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ABSTRACT Test suite minimization is the task of finding a smaller test suite that still fulfills the properties of
the original test suite but which comprises fewer test cases. It is important in practice, especially in the context
of regression testing, where test suites are re-executed. However, test suite minimization as a set covering
problem is known as an NP-complete problem, which requires applications of heuristics. Although many
test suite minimization techniques have been applied previously but obtained conflicting results primarily
due to inherent differences in underlying programming languages and experimental setup. In this respect,
we study traditional greedy-based algorithms for test suite minimization that allow to remove test cases
in a way such that the reduced test suite satisfies all requirements. Specifically, we evaluated commonly
discussed approaches on publicly available JavaScript applications using mutation coverage. We show that
the discussed algorithms reduce the test suite size of the studied example programs on average to 70%
without compromising the fault-detection capability of the original test suite. The suggested approach not
only minimizes the test suite’s size, thereby reducing the regression testing cost, but also ensures that the
reduced test suite catches the same number of faults as that of the original test suite. Further, we also examine
their performance in scenarios when meeting all testing requirements is not feasible due to time and budget
constraints.

INDEX TERMS Test suite minimization, mutation testing, regression testing, JavaScript.

I. INTRODUCTION
Test suite minimization (reduction) is the task of identi-
fying and, later on, eliminating redundant test cases from
the original test suite. Minimizing test suites is important
because software constantly evolves, which causes the test
suite to grow accordingly. As a consequence, testing software
over time becomes expensive, requiring a lot of resources.
This is why test suite minimization has been a subject of
wide interest for regression testing, which aims at re-testing
software after modifications. Regression testing techniques
can be divided into three categories: test suite minimization,
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regression test case selection, and test case prioritization [1].
In contrast, to test suite minimization, test case prioritization
aims at reordering test cases without removing them from the
original test suite such that faults can be detected as early as
possible. In this paper, however, we focus on test suite min-
imization, where redundant tests are eliminated by selecting
a minimal subset of tests that can satisfy all requirements.
This is similar to the minimal set cover problem, which is an
NP-complete problem [2].

To illustrate the necessity of test suite minimization, let
us consider the case of Google. Memon et al. observed that,
on average, 150million tests are performed daily byGoogle’s
Test Automation Platform (TAP) [3]. Any new update is made
to the software every few seconds leads to a ‘‘big test sets’’
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issue that is analogous to the Big Data problem [4]. It requires
building robust and cost-effective strategies for test case
selection or reduction during regression testing.

Previously, regression testing techniques have been stud-
ied mainly on C and Java programs [2]. Surprisingly,
these studies report conflicting results as these were con-
ducted on different programs using different test suites
containing different test cases targeting different faults. For
instance, Wong et al. [5] and Zhang et al. [6] concluded that
test suite reduction approaches have a negligible effect on the
fault-detection capabilities of the studied test suites. On the
contrary, Rothermel et al. [7] observed a severe impact of test
suite minimization on the test suite quality. Our contribu-
tion lies in analyzing test suite minimization approaches on
JavaScript applications due to the following factors: First,
these applications are typically used nowadays for building
modern mobile and web applications. However, due to the
weakly typed nature of JavaScript these applications are con-
sidered vulnerable as compared to statically typed languages
such as Java. For example, 28% of JavaScript applications are
reported to have Undefined Symbol exception whereas 9% of
such applications observed Null Exception [8]. Second, the
asynchronous behavior of these applications further com-
plicates the testing process [9], [10]. Third, it is possible to
inject code into these applications at runtime due to dynamic
loading feature, which has naturally raised security concerns
for such applications [11]. Fourth, these packages have mul-
tiple releases with updated test suites that makes regression
testing harder due to continuous integration practices as the
software needs to be validated after every update [12]. Con-
sequently, Zhang et al. tailored their search-based software
testing tool, namely EVOMASTER to enable white-box test-
ing of JavaScript applications [13]. Likewise, Andreasen et al.
discussed similar challenges observed during dynamic analy-
sis and testing of JavaScript applications [11]. This motivated
us to evaluate the efficacy of test suite minimization tech-
niques for JavaScript applications.

In this work, we discuss five algorithms for test suite
minimization and compare their effectiveness. We measure
effectiveness both in terms of the reduction in the resulting
test suite size as well as fault-detection loss. First, we discuss
Harrold et al. algorithm, probably the first approach discussed
in the literature [14]. This is followed by the greedy algorithm
based on an approximation algorithm for set covering; It is
typically used in test suite reduction approaches and serves
as a baseline technique [15]. Likewise, the third algorithm,
delayed greedy, has also been widely discussed for test suite
minimization [16]. In addition to the previously mentioned
traditional test suite minimization algorithms, we introduce
two more algorithms: one is a variant of Delta Debugging
algorithm by Hildebrandt and Zeller [17] originally devel-
oped for minimizing one particular test case, the second is
a search-based algorithm.

To compare effectiveness, we carried out an empirical
evaluation that is based on ten available open-source Node
Package Manager (NPM) software packages. NPM is the

largest online repository containing around two million
Node.js packages, which is ‘‘an open-source, cross-platform,
back-end, JavaScript runtime environment that executes
JavaScript outside a web browser’’. Since these packages are
very frequently used by developers for building JavaScript
applications, robustness and fault-resilience play a vital role
in the quality of the developed applications [12].

We carried out an empirical evaluation in order to inves-
tigate the following research questions in the context of
JavaScript applications:
RQ1: Which test suite minimization algorithm achieves

the maximum reduction of the test suite size without
compromising the fault-detection loss?

RQ2: Which test suite minimization algorithm performs
better in the context of execution time?

In summary, the contributions of this paper include:
(i) answering the question of how much fault-detection is
compromised by applying test suite reduction based on killed
mutants, and (ii) coming up with an exhaustive empirical
evaluation comparing traditional test suiteminimization algo-
rithms on multiple versions of publicly available JavaScript
packages. The latter contribution can be considered as a
replication study comparing well-known and also two other
algorithms for test suite minimization.

We organize the remainder of this paper as follows:
In Section II, we discuss related research work. Following,
in Section III we introduce the underlying foundations to
be self-contained. Afterward, in Section IV, we discuss the
five algorithms for test suite minimization in more detail.
In Section V, we provide the details regarding the experimen-
tal evaluation along with a detailed discussion on results and
threats to validity. Finally, we conclude the paper and discuss
future work in Section VI.

II. RELATED WORK
Whenever software undergoes any update, it must be ensured
that the new version still satisfies either all test requirements
for the previous version or the latest version of the Software
Under Test (SUT). The former type of regression testing
is termed ‘‘corrective’’ regression testing, while the latter
is named ‘‘progressive’’ regression testing [18]. Based on
the actual testing requirements, Regression testing can be
classified as test suite minimization (reduction), test case
selection, or test case prioritization. Test suite minimization
purely focuses on the elimination of redundant test cases.
Test case selection, on the other hand, does not remove any
test case but rather selects only appropriate tests for testing
the modified or added functionality. Test case prioritization
focuses on test ordering to maximize certain properties like
coverage or fault detection.

A. TEST SUITE MINIMIZATION
Test Suite Minimization can be further categorized into fol-
lowing approaches: Greedy-based, clustering-based, search-
based and hybrid approaches [19]. Surprisingly, 67% of the
discussed studies have employed greedy-based approaches
for test suite minimization whereas 20% have discussed
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search-based approaches. Among the earliest works on test
suite minimization (reduction), Harrold et al. explain how
the redundant test cases can potentially increase the regres-
sion testing cost of software under test [14]. Therefore,
they suggested a heuristic for test suite reduction by itera-
tively selecting essential test cases, thereby reducing the test
suite size. Since finding a smallest possible subset of a test
suite, an ‘‘optimal representative’’ test suite, that can test all
requirements is an NP-complete problem, Chen and Lau [20]
proposed a greedy search algorithm for test suite reduction
named GRE.

Specifically, they suggested a test suite reduction algorithm
that ensures that all essential test cases are preserved while
reducing the test suite. A test case is called ‘‘essential’’ that,
if removed, will result in a test suite that can not meet all
requirements. On the contrary, if the resulting test suite still
fulfills all requirements, a test case is termed ‘‘redundant’’.
Particularly, they first select all essential test cases followed
by 1-to-1 redundant test cases before applying the greedy
strategy. This way, they claim to achieve better reduction than
Harrold et al. approach [14].

Tallam and Gupta introduced a variant of the Greedy
algorithm called Delayed Greedy (DGR) using a concept
analysis approach [16]. Specifically, they take a context table
as input, where each row contains a test case, and each column
represents a set of requirements covered by each test case.
Based on concept analysis theory, the algorithm performs
object, attribute, and owner reduction before making a greedy
choice of removing a certain test case. Their results show
that DGR achieved a smaller subset of a test suite than the
traditional Greedy [20] and Harrold et al. heuristic that covers
all testing requirements [14].

Zhong et al. compared four test suite reduction algo-
rithms, that is, Harrold et al. [14], GRE [20], ILP-based
approach [21], and genetic algorithm (GA) on 11 C pro-
grams [22]. They measured the complexity of a test suite
accompanied by these programs by two attributes: the number
of test cases in a test suite and the number of requirements a
test suite needs to satisfy. Further, they evaluated the afore-
mentioned algorithms on test suites of varying complexity
with respect to the execution time and reduction in test suite
size. They reported that GA by Mansour and El-Fakih [23]
has the highest complexity and execution time. Further, Har-
rold et al., as compared to other algorithms, take the least time
to generate reduced test suites. Interestingly, all approaches
produced reduced test suites of similar sizes but contained
different test cases. The authors recommended Harrold et al.
among the other studied approaches. However, one threat to
validity was the lack of real-world test cases.

Jones et al. adapted traditional test-suite reduction and
prioritization to satisfy the modified-condition/coverage
(MC/DC) coverage criterion that is considered to be more
effective than the classical statement coverage criterion [24].
Similarly, Jena et al. discussed test suite reduction approaches
using MC/DC coverage criterion for safety critical

systems [25]. In addition toMC/DC coverage, combinatorial-
based coverage has also been discussed in the literature for
effective test suite reduction in a very specialized case [26].
In contrast, we focussed on classical greedy-based test suite
reduction heuristics by employing mutation score instead of
source code metrics and combinatorial coverage.

Smith and Kapfhammer carried out an empirical study
on eight real-world but relatively small-sized case studies
using traditional test suite reduction algorithms by includ-
ing execution time [27]. They argued that a tester’s main
objective is to find more faults in less time, whereas the
test suite reduction algorithms only consider coverage as
the test adequacy and an evaluation metric. They employed
three evaluation metrics: reduction in reduced test suite size,
reduction in execution time, and coverage effectiveness in
terms of total requirements covered in a certain time limit by
ignoring the fault-detection parameter. On the contrary, our
work includes both fault detection and execution time while
measuring the effectiveness of an underlying approach. Their
results showed that a reduced test suite might not have the
lowest execution time. Moreover, Delayed Greedy performed
well for both test suite reduction and prioritization, whereas
Harrold et al. only showed good results for reducing test
suite size. Likewise, our study on JavaScript applications
confirms the superiority of the DelayedGreedy approach over
the Harrold et al. technique.

Interestingly, Zhang et al. observed in their empirical study
on Java programs that the key factors to be considered for
reducing the test suite’s size and fault-detection capabili-
ties are the ‘‘test case granularity’’ and the ‘‘test coverage
level’’ instead of any reduction approach in specific [6].
We also obtained the same result, that is, all reduction
algorithms obtained a similar reduction in test suite size
and fault-detection capability when all requirements must
be satisfied. For example, all reduction algorithms, includ-
ing greedy and Harrold et al. approach for their subject
programs, obtained a 65% reduction in test suite size with
fault-detection loss of nearly 5% for method-level coverage,
whereas we obtained roughly 70% reduction with zero loss
in fault-detection capability. However, they did not consider
the execution time for evaluating studied algorithms. Also,
they did not include the delayedGreedy algorithm, which
seems to perform better than Harrold et al. heuristics in our
analysis. Further, they studied the impact of the reduction
in test suite size and the fault detection on statement-level
and method-level test coverage. Similarly, for the test case
type, they evaluated the same metrics on the method level
and class level. Their results show that method-level test
coverage should be preferred over statement-level. Like-
wise, method-level test cases showed better results than
class-level. Our work mainly focuses on measuring the effec-
tiveness of mutated faults generated by a third-party mutation
testing tool for Node.js packages, as mutation coverage
is considered a stronger coverage criterion than statement
coverage.
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Likewise, Shi et al. raised similar concerns and discussed
various trade-offs while deciding on a suitable test suite
reduction strategy [28]. They highlighted the fact that all
aforementioned techniques, Harrold et al. [14], GRE [20],
Tallam and Gupta [16] mainly focussed on 100% attainment
of statement coverage by the reduced test suite. Therefore,
they also studied the quality of the reduced test suites in
terms of their mutation score in addition to basic coverage.
Interestingly, the mutation score-based reduced test suites
prove to be more stable across multiple versions of the same
program. Moreover, all previously conducted studies only
considered test suite reduction for one version of the program,
which might not be a realistic figure taking into account
that a typical software undergoes multiple versions during its
lifetime. This means that a test case deemed redundant for
one version might be very useful in exposing faults in the
next version. Further, they made use of multiple versions of
GitHub projects for experimental evaluation as compared to
majorly studied programs from Software-artifact Infrastruc-
ture Repository (SIR) [29]. As a third contribution, they also
proposed inadequate test suite reduction as an alternative to
adequate test suite reduction techniques to facilitate test engi-
neers in making situation-aware decisions. Similar to them,
we also employ mutation coverage criteria for evaluating test
suite reduction algorithms with varying inadequacy levels.
Our results seem to be consistent with their evaluation as
by increasing the inadequacy level to 10, meaning 90% of
the requirements are satisfied, the test suite size reduction
increases on average to 80%, whereas we obtained 82.7%
for the greedy algorithm. However, they did not include the
execution time factor in their analysis.

Agrawal et al. proposed a fault-based test reduction
algorithm and compared it with four benchmark heuristics
for regression testing, namely, greedy, additional greedy,
Harrold et al., and enhanced Harrold et al. algorithm on a
collection of 12 programs taken from the SIR repository [30].
It was observed that this algorithm even outperforms the
greedy algorithm in reducing the test suite size. However,
both have similar performance in terms of execution time.
Specifically, it takes as input a dummy fault matrix containing
all faults and test sets covering those faults. As a next step,
it assigns weight to each test case based on the number of
faults detected by it. Likewise, each fault is also assigned a
weight depending on the number of test cases that can detect
this fault. These weights are employed to select a test case that
reveals a maximum number of faults from a test set of size
1 until a total number of faults. This process is repeated till
either all faults have been covered, or all sets of the original
test suite are examined. The cost of generating an input matrix
containing 12 faults and 15 test cases is not specified. Further,
they assumed that the execution cost of each test case is one
second.

In addition to greedy-based heuristics, search-based algo-
rithms are also applied for test suite minimization. Wang et
al. developed a tool,‘‘TEst Minimization with Search Algo-
rithms (TEMSA)’’ to compare ten multi-objective search

algorithms on an industrial case study of product lines [31].
They observed that the Random-weighted Genetic Algorithm
outperformed other approaches when applying six different
inputs for fitness functions, including Fault Detection Capa-
bility, test minimization percentage, and overall execution
time.

B. TEST CASE PRIORITIZATION
Test case prioritization focuses on the permutation of test
cases to maximize the testing objective. This prioritization
could be coverage-based, history-based, or probability-based.
Some prominent test case prioritization algorithms include
greedy algorithms, meta heuristics and evolutionary search
approaches [2]. Greedy algorithms follow the greedy princi-
ple of incrementally adding test cases tomaximize the desired
metric. But, they might fail to come up with an optimal
test case ordering always. Meta heuristic techniques find a
solution to combinatorial problems at an economical cost.
The target of evolutionary search algorithms is to follow the
survival of the fittest strategy for test suite prioritization.

Li et al. compared five algorithms, namely greedy,
additional greedy, 2-optimal, genetic algorithm(GA), and
hill-climbing for test suite prioritization during regression
testing of programs with small and large-size test suites [15].
In the case of small-sized programs, additional greedy’s
performance is comparable with GA. However, additional
greedy should be preferred since GA performed worse in
a few examples. For large-sized test suites, the Genetic
Algorithm (GA) performed better than the other studied
approaches as it can handle the search space better than the
rest of the approaches, whereas the greedy algorithm showed
the worst performance. The reported results were based on
the code coverage criterion.

Elbaum et al. discussed the importance of test case prioriti-
zation in the context of continuous integration at Google [32].
During the continuous integration development, the code
written by developers needs to be tested before and after
the submission to the ‘‘code base’’. Therefore, the authors
suggested different regression testing strategies for the ‘‘pre-
and post-submit’’ testing phase: in the pre-submit phase, they
applied regression test selection approach to help develop-
ers select a subset of test suites; on the other hand, in the
‘‘post-submit testing phase’’ they recommended test case
prioritization techniques for earlier fault-detection. Their
approach is based on cost-effective algorithms that do not
require code coverage.

Henard et al. compared twenty test case prioritiza-
tion techniques concerning the white-box versus black-box
approaches [33]. They studied the robustness of the generated
test suite during the entire development life cycle encompass-
ing various releases of the software under test. Their study
revealed only 2% degradation among the top three white- and
black-box regression techniques in the thirty versions of the
subject programs.

Miranda et al. pointed out that the existing testing tends to
fail as the test suite size increases in the context of industrial
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systems [4]. For that, they proposed a set of similarity-based
test case prioritization techniques. These techniques are based
on the already proven algorithms from the big data domain.
They claim that their approach can select the most effective
test cases from a set of one million test cases in less than
twenty minutes. Cruciani et al. [34] is one of their latest work
on test suite reduction. They tested their approach on C and
Java programs. Their approach is based on similarity-based
test case prioritization. Our approach also evaluates a variant
of the delta debugging algorithm for removing redundancy
from test suites [35]. In addition, we employ mutation scores
to judge the effectiveness, whereas they apply the Average
Percentage of Faults Detection (APFD). This determines how
fast the approach detects faults but does not take into account
the time taken by the prioritization technique itself. Both
these criteria aim at judging the ability of a test case to
detect potential faults. They applied their approach to both
white-box and black-box testing approaches, whereas our
work is mutation-score based that is only applicable to white-
box testing.

Groce et al. applied delta debugging minimization to
reduce the size of test cases contained in a test suite as
opposed to previously discussed approaches that aim at
reducing the size of an entire test suite [36]. The aim was
to reduce the test suite’s size based on code coverage cri-
terion rather than just minimizing only the failing test case
as proposed in the original Delta Debugging algorithm.
Thus, increasing the overall test suite’s ‘‘efficiency’’, that is,
to ensure improved coverage per unit time by minimizing
the size of individual test cases. They evaluated the approach
on a randomly generated test suite containing both passing
and failing test cases. The rationale behind the idea was to
enable ddmin to detect new faults rather than reducing the
previously known faults. In this respect, they first generated
a random test suite on ‘‘SpiderMonkey’’ tool. Later on, they
reduced the test suite’s size based on coverage criteria like
statement and branch. They also applied mutation score for
evaluating their approach on‘‘YAFFS2’’ [37], an open-source
NAND flash file system. They showed that their approach,
when executed on SpiderMonkey, a JavaScript engine results
in better fault detection. Our work, on the other hand, is based
on the reduction of manually generated test suites available in
npm packages to find a smaller set of test cases that achieve
the same mutation score as that of an original test suite.

C. TEST CASE SELECTION
Test case selection, given two versions of the software under
test and the original test suite T , aims at selecting those test
cases in a test suite T , which executes the altered parts of
the software under test. However, unlike test suite minimiza-
tion, the selected test cases are not removed from the test
suite. Romano et al. is one of the recent works done on test
case selection of Java programs [38]. Interestingly, they also
used faulty versions of the original programs (mutants) for
injecting faults. Their approach outperformed the baseline
techniques in almost 50% of the studied examples. Yoo and

Harmann observed that meta-heuristics search techniques are
better suited for multi-objective test case selection [39].

III. PRELIMINARIES
In order to be self-contained, we define the related regression
software testing concepts required for understanding the rest
of the paper.

Rothermel et al. [7] formally defined test suite reduction as
follows: Given a test suite T for a program5, a set of test case
requirements r1, r2, . . . , rn that must be satisfied to provide
the desired test coverage of the program, and subsets of T ,
i.e., T1,T2 . . . ,Tn, one associated with each of the ris such
that any one of the test cases tj belonging to Ti can be used to
test ri. The problem is to find a representative set of test cases
from T that satisfies all ris. The optimal test suite reduction
is the one that contains at least one test case requirement tj
from each subset Ti. The problem is considered analogous to
the finding of the minimal hitting-set problem. Considering
the fact that this itself is an NP-complete problem, different
heuristics have been suggested to reduce software mainte-
nance costs [2].

The key objective of these heuristics is two folds: First,
they must include ‘‘essential’’ test cases in the reduced test
suite. This is needed as an essential test case is the one that,
if removed from the original test suite, T , the representative
test suite, Trep can not meet all test case requirements ris.
In other words, an essential test case must be a part of every
minimal representative set Trep. Second, such heuristics must
ensure the removal of ‘‘redundant’’ test cases. This is due to
the fact that if a redundant test case, tr is removed from the
original test suite, T , the representative test suite, Trep can
still meet all test case requirements ris. Therefore, removing
redundant test cases will not affect the fault detection capa-
bility of the representative test suite, Trep.

Most of these heuristics are evaluated on code coverage
criterion. For code coverage like statement or method cover-
age, we are interested in knowing how many statements or
methods of a program 5 are executed using a test suite T in
relation to the total number of statements or methods. Besides
these classical coveragemeasures, themutation score of a test
suite can also be used as a quality measure for test suites [28].
As a matter of fact, 74% of the previous studies employed
mutation-score to assess independent and dependant vari-
ables such as cost for evaluating different approaches [19].
Mutation testing is a fault-based testing technique that eval-
uates test suites T via the injection of faults in the subject
program Pi using mutation operators, thereby making differ-
ent copies of the original program called mutants [40], [41].
For example, have a look at Fig. 1 showing a snippet from an
original UUID NPM package. After applying math mutation
operator, we see the altered version of the program in Fig. 2.

The mutants are executed using the test suite T and classi-
fied accordingly to the outcome. If there exists a test case t in
T where a mutant 5M computes an unexpected output, i.e.,
fails, 5M is said to be killed. Otherwise, a mutant is said to
survive. The mutation score measures how many mutants are
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FIGURE 1. UUID – original program snippet.

FIGURE 2. UUID – Mutated program snippet.

killed using the test suite T and is defined as:

m(5,T) =
number of killed mutants

number of mutants
. (1)

This definition is ambiguous because of several issues
regarding the number of mutants to be counted. First, we have
mutants that do not change the behavior of a program. Such
mutants are called equivalent mutants. Second, we may have
mutants that cannot compile or may lead to runs that are
terminated due to given execution time limits. In all these
cases, we may not consider the corresponding mutants to be
counted. Therefore, we introduce the concept of discarded
mutants that comprises all mutants that cannot be compiled
or terminated due to exceeding execution time limits. In this
paper, we define the number of mutants as the total number of
mutants minus the discarded mutants, ignoring the effect of
equivalent mutants. Hence, from here onm(5,T ) is assumed
to deliver the mutation score considering discarded mutants.

For different programming languages, there are language-
specific mutation tools available. In our case, we focus
on JavaScript applications and make use of the Mutode
tool, which employs 48 mutation operators for generating
‘‘mutants’’ of the variousNPMpackages for our experimental
evaluation [12]. The mutation testing incurs high costs as it
requires to re-execute all mutants whenever any update is
made to the software under test. Therefore, we generatemuta-
tion matrix to store the output of each mutant upon execution
of a test suite. This matrix needs to be computed once for each
version of JavaScript package, which reduces the execution
time of computing mutation coverage for each algorithm.
In addition, the mutation matrix can be used to determine the
efficacy of the test suite across multiple versions of the same
package.

FIGURE 3. The methodology flow diagram.

A. EVALUATION METRICS
Previously, two evaluation metrics have been studied for
comparing traditional test suiteminimization algorithms: Test
suite size reduction TSred and Fault detection loss TFred [6]
and [28]. We can represent the reduction in the test suite size
when applying a test suite minimization algorithm as follows:

TSred =
|T |-|T ′

|

|T |
∗ 100. (2)

where |T | stands for the size of the original test suite, and |T ′
|

denotes the size of the reduced test suite. We can measure
fault detection in a similar way:

TFred =
|M |-|M ′

|

|M |
∗ 100. (3)

where |M | represents mutation score of the original test suite
T , and |M ′

| denotes the mutation score of the reduced test
suite T ′ of the same program 5, i.e., M = m(5,T ), and
M ′

= m(5,T ′).

B. METHODOLOGY
This section describes an overview of the methodology
depicted by Fig. 3. The process starts by executing a
third-party mutation testing tool namedMutode on a test suite
with a given NPMpackage. As described earlier, the mutation
testing tool generates mutants of the underlying program.
Thereafter, the original program is executed on each of these
mutants. The output of the mutation testing tool is further
instrumented to generate a mutation matrix that contains
information regarding the number of faults killed by each
mutant. Table 3 contains the time taken by the tool to generate
a mutation matrix for each studied subject. The next step is
to compute the mutation score for each test suite describ-
ing the number of faults detected by the original test suite.
The only input required for this step is the mutation matrix
generated in the previous step. Finally, the test suite mini-
mization algorithms are supplied with three inputs: mutation
matrix, boundary value, and the original test suite. The details
about the algorithms are explained in the next section IV.
The final output of each algorithm is a reduced test suite. The
algorithms are evaluated based on two evaluation metrics:
the size of the reduced test suite and the fault-detection loss
of the reduced test suite.
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IV. TEST SUITE MINIMIZATION ALGORITHMS
After describing preliminaries, we discuss five algorithms for
test suite minimization. The first algorithm was suggested
by Harrold et al. that ensures that all essential test cases are
included in the representative test suite [14]. Next, we have a
greedy algorithm that comes up with a minimized test suite
using local means for optimization [15]. Hence, the greedy
algorithm does not guarantee finding a minimal test suite, but
also, the others do not come up with such a guarantee. The
third algorithm is the delayed greedy algorithm, as it delays
the greedy selection [16]. Since all previously mentioned
algorithms do not provide any guarantee that the resulting
representative test suite has the same fault detection capabil-
ity as that of the original test suite, we study the impact of tol-
erance in the desired mutation coverage criterion during test
suite minimization. Further, we also suggest two additional
algorithms: the first is search-based and employs random
selection; The second is the modified version of the Delta-
Debugging algorithm by [17]. For both algorithms, we also
allow that the reduced test suite has a (slightly) smaller
mutation score, where we use the parameter α for stating the
maximal accepted mutation score difference. The first three
algorithms have already been discussed for coverage-based
test suite minimization and serve as baseline algorithms.

A. HARROLD ET AL. HEURISTIC
Harrold et al. suggested a heuristic that aims at selecting
‘‘essential’’ test cases first by grouping all requirements into
subsets of increasing cardinality [14]. Fig. 4 explains the
original heuristic where requirements represent mutants gen-
erated for a program 5. First, test sets Tl containing all test
cases that kill a certain mutant are generated from the muta-
tion matrix (lines 2-6). Next, all single element test sets Tl
are added to Tm as they select the test cases that can satisfy a
maximum number of requirements of cardinality k = 1 (lines
7-10). This is followed by the selection of test cases that can
meet the maximum number of unsatisfied requirements (non-
killed mutants) of the next higher cardinality (lines 13-15).
The selection is continued till either maximum cardinality
is achieved or desired mutation score is obtained. In case
two test cases meet the same requirement (same mutant)
of cardinality k , the decision is made by selecting the test
case which also satisfies the requirements of cardinality k+1.
However, if a test set Tl of max cardinality is selected, the
MaxCardinality is reset to the maximum cardinality of the
remaining sets (lines 19-27). This way, the heuristic itera-
tively selects the test cases required to meet the remaining
unsatisfied requirements, thereby reducing the test suite size.
The time complexity of the algorithmwill beO((|s|+|m|)|s|∗
c) where |s| represents the size of the test suite, |m| denotes
the number of mutants (testing requirements), and c stands
for the maximum cardinality.

B. Greedy ALGORITHM
The idea behind Greedy originates from a polynomial time
approximation algorithm for computing a set cover [15].

FIGURE 4. Harrold et al. – Test suite minimization adapted from [14].

In the set cover problem, we have a finite set of elements
called the universe and a set of elements only from the
universe. The problem relies upon finding a subset of the set
of sets such that all elements of the universe are captured.
The set cover problem is known to be NP-complete. The test
suite minimization problem considering the mutation score
of particular test cases, can be easily mapped to the set cover
problem. The universe is the set of mutants to be covered. For
each test case t of the test suite T , we add a set to the set of
sets if and only if the mutant is killed by t . A set cover is
now nothing else than all the test cases required to cover all
mutants.

Greedy is depicted in Fig. 5. In the first FOR loop at the
beginning, we are computing the set of sets for whichwewant
to obtain the set cover. Afterward, we take the largest element
of this set, which covers most of the mutations, add it to the
result set Tm, and remove it from the set of sets. We also
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FIGURE 5. Greedy –Test suite minimization adapted from [15].

remove all elements for this set from the other sets to find
another set that covers different mutations. The algorithm
terminates when we have considered all mutations or the
desired mutation score is achieved. The runtime complexity
has to be polynomial because we are only iterating over sets
of sets.

C. DelayedGreedy ALGORITHM
The delayed greedy algorithm in Fig. 6 was presented by [16]
and is based on a concept lattice theory [42]. This theory
classifies objects based on their attributes, where an object
represents a ‘‘test case,’’ and the attributes denote the ‘‘test
requirements’’ satisfied by that particular test case. Generally,
the test requirements are represented by some coverage crite-
rion, like statement coverage. The approach performs several
reductions on the input matrix containing test cases and corre-
sponding requirements, thereby delaying the greedy selection
of the test cases that meet the most requirements. Hence, the
delayed greedy algorithm is a variant of the already discussed
greedy algorithm.

In the following, we discuss the differences using an
example. For instance, consider four test cases t1, t2, t3
and t4 required to cover five requirements (mutants):
m1,m2,m3,m4 and m5. In our context, the test requirements
represent ‘‘killed mutants’’ for a particular test case. The
following table indicates the mutation covered by each test
case setting the context of the greedy search:

m1 m2 m3 m4 m5
t1 × × ×

t2 × ×

t3 × ×

t4 × ×

The greedy algorithm Greedy selects t1 as the first test
case because t1 kills more mutants than the other test cases.

After removing t1 and all mutants killed by t1, the reduced
context table consists of three test cases t2, t3, and t4 along
with the two mutants m1 and m2. Since they all cover one
mutant so any one of them will be chosen in random order.
In case t4 gets selected, requirement m1 will be removed
from the context table, leading finally to a reduced test suite
= {t1, t3, t4}. The other possible reduced test suite would be
{t1, t2, t3}.

Let us now have a look at the delayed greedy algorithm,
which postpones the greedy selection by performing certain
reduction steps. First, object reduction is performed. In this
reduction step, a test case ty is killed if there exists another
test case tx , where the requirements of tx are a superset or
equivalent to the requirements of ty. For example, in our case,
t2 and t4 share the samemutations. Hence, in accordance with
object reduction, we can either eliminate test case t2 or t4.
In the case of selection t4, we reduce the context table to:

m1 m2 m3 m4 m5
t1 × × ×

t2 × ×

t3 × ×

In the delayed greedy algorithm, the object reduction is
followed by the attribute reduction. If amutant (i.e., a require-
ment), mx is killed by a set of test cases that is a subset of
or equivalent to a set of test cases covering mutant my, then
my is marked obsolete and removed from the context table.
In our example, m3 is covered by the tests {t1, t2}, and m4 by
{t1, t3}. Becausem1 is covered by {t2} alone, which is a subset
of {t1, t2}, we can eliminatem3. Similarly, we can removem4,
resulting finally in the following context table:

m1 m2 m5
t1 ×

t2 ×

t3 ×

This context table comprises three test cases, each of which
covers exactly one mutant. This is termed the strongest con-
cept. In the last reduction, i.e., the owner reduction rule, each
test case that covers one mutant only has to be removed from
the context table, followed by the removal of all columns
comprising the mutants (attributes) killed by the particular
test case. Note that in this step, the removed test cases are
added to the resulting test suite. After this step, all remaining
test cases are minimized using Greedy. In our example,
owner reduction removes all entries in the context table,
leading to a reduced test suite: = {t1, t2, t3}.
In Fig. 6 we state the pseudo-code of the delayed variant of

the greedy test suite minimization algorithm. The Delayed-
Greedy algorithm first starts with object reduction (lines
9-11), continues with attribute reduction (lines 12-14), and
finally applies owner reduction (lines 15-19) before starting
with greedy minimization. Traditionally, this process gets
repeated until the entire context table is empty. However,
we also allow stopping this search if the desired mutation
score is obtained.
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FIGURE 6. DelayedGreedy – Delaying greedy search for test suite
minimization [16].

D. LinMIN ALGORITHM
The LinMIN algorithm depicted in Fig. 7 is a search
algorithm for randomly selecting a subset that is smaller
by one element in each step. There are four inputs to the
algorithm: the program 5, the original test suite T of 5,
a function m returning the mutation score, and the mutation
score threshold α.

The LinMIN algorithm first unmarks all test cases in a
test suite. The while loop in Step 4 iteratively checks all
unmarked test cases and whether removing them has no
unwanted decline in the mutation score. For this purpose,
a selected test case is marked in Step 5 and removed from
the test suite in Step 6. In Step 7, LinMIN performs the
check. If the new mutation score of the reduced test suite,
together with the given threshold α is smaller than the original
mutation score, the selected test case is added back to the test
suite. Through parameter, α, a tester can opt for inadequate
test suite reduction by allowing reduced test suite of size with

FIGURE 7. LinMIN - A linear search procedure for test suite minimization.

mutation scorem(5,T )−α. This leads to a higher reduction
in test suite size but also influences the fault-detection loss as
depicted in Table 9.

Obviously, LinMIN has to terminate because we only
consider test suites comprising a finite number of test cases.
The worst-case complexity is linear in terms of the number
of test cases n, i.e., O(n) because each test case is only
checked once for removal when assuming that computing the
mutation score can be done within a constant time. Note that
the complexity of the function calls m(5,T ) for computing
mutation scores is O(|s| ∗ |m|), where |s| represents the size
of the test suite, and |m| is the total number of mutants for
a program 5. It is worth noting that LinMIN not necessar-
ily comes back with the smallest test suite. Hence, for our
experimental evaluation, we executed LinMIN 10 times and
computed average values.

E. DeltaMIN ALGORITHM
The original Delta-Debugging algorithm aimed at reducing
the size of a failing test case [17]. It takes a fairly large
failing test case as input that causes failure and aims at finding
a smaller test case that still triggers the fault. The faulty
test case includes all possible changes and aims at finding
the minimal change set (configuration) causing the fault.
It marks each test as one of three statuses: passing, failing,
or unresolved. It starts by dividing the input into two parts and
continues to increase the granularity of the search space until
the failure-causing input is identified. The target is to find
software changes that lead to failures. Thus, automating the
‘‘scientific’’ way of debugging [43]. The approach is based
on the divide and conquer principle and helps in locating
faults in software. The worst-case complexity of the original
minimization algorithm isO(|c|2), where c represents several
changes to the program. In the best case, it has the same
complexity as that of a binary search algorithm.

In Fig. 8 we illustrate the use of delta debugging for test
suite minimization. The DeltaMIN algorithm calls the orig-
inal delta debugging algorithm but tailors the test function
used for minimization to fit the purpose. The test function
test returns pass (

√
) if the mutation score of the selected test
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FIGURE 8. DeltaMIN – using delta debugging for test suite minimization.

cases is within the expected range considering the mutation
score of the original test suite and the threshold α. Otherwise,
test returns fail (×). With this test function, the original
delta debugging algorithm ddmin is called for returning a
minimized test suite.

It is worth noting that there will be a reduction of at
least one test case if possible due to the properties of
ddmin. Moreover, DeltaMIN has to terminate and the
same worst-case complexity as ddmin, neglecting the time
required for computing the mutation score using the function
m. However, in practice computing, the mutation score might
be a limiting factor. Note that ddmin and, therefore, also
DeltaMIN come with no guarantees regarding finding the
globally minimal test suite. Hence, we also have to consider
several runs in the experimental evaluation.

V. EXPERIMENTAL EVALUATION
In this section, we discuss the setup and results of an exper-
imental evaluation to answer the previously mentioned three
research questions. We first discuss the setup comprising the
details regarding the used subject programs and the tools used
for mutation. Afterward, we discuss obtained results.

A. SUBJECT DETAILS
It is interesting to note that nearly all of the previous work
done on regression testing makes use of either C or Java
benchmark programs for evaluation [4], [33]. Thus, there is
an acute shortage of case studies about the viability of regres-
sion testing approaches in the context of JavaScript-based
applications. Particularly, we were interested in evaluating
the redundancy in test suites supplied with various open
source Node.js and NPM packages. Since NPM is the largest
software repository comprising more than 700,000 packages
with an average of 5 billion weekly downloads [44], this
demands stringent testing of these packages to avoid faults.

Before discussing the details about the subject packages,
we describe the overall experimental setup: In the first step,
we computed the statement coverage and the time taken by
the accompanied test suites of studied NPM packages as
reported in Table 1. As a next step, we executed a mutation
testing tool, namely Mutode on the subject programs, and
reported mutation details such as mutation score and the time
to run all mutants on a given test suite in Table 3. Note that for
our UUID example, the original test suite took 65 ms while

the mutation testing tool took 44 minutes to execute 2,872
mutants on the same test suite. It is due to this high execution
cost that mutation testing tools are not widely practiced in
the industry. We try to reduce this cost by storing the result
of the mutation testing tool in a fault matrix (CSV file) con-
taining the result of executing all test cases against respective
mutants. This way, we know exactly which mutant (fault)
was killed by which test case. This fault matrix becomes the
input for the test minimization algorithms. Hence, the time
mentioned in Tables 6, 7, 8, 9 and 10 is the execution time of
corresponding minimization algorithms.

In Table 1 we provide statistical information regarding our
subject programs denoted by Program: UUID is a Node.js
package for generating ‘‘Universally Unique Identifier’’.
It has around 26 different versions with ‘‘37,796,670’’ weekly
downloads [45]. Debug is a small debugging utility for
Node.js [46].Body Parser is aNode.jsmiddleware for parsing
req.body property [47]. Express is a popular web framework
for building Node.js web applications with ‘‘14,181,677’’
weekly downloads [48]. Passport is authentication middle-
ware for Express-based Node.js applications [49]. Cheerio
is an npm package for parsing DOM model [50]. ShortId
generates unique ids. These ‘‘URL-friendly’’ ids are used to
keep track of log messages [51]. Async is a utility package for
asynchronous JavaScript [52].

The specific version of the studied NPM package is
denoted by Version. The original test suite size is denoted
by |T |. Similarly, the statement coverage attained by the
coverage tool named NYC is shown as Cov [53].

TABLE 1. Subject programs’ details.

B. FAULT INJECTION
For the experiments, we employed the Mutode tool [12] for
seeding faults into our subject programs.Mutode is a general-
purpose, open-source mutation testing tool for Node.js and
NPM packages. It supports 43 mutation operators, including
mutations for boolean, string, and numeric literals, in addition
to arithmetic, relational, conditional, shift, logical, assign-
ment, and deletion operators. A brief description of the
Mutode mutation operators is mentioned in Table 2. Further
details about each mutation operator can be found in [12].

Furthermore, in Table 3, we summarize information
regarding the mutation scoreM using the Mutode tool. There
are the specific versions of the NPM packages (Version), the
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TABLE 2. Description of used mutation operators.

TABLE 3. Original mutation details obtained using Mutode on our subject
programs.

original test suite size (|T |), the time required to execute
Mutode (Time), the number of generated, killed, survived, and
discarded mutants (Tot., Kill., Sur. and Dis. respectively) are
given.

As alreadymentioned, we computed themutation score not
considering equivalent mutants but discarded mutants. This
differs from the Mutode tool, which explains observed differ-
ences in resulting figures. Moreover, in contrast to Mutode,
which assumes a test case causes a time out if execution
takes longer than 2.5 times the execution time of the original
program, we considered such a time limit for each of the
subject programs that are at least 50 seconds. In Table 4 we
depict the time limits used in the experimental evaluation.

C. RESULTS OBTAINED
Before explaining our results, we summarize key parameters
studied in previous empirical studies in Table 5. Most of these
prior studies employed either statement coverage or method
coverage. Further, these studies were conducted mostly on
Java programs where the typical evaluation metrics were test
suite size or execution time.
All experiments encompassing minimization algorithms

were run on a MacBook Pro with Apple M1 Pro
and 16 GB memory running the operating system Monterey
(version 12.1). The Mutode tool was executed using a Sam-
sung notebook 7 spin (model 740U3M), with 2.54 GHz

TABLE 4. Time out limits used in the experimental evaluation.

Intel i5-7200U and 12 GB RAM. We made the source code
of the NPM packages along with the test suite available on
GitHub [54] for future research and assuring that the results
can be reproduced.

To answer the first research question RQ1: ‘‘Which test
suite minimization algorithm performs better in reducing the
test suite size?’’, we applied five test suite minimization
algorithms discussed in Section IV to compare their reduction
capabilities.

In Tables 6, 7, 8, 9 and 10, we give the test suite reduction
achieved by the redundancy-elimination algorithm Harrold
et al., Greedy, DelayedGreedy, LinMin, and DeltaMin
whereMin represents the size and time taken by the minimum
test suite for a particular alpha. The reduced test suite size
is labeled by |T ′

|. Similarly, Max denotes the maximum
test suite size and the corresponding time achieved during
ten random samples. Likewise, Avg represents the average
test suite’s size and time over ten runs, and s.d . stands for
the standard deviation of the test suite’s size. Further, TSred
denotes the reduction percentage in test suite size, and TFred
represents the percentage loss in the fault-detection capability
of the reduced test suite. We summarize the obtained average
values for all algorithms in Table 11.

From the results, we see the following for α = 0: Greedy,
DelayedGreedy, Harrold et al., LinMIN and DeltaMIN
obtained the same or similar reduction on average. The differ-
ence between the average test suite reduction values is only
minor. Hence, there seems to be no clear evidence that one of
the five algorithms performs better for minimization because
fault-detection loss remains the same.

For α = 5: Greedy results in the highest reduction in
test suite size as depicted by Figure 10, but when comparing
Harrold et al. with LinMIN and DeltaMIN regarding the
smallest reduced test suite and fault-detection loss, there
is no clear difference. The lowest reduction is observed
for DelayedGreedy, namely, 65%, However, on average
DelayedGreedy provided the minimum fault-detection loss
as shown in Figure 9.

By increasing the tolerance value to α = 10, the test suite
size reduction does not change in case of DelayedGreedy,
Harrold et al., LinMIN, and DeltaMIN but the fault detec-
tion loss is almost doubled for Harrold et al., LinMIN, and
DeltaMIN. By increasing the tolerance value, the Greedy
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TABLE 5. Key attributes studied in previous studies.

FIGURE 9. Average % reduction in fault-detection loss for alpha = 5.

FIGURE 10. Average % reduction in test suite size for alpha = 5.

algorithm results in a higher reduction in test suite size along
with higher fault detection loss. However, DelayedGreedy
has the smallest fault detection loss among all algorithms.

The obtained results can be used to answer RQ1 as follows.
Considering that DelayedGreedy has the highest average
test suite reduction for α = 0, acceptable reductions for the
other tolerance values, and always the smallest fault detection
loss, we justify the superiority of the DelayedGreedy test
suite minimization algorithm.

To answer the second research question RQ2: ‘‘Which
test suite minimization algorithm performs better in the con-
text of execution time?’’, we look at the execution time
of all five algorithms given in Table 11 where the aver-
age runtime t is given in milliseconds. If we compare the
average execution time of all five algorithms,Greedy and
DelayedGreedy seem to perform equally well. Interest-
ingly, LinMIN performs better than Harrold et al. in terms
of execution time with similar test suite size reduction and
fault-detection loss. Hence, research question RQ2 can be
answered as follows: Greedy is the fastest algorithm, fol-
lowed by DelayedGreedy, LinMIN, Harrold et al. and
DeltaMIN. The reason behind the larger amount of time

FIGURE 11. Average execution time (ms) for alpha = 5.

TABLE 6. Test suite minimization results for Harrold et al. approach.

required for Harrold et al. (HGS) and DeltaMIN (DM)
may rely on the larger number of mutations to be generated.
It is worth noting thatGreedy is faster thanDelayedGreedy
with two exceptions for program express. This might be due
to the test suite size, which is large compared with the other
test suites. Hence, in these two cases delaying the greedy step
and applying reductions lead to faster computation. Similarly,
Harrold et al. take a longer time in examples with larger test
suite size as it generates subsets of all possible cardinalities.
If we look at the average execution time, there is a visible
decrease both inHarrold et al. andDeltaMIN by increasing
the tolerance value while the average time taken by Lin-
MIN remains the same as depicted in Figure 11. Therefore,
DelayedGreedy should be preferred over Harrold et al.
for larger test suites.
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TABLE 7. Test suite minimization results for Greedy.

TABLE 8. Test suite minimization results for DelayedGreedy.

D. THREATS TO VALIDITY
The threats to validity can be further classified as inter-
nal, external, and construct validity. The Internal validity
denotes the faults during the implementation of the studied
techniques. To overcome this threat, we implemented the
algorithms greedy [15], delayed greedy [16] followed by test-
ing and code-review of the implementation. Further, we made
the implementation public for validation. In addition, there is
a possibility that the faults introduced for experimental eval-
uation are not real faults. To cater to this problem, we made
use of the Mutation testing tool for generating faults in the
original packages automatically, which is previously proven

TABLE 9. Test suite minimization results for LinMIN.

TABLE 10. Test suite minimization results for DeltaMIN.

to simulate real faults as compared to manually injected
faults [6].

To address the external validity threat, it is important
to show that the obtained results can be generalized to
other languages. For that, we have conducted experiments
on real-world JavaScript packages publicly available and
widely used by the community for developing JavaScript
applications. These packages come with test suites that a
developer must execute to ensure the correctness of the pack-
age. At the moment, our approach requires the ‘‘Mocha’’
testing library, due to which we can only implement our
approach on five out of twelve packages listed in [12]. This
is because our redundancy elimination algorithms require
the effect of each test case on the overall mutation score.
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TABLE 11. Comparative analysis of all five algorithms Greedy (GR), DelayedGreedy (DGR), Harrold et al. (HGS), LinMIN (LM), and DeltaMIN (DM)
summarizing the average values of fault detection loss, test suite reduction, and runtime.

However, Mutode only reports the total number of passing
and failing test cases. Therefore, we had to intercept the
output of the underlying testing framework, Mocha, in this
case, to compute the result of each test case for every mutant.
Second, there were two packages, namely Sockets.io and
Bower, where the execution of some test cases was skipped at
run time, due to which the output of such test cases can not be
ascertained. As a consequence, we had to exclude specified
packages. Third, there are some mutants that, when executed
by a given test suite, lead to a syntax error, thereby causing a
test case to fail. We discarded all such mutants, but Mutode
marked them as killed, leading to a higher mutation score.
However, due to differences in the underlying programming
languages a fair comparison with the previous studies in not
feasible.

The construct validity means whether the evaluation met-
rics used in experiments are realistic. Therefore, we studied
the effect of all algorithms based on two commonly used
metrics, that is, the size of the reduced test suite and the
execution time concerning two coverage criteria: statement
and mutation coverage. However, the majority of previous
studies have employed statement coverage for evaluating
the execution cost of the studied approaches, which entails
low cost as compared to mutation coverage [6]. However,
mutation coverage is costly to implement but has been proven
to be more stable than statement coverage when test suite
minimization algorithms were studied on multiple versions
of the same program [28].

Apart from that, we did not remove equivalent mutants that
might increase the chance of duplicate mutants generated by
Mutode [55]. Also, we did not discard minimummutants and

disjoint mutants from the Mutode. These are often removed
from the mutants set to remove subsuming mutants [56].

VI. CONCLUSION
Mutation testing has limited applicability in the industry pri-
marily due to the heavy cost involved in themutant generation
and equivalent mutant problems. Our approach addresses the
first problem, that is, the mutation testing execution cost by
keeping track of the output of every test case concerning all
mutants. This output is afterward employed by algorithms to
measure the mutation score of the reduced test suite. This
way, we only need to execute Mutode once for each NPM
package. Moreover, the execution cost of these algorithms
is comparable to that of the original test suite available in
subject NPM packages.

The empirical results obtained so far indicate that the pro-
posed algorithms, Harrold et al., DeltaMIN and LinMIN
achieve on average 70% reduction in the original test suite
size if all requirements must be satisfied. This finding is dif-
ferent from the previous study by Shi et al. as they obtained,
on average 51% adequate reduction in test suite size based on
killedmutants for all versions of studied programs. This could
be due to the fact that they also included multiple versions of
the same program. However, by decreasing the inadequacy
level to 95%, they observed a 70% reduction in test suite size,
whereas we observed an average 78% reduction in test suite
size. Interestingly, the reduction percentage can reach up to
81% on average for all examples by decreasing the tolerance
value to 90% in both studies [28].

Although like the previous study by Zhang et al.,
we observed minor differences in test suite size reduction and
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fault-detection loss obtained by all algorithms for adequate
reduction [6]. However, there is a difference between the
required runtime of the five algorithms. Greedy performs
test suite minimization faster than DelayedGreedy, Lin-
MIN and DeltaMIN for the example programs. DeltaMIN
requires, on average most of the time. Hence, for practi-
cal application of test suite minimization, DelayedGreedy
should be preferred because it delivers, on average, the small-
est test suite coming with an acceptable runtime.

Note that the original mutation score computed using the
Mutode tool was comparatively low. This is because we
studied the approach on tests available in the NPM package.
These tests are most often manually generated. Therefore,
a future extension relies upon the automation of test suite
generation for better fault coverage. We made all artifacts
available on GitHub for reproducibility and future research
activities (see [54]).

As a next step, we plan to augment current baseline
approaches with other traditional test suite reduction algo-
rithms, namely GE [20], GRE [20], and ILP [21]. Another
key aspect will be to evaluate the test suite minimization
approaches on different versions of the same NPM package.
This would help us better analyze the variance in different
coverage criteria as the software under test evolves. More-
over, we plan to provide support for testing frameworks other
than Mocha so that we can analyze the effect of the suggested
approach on a larger number of NPM packages. Other future
works include the comparison of different mutation testing
tools such as Stryker [57] and Mutandis [58] to analyze
the effect of equivalent mutants on test suite minimization.
It would also be interesting to compare greedy approaches
with meta-heuristics techniques for multi-objective test suite
minimization [39].

In addition, we also intend to apply machine learning for
test suite prioritization in modern development settings such
as DevOps. The goal would be to analyze the combined effect
of both test suite minimization and prioritization for reducing
the ever-increasing regression testing costs during contin-
uous integration. Specifically, we intend to adapt the test
suite prioritization approaches discussed by Zhang et al. [59],
keeping in view the time constraints involved in the regression
testing for DevOps.
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