylor series, the identifiability problem is
defined as a topological question about the map’s fibers [15].
Instead of considering a generic fiber, SIAN randomly selects
a point to get the fiber. This last step is correct given a certain
probability that is estimated by the algorithm. Eventually,
the problem boils down to checking if there is at least one
set of values of the unknowns that satisfies each equation in
the system of polynomial equations and inequalities. SIAN
performs this step by computing the Gröbner basis of the
system [17].

E. CHARACTERIZING NON-UNIQUE SOLUTIONS
Once we have classified a given parameter as SLING,
we need to determine [θ̃ ], i.e. all admissible solutions of a
locally identifiable parameter. In contrast to the analysis of
structural identifiability, there is no standard procedure to per-
form this task. In the remainder of this section, we describe
how we have carried it out.

1) REVISITING A METHOD TO OBTAIN ALL ADMISSIBLE
SOLUTIONS OF A SLING PARAMETER
Our starting point is the method introduced in [9]. It starts
by calculating the input-output equations of the model 1,
extracting the exhaustive summary from them [18]. This leads
to a system of polynomial equations with a constant unknown
value in one side. Substituting the parameters of the previous
systemwith numerical values, we obtain a numerical solution
for the constant term of the polynomial system. At this point,
the problem of determining [θ̃ ] is reduced to finding every
possible combination of numerical values of the parameters
that satisfies the system of polynomial equations. Each of
these combinations is a member of the equivalence class [θ̃ ].

2) EXTENSIONS TO THE CORE METHOD
In [9] the aforementioned procedure was performed using
DAISY [19] to compute the input-output equations. Here we
haveworked insteadwith the StructuralIdentifiability toolbox
(SI.jl) [20], which is usually faster than DAISY [7]. After
obtaining the input-output equations in the command prompt
of SI.jl, we have to derive the exhaustive summary of the
model, which depends only on the parameters. The number of
equivalent solutions is found with the Maple structural iden-
tifiability toolbox [21], which is available in MapleCloud.

Once the exhaustive summary has been obtained, and the
number of equivalent solutions is determined, we solve the
polynomial system using one of the following approaches:

a: NUMERICAL COMPUTATIONS
This method computes numerical approximations for
both algebraic and transcendental equations. It is imple-
mented in Nsolve, a built-in function in Mathematica [22].
It relies on a combination of iterative algorithms, such as
the Newton-Raphson and bisection methods, as well as

homotopy continuation techniques for trackingmultiple solu-
tions in nonlinear systems. This approach ensures both the
accuracy and the efficiency of the numerical solutions found
during the computations.

b: SYMBOLIC COMPUTATIONS
Complementary, we also applied symbolic equation-solving
techniques [23] inMatlab to solve algebraic and transcenden-
tal systems of equations. This method integrates algebraic,
analytic, and heuristic strategies, such as factorization, vari-
able elimination, and Gröbner basis methods. Specifically
for polynomial systems, this function could apply Gröbner
basis to transform the polynomial equation system into an
equivalent yet simpler set, which is then readily solved using
backward substitution techniques.

c: BRUTE FORCE SEARCH
Both approaches mentioned above have computational lim-
itations when analyzing large systems of equations. While
we have found that method (a) is significantly more effi-
cient than method (b), neither approach is able to effectively
handle systems consisting of more than ten equations. When
we encountered these limitations in some complex models,
we tried to surmount them by implementing a brute-force
method consisting of testing every possible combination
for the parameters – within some tolerance – in order to
find the solution of the system. We restricted the search
for possible solutions to an interval, which makes sense
for parameters that are physically or biologically restricted
to some numerical values. For example, some parameters
in infectious models are restricted to values within the
interval [0, 1].

III. RESULTS
A. MODELS
We assembled a diverse collection of models from differ-
ent areas, with the aim of obtaining a representative subset
of the systems biology literature. To this end we collected
102 biological models, which we classified as belonging
to one of 10 different areas: virology, cellular signaling,
physiology, metabolism, pharmacokinetics, gene expression,
immunology, tumor modeling, epidemiology, and micro-
bial communities. Additionally, we included a group named
‘‘general cases’’, consisting of models that do not describe
specific biological processes, but more general behaviors
that are common to different types of biosystems (e.g. basic
compartmental models). Some models were retrieved from
the Github repositories of several structural identifiability
toolboxes [7], and the remaining ones were taken from the lit-
erature on biological modeling. All models are listed in table
1, along with their references and some key features such as
the total number of parameters and the number of parameters
that are locally but not globally identifiable. Their imple-
mentations are provided at https://github.com/Xabo-RB/
Local-Global-Models.
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TABLE 1. List of the models and their main features. The first column displays a short name for the model. The second one (‘Ref.’) shows its original
publication, and indicates with ‘‘G*’’ those models directly taken from GitHub repositories of identifiability toolboxes, which do not refer to any previous
paper: GenSSI2(G1), ObservabilityTest(G2), SIAN.jl(G3), STRIKE-GOLDD(G4) and Structural-Identifiability(G5). The third column shows the number of
parameters (‘‘#θ ’’) along with the number of SLING parameters (in red parentheses). The fourth column (‘‘Cause’’) refers to the groups explained in
section III-C, (1) parameters with exponents, (2) symmetry-breaking control inputs, (3) recurring products, and (4) other. The last column indicates
whether the equivalent solutions might be confounded with the actual solution (‘Yes’) or not (‘No’).

B. PROPORTION OF SLING PARAMETERS
Overall, we obtained that in 86 out of 102 models all the
SLI parameters were also SGI. In the remaining 16 models,

at least one parameter has an equivalent class where there
exists more than one admissible solution for the same output
data. Thus, in approximately 16% of the models there is at
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least one SLING parameter; we will refer to them as SLING
models.

The 102 models have a total of 763 parameters. There
are 499 SGI parameters (i.e., 65% of parameters have a
unique solution), 223 SU parameters (i.e., 29% of parameters
have an infinite number of admissible solutions), and 41
SLING parameters (i.e., for 5% of the parameters a ℜ rela-
tion that contains equivalent solutions exists). That is, only
7.6% of the SLI parameters are SLING; in other words, if a
parameter is SLI, it is also SGI in 92.4% of the cases. These
numbers are summarized in figure 2.

C. HOW SLING PARAMETERS ORIGINATE
We have divided the 16 SLING models into four groups,
depending on the main feature that explains the rea-
son for the existence of SLING parameters. These fea-
tures are the existence of: (1) parameters with exponents,
(2) symmetry-breaking control inputs, (3) recurring products
in compartmental models, and (4) other causes.

1) PARAMETERS WITH EXPONENTS
The first group includes models that have a parameter
with an exponent other than one. An example is the βIG
model included in our collection, which has the following
equations:

Ġ(t) = u0 + u(t) − (C + SiI (t))G(t),

β̇(t) = β(t)(
1.458 · 10−5

1 + (
8.4
G(t)

)1.7
−

1.736 · 10−5

1 +
G(t)
4.8

8.4 ),

İ (t) = pβ(t) ·
G(t)2

α2 + G(t)2
− γ I (t),

y(t) = G(t),

(6)

Since the parameter α only appears as α2, it may have a
negative or a positive value and still have the same effect on
the model dynamics. This is the simplest case of a SLING
parameter. It is trivially easy to fix – replacing α2 with α̃ =

α2 yields a SGI parameter – and it is not potentially con-
founding, since parameters are typically restricted to positive
values.

2) SYMMETRY-BREAKING CONTROL INPUTS
The second type of cause is less intuitive. For several mod-
els with external inputs, we have found that removing the
input makes some parameters SU, while including it makes
them SLING. Thus, the existence of a known input breaks
a symmetry that was preventing a parameter from being
identifiable, but it only manages to make it SLI, not SGI.
We confirmed this characteristic by testing variations of the
same model, with and without the control variable. In our
collection there are three models with this feature, D_ex3,
D_mamil3, and bilirubin2, with a total of 13 SLING param-
eters. As an example, we show below the equations of the
D_ex3 model, where in the presence of an input u(t) there

are 3 SLING parameters: p4, p6, and p7.
ẋ1 = −p1 · x1 + p2 · x2 + u(t),
ẋ2 = p3 · x1 − p4 · x2 + p5 · x3,
ẋ3 = p6 · x1 − p7 · x3,
y(t) = x1,

(7)

3) RECURRING PRODUCTS IN COMPARTMENTAL MODELS
Another source of SLING parameters is the existence of the
same terms in the equations of several state variables, in a
way that is typical of compartmental models such as the
ones commonly used in epidemiology. Said terms consist
of combinations of the product of a parameter and a state.
Parameters typically affected include β and γ , which corre-
spond to the transmission rate and to the average infectious
period, respectively. Typical states involved in these terms
are, for example, S(t) and E(t), i.e. the compartments of sus-
ceptible and exposed individuals. An epidemiological model
that consists of these variables would be completely built as
an addition or subtraction of the product of the variables,
±β · S(t), ±γ · E(t). This model structure has been found in
every epidemiological model analysed in this research. Since
these products appear in at least two differential equations
in the model, we refer to this feature as the existence of
recurring products. An example is given by the following
model, SEIR1 [68], which has three SLING parameters, β, ν,
and ψ , and only one SGI, γ :

Ṡ = −β · S · I ,
Ė = β · S · I − ν · E,
İ = ν · E − ψ · I − (1 − ψ) · γ · I ,
Ṙ = γ · Q+ (1 − ψ) · γ · I ,
Q̇ = −γ · Q+ ψ · I ,
y(t) = Q,

(8)

4) OTHER
The last group includes four models for which we were not
able to identify a clear cause for the existence of SLING
parameters. These models are from different areas and have
no obvious shared features.

D. ASSESSMENT OF THE POSSIBILITY OF CONFUSION
In this section we apply themethods described in Section II-E
to find all the possible the values of the parameters with an
equivalence class, in order to assess the risk of confounding
the true values with the spurious ones. That is, our goal is
to find, given a nominal or ‘true’ value of a SLING param-
eter, every other possible solution, in order to determine if
they exist within the range of admissible – i.e. biologically
feasible – parameter bounds.

To this end, for each SLING parameter we must define an
open neighborhood2F that contains its admissible numerical
values. Defining the range of values requires prior knowledge
about the parameter. In some cases the parameter values are
constrained to a specific range of values, e.g. between [0,1].
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FIGURE 2. Characterization of the structural identifiability of model parameters. Left: overall. Right: by biological area. A: general cases; B: physiology;
C: gene expression; D: pharmacokinetics; E: cellular signaling; F: metabolism; G: immunology and tumor modeling; H: epidemiology and virology; I:
microbial communities.

In other cases, the feasible values are determined by the
specific circumstances of the model context. For example,
if α is a parameter that refers to a clearance rate constant (the
fraction of a chemical that is removed from a compartment,
such as blood) then its value must be within zero and one.
Hence, if α is a SLINGparameter in amodel, but only the true
solution is in2F = [0, 1], while the equivalent solution(s) lie
outside this range, we may conclude that there is no risk of
inferring the wrong value.

To find all possible solutions for the SLING parameters
in our study, we first attempted to use approaches (a–b) in
Section II-E, which yield exact solutions. However, some
models were too complex for these approaches; in those cases
we used the brute-force method (c) to search for approximate
solutions within an interval of numerical values with biolog-
ical meaning.

We classified the equivalent solutions [θ̃ ] in two groups:
‘confounding’ (those for which the equivalent solutions are
contained within the admissible interval of parameter numer-
ical values, [θ̃ ] ⊂ 2F ), and ‘not confounding’ (i.e., [θ̃ ] ̸⊂

2F ). The results are summarized in the ‘Confounding’ col-
umn of Table 1, which indicates whether the equivalent values
of the parameters can be confounded with the true one or
not, and in Fig. 3, which classifies the SLING parameters
according to the possibility of confusion of their numerical
solutions. Overall, among the 763 parameters included in the
models there are 41 SLING parameters (5% of the total);

24 of them (3%) have at least two equivalent solutions in
2F (which means that it is possible to confuse the true and
the equivalent value) and 17 (2%) have solutions out of this
admissible span 2F (there is no possibility of confusion).

1) NOT CONFOUNDING
In some of the models in which there is no possibility of
confusion, the equivalence class originates from parameters
with even exponents (case 1 in Table 1). Thus, equivalent
solutions consisting of real negative numbers exist. Since
parameters are expected to be positive numbers, the only one
solution in the biologically admissible space 2F is the true
one.

In other cases, the equivalence class originates from the
existence of recurring products in the equations (case 3 in
Table 1), as is typical of epidemiological models. Some of
these models have a specific feasible range of values (2F )
for the SLING parameters; this is the case of TreatT, SEIR1,
SEIR 11, SEIR16, and SEIR 34. For example, SEIR1 [68]
has three SLING parameters: infection rate β, isolation rate
ψ , and latency coefficient w. Since the first two are percents,
their values must be between 0 and 1. The third one, 1/w, rep-
resents the period it takes for a person to go from exposed to
infected, measured in days. The authors of this model defined
w between 1/10 and 1/21. Thus, 2F = {β ∈ (0, 1], ψ ∈

(0, 1],w ∈ [1/10, 1/21]}. Since we found no solution within
these ranges, we concluded that there is no possibility of
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FIGURE 3. Total parameters disaggregated by identifiability results and
the possibility of confusion of SLING parameters.

confusion since the SLING parameters are uniquely defined
in 2F . As an additional example, the SEIR16 model has one
SLING parameter which is the transfer rate from exposed
to infected individuals. In [72] it is stated that the numer-
ical value should be between [0.263, 0.78]. Even when we
expanded the range to (0, 1], we found no solution in 2F =

{ϵ ∈ (0, 1]}.

2) CONFOUNDING
In 8 out of 16 SLING models we found that at least one
SLING parameter has equivalent solutions within the feasible
range of numerical values 2F . In total, there are 24 SLING
parameters with possibility of confusion. We have found
a common pattern among these potentially confounding
parameters: the numerical values of the equivalent solutions
are interchangeable among parameters (e.g. either θi = 2 and
θj = 3, or θi = 3 and θj = 2). For example, the Bilirubin2
model has 6 SLING parameters, whose nominal values are
{k21 = 21, k31 = 1, k41 = 8, k12 = 3, k13 = 25, k14 = 21}.
The parameters are divided into two groups, (k21, k31, k41)
and (k12, k13, k14), with each parameter having three possible
solutions, corresponding to their own true value and those of
the other parameters in the group. Thus the equivalent solu-
tions are as follows: {(k21 = 1, k31 = 8, k41 = 21), (k12 =

25, k13 = 21, k14 = 3)}, {(k21 = 8, k31 = 1, k41 =

21), (k12 = 21, k13 = 25, k14 = 3)}, {(k21 = 1, k31 = 21,
k41 = 8), (k12 = 25, k13 = 3, k14 = 21)}, and so on,
resulting in six possible combinations of parameters, with
each parameter having three possible numerical values.

This compensatory phenomenon occurs for each model
with SLING parameters. In the example above we have
assumed that all parameters can have values in [1] and [25],
and hence we have classified the case as confounding. This
may be a conservative assumption. If the researcher has some
prior knowledge of the relative values of the parameters, such
as e.g. that θi should be within a different range than θj,
or that θi ≤ θj, this additional information could constrain
the admissible values of the parameters further, leading to
a model that is uniquely identifiable within the admissible
ranges.

IV. DISCUSSION
The motivation for this work was to shed light on the dif-
ference between local and global structural identifiability in
biological modeling. Our first goal was to quantify how likely
is it for a SLI parameter to not be also SGI. We refer to such
parameters with the new acronym SLING. Since it is not pos-
sible to analyse every model in the literature, we assembled
a set of models and analysed their structural identifiability.
In order to make this set as representative as possible of the
existing diversity in biological modeling, we selected case
studies from different areas: physiology, gene expression,
pharmacokinetics, cellular signaling, metabolism, immunol-
ogy, tumor modeling, epidemiology, virology, microbiology,
and generic model structures. Admittedly, our choice of mod-
els is subjective, and a different selection would probably not
yield the exact same results. However, our results showed a
remarkably consistent trend common to all areas. In quali-
tative terms, all areas had a minority of unidentifiable (SU)
parameters, a majority of SGI parameters (which are also
SLI), and very few or no SLING parameters. Quantitatively
speaking, the percentage of SLING parameters across all
areas was approximately 5%. Thus, it may be concluded that
SLING parameters are rare, although not nonexistent.

A second goal was to explain mathematically the features
that make a parameter SLING. To this end, we analysed every
SLING case individually, which allowed us to find a number
of common features that can cause this result. While one of
them – the existence of parameters with even exponents – is
trivial, the others are less obvious.

Thirdly, we assessed the possibility of obtaining wrong
estimates of SLING parameters, i.e. of confounding their true
values with equivalent local solutions. This may happenwhen
the equivalent solutions are within the range of biologically
admissible values. In our tests, this risk for confusion was
present for more than half of the SLING parameters, which
represents roughly 3% of all the parameters in the models.
However, this number could be lowered if additional knowl-
edge about the parameter values is available, which is often
the case. Overall, these figures suggest that, by performing
a structural local identifiability analysis and assuming that
local identifiability makes it possible to uniquely determine
the parameter values, one can expect to obtain correct results
in at least 97% of the cases.

An interesting aspect that we have not mentioned yet is
the role played by initial conditions. When identifiability is
analysed with a structural approach, the results are valid for
generic values of the initial conditions. Thus, if a parameter is
structurally identifiable, it will be so for almost all values of
the initial conditions, i.e. except possibly for a set of measure
zero. While there may exist a specific numerical value of
an initial condition from which the model loses identifiabil-
ity (thus rendering a locally or globally identifiable model
unidentifiable), we regard such case as a practical or numer-
ical (not structural) issue. Thus, the structural identifiability
results reported in this paper do not change depending on the
initial conditions.
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On the other hand, since the initial conditions of unmea-
sured state variables can be regarded as unknown parameters,
it is possible to investigate whether they are SLING. In fact,
our analyses revealed that the identifiability of the initial
conditions followed similar patterns as that of the other
parameters. We found that, if a equation contained one or
more SLING parameters, there was typically a SLING initial
condition involved. However, since the primary focus of our
investigation was on the parameters appearing in the differ-
ential equations, we did not include the initial conditions as
parameters in the results reported in our paper. Such analysis
could be pursued as future work.

Lastly, it should be noted that, in order to determine
whether a parameter is SGI or not, we need to perform a
structural global identifiability analysis. Currently this task
can only be performed systematically and reliably for ratio-
nal models [7]. Hence, in this study we did not consider
nonrational models, which are a small but non-negligible
fraction of all published models. Including those models in
the analysis is a possible avenue for future work, which may
be pursued when the maturity of structural global identifiabil-
ity methods allows it. Furthermore, a complete mathematical
characterization of all possible causes of SLING parameters,
including those cases for which we could not find a dis-
cernible pattern, would also be a desirable goal.
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