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ABSTRACT Traditional fault classification methods typically rely on manual feature extraction and
the application of machine-learning algorithms. However, these approaches encounter difficulties when
extracting features and handling large-scale datasets. This study proposes a data preprocessing method for
accurately detecting various types of short-circuit faults in power systems, which can lead to more effective
power repair andmaintenance processes. The proposedmethod involves converting themeasured voltage and
current signals into time and frequency domains using the short-time Fourier transform (STFT) to produce
a time-frequency energy map. A convolutional neural network (CNN) is subsequently trained and tested to
classify the short-circuit faults. However, overfitting may occur during the CNN training process owing to
the large volume of data with similar features. To address this issue, this study proposes a data reduction
method based on the fast dynamic time warping (Fast-DTW) algorithm, which compares waveform features
and eliminates highly similar data regarded as redundant data from the dataset. The simulation results show
that the proposed method can improve the model training performance and its adaptability to different
power system topologies, as tested in two simulation environments: power systems computer-aided design
(PSCAD)/electromagnetic transients, including DC (EMTDC), and the real-time digital simulator (RTDS).
The STFT transformation is implemented inMATLAB. The simulation results demonstrate that the proposed
method reduces redundant data by 40.2%, while decreasing the model training time. Consequently, the
overall accuracy, precision, recall and F1 score of the fault classification reaches 99.37%, 99.36%, 99.35%
and 99.35%, confirming the effectiveness of the proposed method for fault classification.

INDEX TERMS Convolutional neural network (CNN), fast dynamic time warping (Fast-DTW), fault classi-
fication, power systems computer-aided design/electromagnetic transients includingDC (PSCAD/EMTDC),
power distribution system, real-time digital simulator (RTDS), short-time Fourier transform (STFT), time-
frequency analysis.

I. INTRODUCTION
Driven by the increasing demand for electricity in modern
society, ensuring a consistent supply of electricity and energy
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by improving grid resilience and supply quality has become
a critical issue in national energy strategies. In a complex
electrical environment, short-circuit faults in power distri-
bution systems may occur owing to various factors such as
extreme weather, human errors, and environmental factors
like flora and fauna. Faults with high fault currents can harm

63612

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-5006-9044
https://orcid.org/0009-0001-6750-7856
https://orcid.org/0000-0002-3966-2584


N.-C. Yang, J.-M. Yang: Fault Classification in Distribution Systems Using Deep Learning

residential and industrial customers, resulting in significant
financial losses. Therefore, efficient and accurate detection
and resolution of short-circuit faults have gained significant
attention.

Efficient and precise fault detection is crucial for ensur-
ing timely repairs. Recent research has demonstrated that
load prediction or pattern recognition of fault signals can
enable early-stage detection of abnormal nonlinear behav-
iors in power systems [1], [2]. However, it is challenging to
detect short-circuit faults in power distribution systems with
arc-suppression coils. The arc-suppression coil can restrict
grounding fault currents to maintain the normal operation
of the power system during a single-phase-to-ground fault,
thereby making the detection of short-circuit faults diffi-
cult [3].

Detection of high-resistance ground faults can be chal-
lenging owing to their negligible fault current [4], [5].
To overcome this issue, instantaneous zero-sequence signal
characteristics can be used for anomaly detection in transmis-
sion lines and for short-circuit fault detection. Furthermore,
precise discrimination and classification, in addition to fast
fault detection, are essential for balanced or unbalanced faults
that may occur in the power system [6], [7], [8]. The use of
deep learning principles and techniques has become widely
popular in fault classification. Among the various meth-
ods, the convolutional neural network (CNN) is one of the
most commonly employed. In power system fault classifica-
tion, CNN is highly favored for its exceptional capability in
extracting features and classifying data [9], [10], [11], [12].

To enhance recognition precision, effective data prepro-
cessing is crucial for extracting signal features before training
and testing neural networks. The wavelet transform (WT) is
a commonly used method for data preprocessing. Specifi-
cally, the discrete wavelet transform (DWT) decomposes a
signal into several frequency bands from which the signal
features are extracted. Furthermore, the signal acquisition and
transmission may be subject to noise interference. Filtering
the higher frequency band of the signal can mitigate the
effects of signal noise in subsequent analyses [13], [14],
[15]. Time-frequency analysis is also frequently used in deep
learning as a data preprocessing technique. The continu-
ous wavelet transform (CWT) can convert a time-domain
signal into a time-frequency domain signal and extract the
frequency characteristics of the signal in the local time inter-
val for subsequent analysis [16]. However, the WT for data
preprocessing is limited by the wavelet functions based on
different signal characteristics and contexts. To overcome
this limitation, the Hilbert-Huang transform (HHT) is used
with empirical mode decomposition (EMD) to decompose
the signal into intrinsic mode functions (IMFs).

Furthermore, the HHT bandpass filters have been used
to obtain components with different frequency bands [17],
[18]. To avoid over-decomposition and feature distortion, the
signals must be appropriately evaluated and adjusted based
on different scenarios. One widely used method for analyzing

nonstationary signals is the short-time Fourier transform
(STFT)-based time-frequency analysis. This method divides
a long-time signal into short time intervals and applies dis-
crete Fourier transform (DFT) to each interval to quickly
obtain the signal spectrum. Studies have demonstrated that
the STFT is more efficient and reliable than the CWT and
HHT [19], [20], [21].

In deep learning, data preprocessing using time-frequency
transformations enables neural networks to extract data fea-
tures effectively, generating highly accurate identification
outcomes. Their applications have proven valuable in various
research domains. For instance, Mel-spectrograms, Gam-
matone spectrograms, and CWT generate spectrograms for
speech processing. These spectrograms are then utilized in
subsequent tasks, such as detecting speech deficits in cochlear
implant users and recognizing phoneme classes. To achieve
these goals, CNN and recurrent neural networks with con-
volutional layers have been employed [22]. The effective
classification of noisy non-stationary time-series signals has
been achieved by integrating various time-frequency repre-
sentation methods from Cohen’s class with deep learning
techniques, improving the detection of non-stationary grav-
itational wave signals in noisy environments [23].

To achieve accurate recognition, deep learning requires a
dataset with an extensive range of features. However, large
datasets can lead to problems concerning high data similarity.
A high similarity can increase the model training time and
lead to overfitting, affecting the training results. Therefore,
efficient data reduction is crucial to enhance the performance
of neural networks [24]. During data reduction, it is essen-
tial to retain valuable and rich features that can be applied
in a wide range of contexts [25]. To measure the similar-
ity between time series, the dynamic time warping (DTW)
algorithm is commonly used to identify similar time series
by comparison [26], [27].

The method proposed in this study combines the Fast-
DTW and STFT for data preprocessing. First, a dataset
comprising a significant amount of data is generated from sig-
nals in various fault scenarios. The Fast-DTW is subsequently
utilized to measure the similarity between the data in the
dataset. This step eliminates excessively similar data, achiev-
ing data reduction while preserving the feature richness of the
dataset. Finally, the dataset is trained and tested using CNN
for fault classification. The experimental results demonstrate
that the proposed method can significantly reduce the model
training time and improve the model fitness. Moreover, the
proposed method performs remarkably well across different
system architectures and scenarios with varying load levels in
power distribution systems.

This study presents several contributions and innovations.
First, a data preprocessing method is introduced to effec-
tively extract valuable features while reducing data volume.
Second, the challenge of overfitting during CNN training is
overcome by eliminating redundant data with similar fea-
tures. Finally, the proposed method is rigorously tested in

VOLUME 11, 2023 63613



N.-C. Yang, J.-M. Yang: Fault Classification in Distribution Systems Using Deep Learning

FIGURE 1. Block diagram of the proposed fault classification method in
distribution systems.

FIGURE 2. Wave comparison with a) ED and b) DTW.

two different environments. The fault classification results
demonstrate that the efficiency and reliability of the proposed
method in fault classification with an accuracy, precision,
recall and F1 score of up to 99.37%, 99.36%, 99.35% and
99.35%, respectively.

The remainder of this paper is organized as follows:
Section II provides a comprehensive overview of the the-
oretical background and outlines the underlying principles.
Section III introduces the topology and simulation environ-
ment of the sample power system. Section IV discusses
simulation results obtained using the proposed method.
Section V validates the effectiveness and reliability of the
proposed neural network model under different scenarios.
Finally, Section VI summarizes the research findings and
concludes the paper.

II. THEORETICAL BACKGROUND
This study proposes a fault classification technique based on
deep learning. To achieve precise fault classification, fault
signals are gathered when a fault occurs in the distribution
system to construct a fault dataset for data preprocessing and
deep learning. FIGURE 1 illustrates the proposed method for
fault classification in the power distribution system.

A. FAST-DTW ALGORITHM
To achieve data reduction and eliminate a massive quan-
tity of data with similar characteristics from the dataset,
the similarities between the time-domain signals measured

under different fault scenarios are evaluated. Although the
Euclidean distance (ED) is commonly used to compare time
series, the DTW algorithm is more effective and reliable in
reflecting time-series similarity by considering the offset on
the time axis and the distance at each time. DTW can also
be used more comprehensively and flexibly for time series
similarity comparisons. FIGURE 2 illustrates the comparison
between ED and DTW. The ED algorithm highlights minor
amplitude differences and displacements, resulting in a lower
waveform similarity, whereas the DTW algorithm demon-
strates a higher waveform similarity despite these differences.
Therefore, DTW can more accurately identify feature simi-
larities between different data in applications such as speech
recognition, handwritten character recognition, and stock
price prediction.

The Fast-DTW algorithm was proposed in [28] to improve
the efficiency of time series comparisons. This algorithm
optimizes the computational efficiency of the traditional
DTW by introducing three additional steps to shorten the
computation time. The steps are as follows:

1) Coarsening: Coarsening involves sampling small seg-
ments with representative features from the original
time series. This transformation simplifies the data
representation by reducing the number of dimensions,
leading to a reduction in the sequence length and
computational complexity while retaining the essential
features of the original data. Thus, the DTW performs
better in terms of computation speed.

2) Projection: The distance matrix obtained from the
coarsening step undergoes DTW computation to iden-
tify the minimum warping path, which starts subse-
quent refinement.

3) Refinement: During the refinement step, the minimum
warping path obtained from the projection step is
refined to a higher dimensional time-series data. Sub-
sequently, the approximate warping path is interpolated
back to the original series space to obtain the exact
warping path.

The Fast-DTW algorithm has been shown to rapidly
compute time-series similarities and enhance computational
efficiency. Furthermore, it requires less memory storage for
computation than the traditional DTW, making it a valuable
tool for comparing two large time series.

The Fast-DTW algorithm accelerates the computation of
the DTW algorithm by implementing specific optimization
steps. The DTW algorithm creates a two-dimensional dis-
tance matrix that maps two time series X and Y , of lengths
I and J , respectively, as shown in (1) and (2).

X = x1, x2, · · · , xi, · · · , xI (1)

Y = y1, y2, · · · , yj, · · · , yJ (2)

where xi and yj denote the data in the two series, respectively.
A distance matrix of dimension I×J can be generated based
on these two series, as shown in FIGURE 3.
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FIGURE 3. Distance matrix of DTW.

The (i, j) entries in the distance matrix denote the warping
distance between the corresponding data, xi and yj, which is
calculated using (3).

D (i, j) = dist
(
xi, yj

)
+ min

{
D

(
i′, j

)
,D

(
i, j′

)
,D

(
i′, j′

)}
(3)

where i′ = i − 1, j′ = j − 1, and dist(xi, yj) denotes the ED
between xi and yj, as shown in (4).

dist(xi, yj) =
∥∥xi − yj

∥∥ (4)

All entries in the distance matrix can be calculated using
(3), and the distance matrix can then be constructed. The
element D (I , J) represents the minimum warping distance
between sequences X and Y , as shown in (5).

WD = D (I , J) (5)

whereWD is theminimumwarping distance between any two
time series via Fast-DTW.

To assess the similarity of feature signals, the voltage and
current signals are processed using Fast-DTW to determine
the WD. The resulting WD values are averaged according
to the signal lengths, yielding the average warping distance
(AWD), which is used in this study to evaluate the feature
similarity between two sets of data. The AWD is calculated
using (6).

AWD =
WD
Lsig

, sig ∈ {ua,ub,uc, ia, ib, ic} (6)

where Lsig is the length of signal.
FIGURE 4 illustrates the data-reduction process accom-

plished using the Fast-DTW algorithm. This process can be
organized into the following steps:
Step 1. Data collection: Simulate various fault sce-

narios in the power systems computer-aided
design/electromagnetic transients, including DC
(PSCAD/EMTDC) environment. Subsequently, col-
lect the three-phase voltage signals (ua, ub, uc)
and three-phase current signals (ia, ib, ic) from each
scenario.

FIGURE 4. Flow chart of the proposed Fast-DTW-based data reduction
method.

Step 2. Data classification: Classify all data into differ-
ent fault types, including three-phase fault (ABC),
single-phase-to-ground fault (AG, BG, CG), phase-
to-phase fault (AB, BC, CA), and two-phases-to-
ground fault (ABG, BCG, CAG).

Step 3. AWD calculation: Calculate the AWD by applying
Fast-DTW separately to the three-phase voltage and
three-phase current signals from two data in the
dataset.

Step 4. Signal similarity confirmation: Evaluate the AWD
of the three-phase voltage and current signals from
the two compared data. If the AWD is less than
the threshold t , one of the data points is considered
redundant owing to its high similarity with the other
and is removed from the dataset. The remaining data
is used for a comprehensive dataset comparison until
the process is complete.

Step 5. Comparison completeness confirmation: If all data
in the dataset have not yet been compared, repeat
Steps 3-4 until all data in the dataset have been
compared.

In this study, a threshold value of t = 0.01 is used, indi-
cating that the AWD of each sampling point between the
two signals is less than 0.01. If two signals possess nearly
identical characteristics in the time domain, one of them is
removed from the dataset. The effectiveness of the proposed
data preprocessing method is validated via simulations in
Section IV.

B. STFT BASED TIME-FREQUENCY TRANSFORM
When faults occur, the voltage and current signals may
experience changes in both amplitude and frequency. Using
time-frequency analysis makes it possible to analyze signals
in both the time and frequency domains, facilitating the effec-
tive identification of signal characteristics over various time
intervals and frequency bands. In this study, the STFT is
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used to convert the filtered time-domain signals into time-
frequency-domain spectral maps, which then serve as input
data for subsequent CNN analysis.

The STFT is a signal processing technique that examines
the frequency structure of nonstationary signals. It decom-
poses a signal using a short-time window function and
performs aDFT on eachwindow to obtain the signal spectrum
within the time window. The rectangular window function
in the time domain is used for the STFT operation. All
values in the window are treated equally without any weight
adjustment. This window function is the most frequently used
function [29], [30], which is given by (7).

w (n) =

{
1, 0 ≤ n ≤ Lw
0, else

(7)

where the integer n signifies the discrete time series of the sig-
nal representing the time point of the signal sampling, w (n)
is the rectangular window function, and Lw is the window
length.

Suppose the signal function is denoted as s (n), and the
signal is shifted by w (n) at the interval of R sampling points;
the window function has an overlap between two adjacent
periods, and the length can be denoted as Loverlap, as shown
in (8).

Loverlap = Lw − R (8)

By sliding the window functionw (n) over the signal s (n) and
subsequently using the DFT, a spectral signal corresponding
to a specific time interval can be obtained. The DFT values
obtained at each time interval can be accumulated into a time-
frequency matrix for the signal s (n). The resulting matrix
contains C rows. The C can be determined as follows:

C =

⌊
Ls − Loverlap

R

⌋
(9)

where Ls represents the length of the signal s(n) and the
⌊ ⌋ symbol denotes the floor function, which rounds off a
real number to the nearest integer. The number of columns
in the time-frequency matrix corresponds to the frequency
component of the DFT.

The STFT time-frequency matrix T s(f ) with different fre-
quency components f is given by (10), where f represents the
frequency component obtained from the DFT of the window
function. Furthermore, the cth row element of the STFT
matrix Tc (f ), presented in (11), corresponds to the DFT of
the window function w (n) centered on time cR.

T s(f ) = [T1 (f )T2 (f ) · · · Tc (f ) · · · TC (f )] (10)

Tc (f ) =

∞∑
n=−∞

s(n)w(n− cR)e−j2π fn (11)

where {c ∈ Z|1 ≤ c ≤ C}.
The signal can be transformed into a spectrum by con-

structing the STFT time-frequency energy matrix, as shown
in FIGURE 5. Themeasured waveform of the phase-a voltage
signal during a phase-a short-circuit fault in one of the feeders

FIGURE 5. STFT-based time-frequency transform.

is illustrated in FIGURE 5 (a), whereas FIGURE 5 (b) dis-
plays the time-frequency energy map obtained by the STFT
time-frequency transformation. In addition to collecting the
three-phase voltage and current signals, Park’s transformation
is used for the voltage and current signals to extract the
zero-sequence component caused by short-circuit faults. The
zero-sequence components of the three-phase voltage and
current signals are expressed in (12) and (13).

u0 =
1
3
(ua + ub + uc) (12)

i0 =
1
3
(ia + ib + ic) (13)

where u0 is the zero-sequence component of the voltage
signal and i0 is the zero-sequence component of the current
signal.

This study collects signals, including voltage and current
signals, from all three phases and the zero-sequence com-
ponents to ensure the precise classification of various faults
in different phases of transmission lines. To obtain the time-
frequency energy matrix E, all the signals are transformed
into the STFT time-frequency matrix, as shown in (14).

E =



Tua
T ia
Tub
T ib
Tuc
T ic
Tu0
T i0


(14)

where T s represents the STFT time-frequency energy matrix
for signal s. s ∈ {ua, ub, uc, u0, ia, ib, ic, i0). By converting the
E matrix into a spectral map and scaling it, a time-frequency
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FIGURE 6. Structure of VGG-16 model.

energy map, as shown in FIGURE 5 (c), can be obtained,
which can be used as input data for subsequent training and
testing of the neural network.

C. CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN is a popular deep learning model, particularly for
image recognition, object detection, image segmentation, and
speech recognition. The basic principle of CNN involves
using a convolution kernel that slides over an image to extract
distinctive features. These features undergo a dimensionality
reduction process such as pooling. Subsequently, a fully con-
nected layer maps these features to the output layer, which
generates prediction outcomes. In this study, we adopt the
VGG-16 model, which is a classical CNN model equipped
with a deep network layer. VGG-16 has succeeded in image
classification and object detection tasks owing to its enhanced
ability to extract various image features, resulting in supe-
rior classification accuracy. The architecture of the VGG-16
model is illustrated in FIGURE 6.

In CNN-based fault classification, STFT time-frequency
energymaps can be used as input data. Using the visualization
process, grayscale imageswith dimensions of 40× 40× 1 are
inputted into the CNN. The VGG-16 model used in this study
employed a 3 × 3 convolution kernel, and the convolution
process is expressed in (15).

M l
h = Act(

H∑
h=1

M l−1
h · K l

+ Blh) (15)

In this study, the term ‘‘step’’ refers to the number of
implement of a convolution kernel or pooling window on
an image during the convolution process. The convolution
process described in (15) includes several terms, where h
denotes the step, H is the number of steps required to con-
volve the image, l stands for the number of layers in the
network, M l

h denotes the h-th feature map in the l-th layer,
M l−1

h represents the h-th feature map in the (l−1)-th layer,K l

is the convolution kernel in the l-th layer, and Blh represents
the bias function. The activation function used to enhance the
nonlinearity of the neural network is denoted by Act(). In this
study, the rectified linear unit (ReLU) function represented
by (16) is used as the activation function.

Act (v) = max(0, v) (16)

where v is an arbitrary real number.

FIGURE 7. System structure in PSCAD/EMTDC environment.

After the convolution process, the pooling layer is used
to extract significant feature information and concurrently
rescue the image size, thereby decreasing the number of
parameters and computing requirements. In the VGG-16
model, the pooling layer employs a 2×2 pooling window size
and max pooling is used to accomplish the pooling process,
as shown in (17).

M l
h = Act(max{M l−1

h } + Blh) (17)

After passing through a series of convolutional and pooling
layers, the input data is transformed from a three-dimensional
vector to a one-dimensional vector. The resultant data is
subsequently fed to a fully connected layer that classifies
the features extracted from the preceding convolutional and
pooling layers, resulting in the final prediction output.

III. CASE STUDY
In this section, distribution systems constructed in
PSCAD/EMTDC and real-time digital simulator (RTDS) are
used to simulate short-circuit faults and collect fault signals
under various fault scenarios to form the dataset for data
processing and fault classification.

A. SIMULATION MODEL
A test system was developed in the PSCAD/EMTDC envi-
ronment to simulate short-circuit faults in a power system,
as shown in FIGURE 7. The system operates at a frequency
of 60 Hz. Moreover, it consists of an AC voltage source,
S1, providing a 69-kV AC root-mean-square (RMS) volt-
age, and a two-winding transformer, T1, with a capacity
of 60 MVA and a turn ratio of 69 kV /11.4 kV, connected to
Bus 1 and Bus 2. This power system includes two different
types of transmission lines: an overhead line (OL) and a
cable line (CL)with zero-sequence impedance (R0,XC0,XL0)
and positive-sequence impedance (R1,XC1,XL1), as listed in
TABLE 1. The possible locations for short-circuit faults in
the various scenarios are F1 to F18. The load demand of each
feeder, denoted by L1 to L8, is 0.75 + j0.25 (MVA).

B. VERIFICATION SYSTEM
When simulating power systems, it is imperative to ensure
that the simulation parameters accurately reflect actual power
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TABLE 1. Parameters of transmission line in power system.

FIGURE 8. RTDS environmental facility architecture.

systems. To validate the reliability of the electrical signals
sampled in the PSCAD/EMTDC simulation environment,
we used an RTDS to set up the power system in a real-time
environment and test the accuracy and reliability of the simu-
lated data. The RTDS is a high-performance computer system
platform designed for power system simulations, which can
simulate large power systems in real time under various
scenarios. Its real-time operation and control capabilities
make it ideal for studying power system stability, control,
protection, and automation. The RTDS provides a reliable
benchmark for real system applications owing to its robust
real-time computation capability. Therefore, in this study, the
RTDS is considered as a practical power system condition to
test the feasibility of the proposed method. The signal data
obtained from the real-time simulation platform are shown
in FIGURE 8. Using the RTDS environment is regarded as
field measurements to verify the performance of the proposed
method.

IV. SIMULATION RESULT
In this section, the performance of the proposed method for
fault classification is evaluated. The efficiency and general-
ization ability of the CNN model are assessed to verify the
effectiveness of the proposed method.

A. DATASET FOR TRAINING AND TESTING
After obtaining the voltage and current signals from the short-
circuit faults, Fast-DTWwas used to eliminate redundant data
that exhibited similar characteristics in the dataset. Subse-
quently, a time-frequency energy map was generated via the
STFT-based time-frequency transformation, which served as
the input to the CNN.

TABLE 2. Settings of fault cases for training dataset.

TABLE 3. Variation in the size of training data.

TABLE 4. Settings of fault cases for testing dataset.

A power distribution system was constructed in the
PSCAD/EMTDC environment to generate the initial train-
ing dataset. Various fault scenarios, including different fault
types, short-circuit fault resistances, fault phase angles, and
fault locations, were considered. The specific parameter set-
tings and dataset sizes are listed in TABLE 2.

TABLE 3 lists the data volume and reduction rate of the
training data after applying the Fast-DTW algorithm to the
original training dataset. The data reduction rate was calcu-
lated using (18).

Data reduction rate =
Number of new training data

Number of original training data
× 100% (18)

The results in TABLE 3 demonstrate that the total data size
in the new training dataset is reduced to 59.8% of that in the
original dataset using the Fast-DTW algorithm.

In this study, the randomness of fault occurrences was
considered to construct the testing dataset. Fault occurrence
locations were randomly selected from F1 to F15. The fault
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FIGURE 9. Confusion matrix.

impedances and fault phase angles were generated randomly
within the ranges of [0, 200] and [0, 180], respectively. The
specific parameters of the test set are listed in TABLE 4.
During the construction of the training dataset, Fast-DTW
was used for data reduction to mitigate redundant data. How-
ever, in the testing dataset, a Fast-DTW-based data reduction
was not applied. This decision was based on the requirement
to investigate the stochastic nature of fault occurrences and
preserve variability in the testing data.

B. PERFORMANCE INDICATORS
In the analysis phase, various metrics are used to assess the
effectiveness of the proposed method for model training.
A confusion matrix is used to evaluate the predictive perfor-
mance of the model, as shown in FIGURE 9. The confusion
matrix provides a comprehensive view of the classification
results and consists of the following key elements: True Posi-
tive (TP), True Negatives (TN), False Positive (FP), and False
Negative (FN). TP denotes the number of positive samples
accurately classified as positive by a classifier. TN repre-
sents the number of negative samples correctly classified
as negative by the classifier. FP indicates the number of
negative samples mistakenly classified as positive by a classi-
fier. FN signifies the number of positive samples incorrectly
classified as negative by the classifier.

Among numerous evaluation metrics, accuracy, precision,
recall, and F1-score arewidely used to assess the performance
of deep learning models. These metrics were used to investi-
gate the performance of the proposed method during model
training.

1) Accuracy: Accuracy represents the overall correctness
of the predictions, indicating the proportion of correctly
classified samples, as expressed in (19).

Accuracy =
TP + TN

TP + TN + FN + FP
(19)

2) Precision: Precision measures the precision of positive
predictions, indicating the proportion of correctly pre-
dicted positive samples among all positive predictions,
as expressed in (20).

Precision =
TP

TP + FP
(20)

3) Recall: Recall, also known as the TP rate, quantifies
the ability to correctly identify positive samples. It is

TABLE 5. Execution time on model training.

FIGURE 10. Accuracy comparison for various fault types.

used to evaluate the detection ability of TP samples,
as expressed in (21).

Recall =
TP

TP + FN
(21)

4) F1 score: The F1 score is a combined metric that con-
siders both precision and recall, providing a balanced
measure of model performance, as expressed in (22).

F1 score =
2TP

2TP + FP + FN
(22)

C. TEST RESULT
In this study, the effectiveness of fault classification was
verified using the datasets listed in TABLE 2 and TABLE 4
for training and testing the CNN-based model. During the
training process of the CNN-basedmodel, 10% of the training
dataset was used as the validation dataset to evaluate the
generalization capability and performance of the proposed
method.

Two training datasets were used to evaluate the effective-
ness of the proposed method. The first dataset, D0, listed
in TABLE 2,was collected without data pre-processing. The
second dataset, D1, was generated after using the proposed
Fast DTW-based algorithm to reduce the dataset size. Both
datasets were used to train and test the VGG-16 model. The
results are depicted in FIGURE 10, where the test results for
the proposed model trained with D0 and D1 are indicated by
green and blue bars, respectively. FIGURE 10 shows that the
D1 training dataset can achieve an accuracy of up to 97.5%
for fault classification, outperforming the D0 training dataset
without data reduction in all categories. The accuracy rate α
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FIGURE 11. Training curve of CNN.

for each fault type is defined in (23).

α =
Number of correct predicted data for each fault type

Total number of data for each fault type
× 100% (23)

As shown in FIGURE 10, the CNN model trained with
the D0 dataset performs poorly in predicting single-phase-
to-ground and two-phase-to-ground faults. This may be
attributed to overfitting caused by the abundance of data with
similar characteristics in the D0 training dataset. Overfitting
occurs when a machine-learning model learns the training
data exceedingly well, leading to poor recognition perfor-
mance on the testing data. In deep learning, an excessive
amount of data with similar features may prevent the CNN
model from overly relying on these features during training,
resulting in the CNN model identifying particular patterns in
the data and failing to generalize to unknown data. Therefore,
when testing data are generated using random parameters,
overfitting may cause the model to be less accurate in fault
classification.

The D1 training dataset exhibits outstanding performance,
achieving high accuracy for each fault type by eliminating
redundant data with similar features. FIGURE 11 shows
the accuracy of the D1 training and the validation dataset
during the CNN model training procedure for each epoch.
The accuracy of both datasets improves significantly as the
CNN model is trained, indicating that the proposed method
provides the CNN model with excellent generalization capa-
bility. Even for a testing dataset with new and unfamiliar
data, the trained model using the proposed data preprocessing
method can still effectively identify faults and achieve reli-
able fault classification.

The proposed data reduction method effectively reduces
the dataset size, reducing the training and computation times.
The CNN model was trained in a hardware environment with
NVIDIAGeForce RTX-3050 GPU. The training times for the
D0 and D1 training datasets are compared in TABLE 5. Data
reduction significantly reduces the CNN model training time
and improves the overall performance.

In addition to evaluating the accuracy for each fault type,
generalization capability, and computational efficiency, per-
formance indicators were used to comprehensively evaluate

TABLE 6. Performance indicators for comparison cases.

TABLE 7. Settings of fault cases for testing dataset in RTDS environment.

model performance. Furthermore, a comparative analysis
was conducted using the model architectures based on [16]
and [18] to validate the robustness and effectiveness of the
neural network model used in this study. The corresponding
performance indicators for each case are listed in TABLE 6.

Based on the results presented in TABLE 6, it can be
confirmed that the CNN model employed in this study out-
performs those reported in the existing literature in terms of
accuracy, precision, recall, and F1 score. These evaluation
indicators offer a comprehensive understanding of the model
performance.

The results of fault classification indicate that the proposed
method significantly enhances the accuracy of identifying
short-circuit faults in power systems. Model overfitting was
avoided using the proposed method. Moreover, the gener-
alization ability of the CNN model is enhanced, allowing
for more comprehensive fault identification in unpredictable
fault scenarios.

V. VERIFICATION
In this section, the performance of the proposed method was
evaluated for different system architectures and load levels.
Different systems were constructed in the PSCAD/EMTDC
environment to assess the capability and adaptability of the
proposed method for various applications. Furthermore, tests
were performed in the RTDS environment to examine the fea-
sibility and reliability of the proposed method in real-world
power distribution systems. The cases used for verification
purposes are listed as follows:

Case 0: Original system shown in FIGURE 7
Case 1: Original system with an additional feeder
Case 2: Load level reduced to 50% of the original one
Case 3: Load level increased to 150% of the original one
Case 4: RTDS real-time data verification
The test cases listed above are introduced in subsequent

sections. These cases are used to verify the reliability of the
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FIGURE 12. Performance verification for various scenarios.

proposed method and compare the effect of various scenarios
with theD0 training set. The accuracy of the proposedmethod
is depicted in FIGURE 12.

A. DIFFERENT SYSTEM ARCHITECTURE
The performance of the proposed data processing method
was evaluated by extracting the features of fault signals under
various system architectures. Specifically, a new feeder with
loads was added to the original power system shown in
FIGURE 7 by closing SW1, and the testing data were gen-
erated using this modified architecture. Only faults occurring
at fault locations F1 to F15 were considered in the original
test data. However, after closing SW1, the faults that occurred
at F16, F17, and F18 were also considered. A new testing
dataset was generated to evaluate the adaptability of the
proposed method to various system architectures. The results
shown in FIGURE 12 demonstrate that the proposed method
can effectively identify fault-signal features with an accuracy
rate of 97.95% even when an additional feeder is added to
the power system, indicating its applicability to distribution
systems with various architectures.

B. DIFFERENT LOAD LEVEL
The effectiveness of the proposed fault classification method
at different load levels was examined to address potential load
variations in power systems. The original power system was
used as a benchmark, and the load demands along the feeders
shown in FIGURE 7 were adjusted to 50% and 150% of the
original loads. The accuracy of the proposed method was as
high as 98.95% for Case 2 and 97.05% for Case 3, as shown
in FIGURE 12. Based on the test results of the D0 training
set, when the load increases, the current in the power system
also increases. The features of sudden changes in the fault
current become more obscure, making it more challenging
for the training model that may have already been overfitted
to correctly identify the faults. However, the proposedmethod
can overcome the differences between various load levels to
achieve excellent fault identification results.

C. RTDS REAL-TIME DATA VERIFICAITON
The effect of real-time data on the proposed method was
also investigated to validate its applicability in real-power
systems. The system architecture shown in FIGURE 7
was implemented in the RTDS environment, and a test-
ing dataset of real-time data was generated according to
TABLE 7.

The testing dataset generated in the real-time environment
was evaluated in the D1 training dataset and achieved a
high accuracy rate of 99.75%. The results indicate that the
proposedmethod can be reliably applied to actual distribution
systems. The power system simulation software can be used
to build various fault scenarios for numerous simulations,
allowing the rapid construction of a comprehensive dataset
with minimal hardware requirements, thereby overcoming
the challenges of operating and frequently accessing data in
real power systems. The proposed data reduction method can
effectively reduce the dataset size while preserving the rich-
ness of the features and achieving accurate fault classification
in power distribution systems.

VI. CONCLUSION
In this study, the Fast-DTW was used to mitigate the issue
of feature repetition in an extensive dataset while concur-
rently enhancing signal features via STFT time-frequency
transformation. The transformed signals were converted into
a time-frequency energy map, which was used as input data
for the CNN model. Subsequently, the VGG-16 model was
utilized for both feature extraction and classification to iden-
tify ten possible faults in the power distribution system. The
test results demonstrate that with data preprocessing using the
proposed method, the training efficiency and adaptability of
the CNN model are enhanced. Finally, real-time simulations
in RTDS corroborated the reliability and credibility of the
proposed CNN model in real power systems, consequently
providing a reference for improving the operation and main-
tenance of distribution systems. However, it is essential to
acknowledge that the threshold of 0.01 used in this study to
identify redundant data is yet to be validated as the optimal
threshold for fault analysis in all scenarios. Further research
is required to determine the optimal threshold and refine the
criteria to obtain more accurate and effective fault analysis.

Based on the findings of this study, several perspectives
should be considered for future studies. One possibility is to
expand the application of the proposed method to address
more complex scenarios in power systems, such as those
involving harmonic pollution or ferromagnetic resonance.
Advancing fault analysis in power systems can contribute to
the development of more efficient and reliable operation and
maintenance practices.
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