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ABSTRACT Careful sensor placement is crucial in electromagnetic imaging experiments as it significantly
impacts the quality and accuracy of the measurements. This study examines the placement of a network
of sensors to advance the Bayesian learning with the aim of achieving a minimal level of uncertainty in
a qualitative imaging regime. The quality of the measured data, associated with a network of sensors,
is assessed by computing the expected Kullback-Leibler divergence between the prior and the posterior
distributions, wherein the Laplace approximation is invoked to reduce the associated computational cost. The
numerical experiment is carried out to evaluate various sensor placement scenarios to identify the network
geometry that can enhance the quality of inversion.

INDEX TERMS Electromagnetic imaging, Bayesian experimental design, optimal sensor placement.

I. INTRODUCTION
Electromagnetic (EM) imaging is a non-invasive framework
to determine the location, shape, and spatial distribution of
the dielectric permittivity and electrical conductivity of a
target of interest from the scattered electric and magnetic
fields measured away from it [1], [2], [3], [4]. EM imaging
finds various applications in biomedical imaging [5], [6],
non-destructive testing [7], see-through wall imaging [8], and
hydrocarbon exploration [9], [10], [11], where it can be used
in conjunction with other geophysical methods [12], [13],
[14], [15], such as seismic and non-seismic imaging [16],
[17], to provide a more comprehensive understanding of
the subsurface environment [18], [19]. EM imaging plays a
crucial role in advancing our knowledge of the subsurface
at different scales and supports decision-making in the fields
of mining, environmental management, and natural resource
exploration and exploitation [1].
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Optimal sensor placement is fundamental in EM imaging
experiments because it directly affects the quality and accu-
racy of the measured data. Non-optimal sensor placement can
result in a loss of valuable information, increase the mea-
surement noise and reduce the signal-to-noise ratio, further
compromising the data quality. To ensure a successful EM
imaging experiment, careful consideration of the target and
the measurement environment is necessary, and the sensors
must be positioned in a way that allows for the most com-
plete and accurate measurement of the scattered electric and
magnetic fields. Placing sensors at carefully chosen regular
or irregular intervals across a predefined grid [20], [21], [22]
ensures that the data collectedwill be of sufficient quality, res-
olution, and will be evenly distributed. Despite being simple,
easy to implement, and providing a uniform and comprehen-
sive coverage of the target area, this approach may not be
efficient and may result in over-sampling or under-sampling
or collecting unnecessary data in certain areas.

The Bayesian approach [23] to EM imaging character-
izes the uncertainty in the learned target of interest via a
probability density function (PDF). The degree of uncertainty
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depends on various factors such as the characterization of
prior knowledge, the noise structure, and, most importantly,
the quality of the data used for the knowledge update. Acquir-
ing data for characterizing or monitoring the subsurface using
EM, is a challenging and resource-intensive endeavor, with
no guarantee of data quality that can be relied upon for accu-
rate parameter estimation. To overcome these budgetary and
logistics constraints, the simulations-based optimal experi-
mental design (OED) technique [24] is the preferred method
for obtaining reliable data for efficient parameter estimation.

The Bayesian framework for OED minimizes the level of
uncertainty associated with the estimation of the parameter
of interest by gathering the most informative data available.
It has been applied in various contexts, depending on fac-
tors such as the analysis objective, the forward model, and
the type of uncertainties present in the data. Its primary
purpose is to control the experimental conditions for data
acquisition, which can be broken down into two main tasks:
approximating the objective function and selecting the most
informative setup that could be achieved either by explor-
ing the design space in a combinatorial fashion [25] or by
incorporating optimization algorithms [26], [27], [28], [29].
In general, the objective function is computationally chal-
lenging to approximate due to its nested form of expectations
over high-dimensional variables. A double loop Monte Carlo
estimator is presented in [30], which involves perform-
ing Monte Carlo sampling twice. Various techniques have
been proposed to improve the computational cost associated
with the latter method. These include using the Laplace
approximation [31], [32], [33], [34], employing polynomial
chaos expansions with pseudo-spectral projection [28], using
a lower-bound estimate of the objective function [35], and
leveraging the scalability of averaging the estimates of the
informationmatrices [36]. Bayesian experimental design pro-
vides an effective framework for optimizing experimental
design and resource allocation, and has shown notable suc-
cess in various fields including medical science [37], [38],
material science [33], [39], and geophysical applications [40],
[41], [42], [43]. In [44] a Bayesian framework to statistically
optimize reconstruction of 3-D objects using limited number
of radio-graphs is presented. Later in [45], the authors applied
the theory of optimal experimental design to optimize sensor
positions and the operating frequency for sensing buried,
conducting and ferrous, targets via a moving EM induction
sensor.

This paper aims to investigate the use of Bayesian OED
for efficient sensor placement in an EM imaging setup while
identifying the most informative data that would result in
the minimum uncertainty level in the posterior, given a fixed
number of transmitters and receivers. This involves assess-
ing uncertainty levels during the learning process of the
actual parameter of interest, which happens to be the center
of a circular phantom (cylindrical scatterer). The Bayesian
inverse problem involves the development of a framework to
update the prior knowledge about the parameter of interest

through the use of observational data and a forward predictive
mathematical model. By applying Bayes’ rule, one can obtain
the updated probability distribution, also known as the pos-
terior distribution or the conditional distribution. To evaluate
the information content of measured data, a widely employed
utility function, called the Kullback-Leibler divergence [46],
[47], is applied, which measures the relative information
entropy between the prior and the posterior distributions
given a particular sensor network setup: wherein higher val-
ues indicating more informative data regarding the parameter
of interest. Due to the inherent uncertainties present in the
data, the expected Kullback-Leibler divergence is utilized as
the objective function, also known as the expected informa-
tion gain (EIG). In reference to sensitivity analysis to advance
nonlinear inversion [48], the physical interpretation of EIG
is to achieve an efficient estimate of a phantom location.
For linear forward predictive model, the approximation of
the EIG leads to a standard form A or D-optimality criterion
for choosing optimal location for sensors [49]. However, for
nonlinear forward model, it needs to mitigate the computa-
tional burden associated with approximating the EIG. In this
work, the Laplace approximation (LA) [50] is incorporated,
which is a second-order Taylor expansion of the negative
logarithmic of the posterior distribution around the posterior
mode. To circumvent the potential drawbacks of using opti-
mization algorithms on continuous design space, including
slower convergence, increased computational time, and the
requirement to impose the Lipschitz continuity on the EIG,
we pursued an exploration of the design space by utilizing the
combinatorial optimization approach [25], which evaluates
the EIG over a discretized design space and picks the one
having the maximum value. Additional analysis of the quality
of the reconstruction will be conducted using the continuous
ranked probability score (CRPS) in cases where a direct com-
parison of posterior distributions may not be obvious. This
work showcases numerical experiments that (i) operate in the
qualitative imaging regime (methods that only provide infor-
mation about the shape and location of the scatterers being
tested, lacking information about the spatial distribution of
the material properties), and (ii) assess the effectiveness of
the proposed framework. Furthermore, this study provides a
preliminary investigation into three-dimensional geophysical
inversion problems, with ongoing efforts underway to extend
and build upon the foundation established by this work.

The paper is structured as follows: Section II-A presents
the mathematical formulation and discretization of the for-
ward problem. Section II-B introduces the Bayesian inversion
framework, including the parameterization of uncertainties
in the data, the characterization of the prior, and the pos-
terior probability density function. In Section II-C, a data
informativeness criterion for Bayesian experimental design
is introduced, along with the Laplace approximation for
the expected information gain. The efficacy of the pro-
posed framework is demonstrated with numerical examples
in Section III, followed by the conclusions in Section IV.
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FIGURE 1. Description of the 2D EM imaging problem.

II. FORMULATION
A. ELECTROMAGNETIC SCATTERING EQUATION AND ITS
DISCRETIZATION
Let D be an open-bounded subset of R2, that represents
the support of an investigation domain which resides in an
unbounded background medium. A point inside D is denoted
by r with coordinates (x, z) in the reference (O,Ox,Oz). The
domain D is characterized by having a dielectric permittivity
ε(r) and a constant permeability µ(r) = µ0. In the back-
groundmedium, the dielectric permittivity and the permeabil-
ity are ε(r) = ε0 and µ(r) = µ0, as depicted in Figure 1.
Without loss of generality, it is assumed that the material
properties of the investigation region, D, are invariant along
the z−coordinate. The investigation domain is surrounded
by nt transmitters and nr receivers, which are located at rti,
i = 1, . . . , nt and rrm, m = 1, . . . , nr , respectively. The trans-
mitters generate a z−polarized transverse-magnetic incident
electric field represented by E inc

i (r), where the subscript i
indicates the ith transmitter. Upon excitation, electric current
is induced on D which in turn generates, the total E tot

i (r) and
the scattered electric field Esca

i (r), that satisfy the volume
integral equation [51]:

Esca
i (r) = −k20

∫
D

τ (r′)E tot
i (r′)G(r, r′)dr′. (1)

Here, τ (r) = ε(r)/ε0 − 1 is the contrast, E tot
i (r) is the total

electric field induced insideD, k0 = ω
√

ε0µ0 is the free space
wave-number, and ω is the angular frequency. Moreover,

G(r, r′) =
1
4j
H2
0 (k0

∣∣r − r′
∣∣)

is the two-dimensional Green’s function, where j2 = −1, and
H2
0 is the Hankel function of second-kind and order 0. The

total, incident, and scattered electric fields satisfy:

E tot
i (r) = E inc

i (r) + Esca
i (r) (2)

which renders uniquely solving for E tot
i (r) satisfying:

E inci (r) = E toti (r) + k20

∫
D

τ (r ′)E toti (r ′)G(r, r ′)dr′. (3)

To solve (1) and (3) numerically, D is discretized using N
square cells, having support Dn, and the unknowns τ (r) and
E toti (r) are approximated as:

τ (r) =

N∑
n=1

τ (rn)qn(r), E tot
i (r) =

N∑
n=1

E tot
i (rn)qn(r), (4)

where rn, n = 1, . . . ,N denote the centers of the cells Dn.
Moreover, qn(r) is the pulse basis function defined as

qn(r) =

{
1, r ∈ Dn
0, elsewhere.

Substituting (4) in (3) and evaluating the resulting equation
at rn, n = 1, . . . ,N yield the linear discretized system
representing the ‘‘forward solver’’:

Ē tot
i =

[
Ī + ḠDdiag(τ̄ )

]−1
Ē inc
i . (5)

Similarly inserting (4) in (1), and evaluating the resulting
equation at the receiver locations, rrm, m = 1, . . . , nr yield
the scattered electric fields away from D:

Ēsca
i = −ḠRdiag

(
Ē tot
i
)
τ̄ = H̄iτ̄ . (6)

In (5) and (6), Ē tot
i =

(
E tot
i (r1),E tot

i (r2), · · · ,E tot
i (rN )

)⊤,
Ē inc
i =

(
E inc
i (r1),E inc

i (r2), · · · ,E inc
i (rN )

)⊤
, Ēsca

i =(
Esca
i (rr1),E

sca
i (rr2), · · · ,Esca

i (rrnr )
)⊤

, Ī is an identity matrix,

τ̄ = (τ (r1), τ (r2), · · · , τ (rN ))⊤, and the entries of the matri-
ces ḠD and ḠR are

ḠDn,n′ = k20

∫
Dn′

G(rn, r′)dr′, ḠR
m,n′ = k20

∫
Dn′

G(rrm, r′)dr′.

A few comments about the forward solver (5) and scattering
field calculation in (6) are in order: (i) Given τ̄ and Ē inc, (5)
is solved for Ē tot induced inside D using the iterative gen-
eralized minimal residual (GMRES) method. Since matrix
ḠD is toeplitz, the matrix-vector multiplications required by
the iterative solver are accelerated using fast Fourier trans-
form (FFT). (ii) Given Ē tot and τ̄ , Ēsca is computed using
(6). (iii) (5) and (6) are derived assuming a single excita-
tion. For multiple transmitters configuration, they can simply
be cascaded into larger matrix systems where the scattered
fields are computed at receiver locations for one transmitter
a time.

B. BAYESIAN FORMULATION
1) DATA REPRESENTATION
The dielectric phantom in Fig.1, hereinafter denoted by Pt ,
is cylindrical in shape, having a dielectric permittivity dif-
ferent from the rest of D, and is characterized by having a
fixed radius φ with its center at θ t = (xt , zt ). A typical sensor
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network having nt transmitters and nr receivers is denoted by
Snr ,nt . The scattered electric field happens to be the output of
the forward predictive model g, and is a function of Pt . The
measurements are then formed by adding Gaussian noise to
the scattered electric fields:

y
k

= g(Pt ,Snr ,nt ) + ϵk , k = 1, · · · ,Ne, (7)

where Ne is the number of repetitive experiments and ϵk
are independent and identically distributed (i.i.d.) realizations
from an zero-mean Gaussian distribution with covariance 6ϵ

i.e., ϵk ∼ N (0, 6ϵ). The forward problem is modeled in the
frequency domain (i.e., a stationary process) wherein for a
given transmitter, the scattered electric field observed at the
pth receiver is not directly correlated to the scattered electric
field recorded at the qth receiver (p ̸= q). It is therefore
appropriate to consider a diagonal form for the covariance
matrix 6ϵ (6ϵ = σ 2

ε Īnt nr where the Īnt nr is the unit matrix).
Given a phantom P , for multiple transmitters, the output of
the forward model is cascaded to form:

g(P,Snr ,nt ) =

(
Ēsca
1 , Ēsca

2 , · · · , Ēsca
nt

)⊤

. (8)

The overall observational data Y assembles the Ne polluted
measurements Y = {y

k
}
Ne
k=1.

2) PRIOR, LIKELIHOOD AND POSTERIOR
In the proposed Bayesian framework, the parameter of inter-
est θ t is treated as a random variable, hereinafter, and is
denoted by θ . The knowledge about the possible values, that
θ can take, is characterized by a prior PDF πpr(θ ) with θ =

(x(ξ ), z(ξ ))⊤, ξ ∈ � where � is the set of elementary events.
Bayesian inference addresses the update of the knowledge
regarding the position of the phantom by incorporating infor-
mation of the data Y with density p(Y ). The resulting density,
conditioned with the data, is the posterior PDF, and is given
by Bayes’ theorem

πpos(θ |Y ,Snt ,nr ) =
p(Y |θ ,Snt ,nr )πpr(θ )

p(Y |Snt ,nr )
, (9)

where p(Y |θ ,Snt ,nr ) is the likelihood function measuring the
distribution of the data Y , collected on the network Snt ,nr , for
each possible value of θ . According to the data representation
(7), the likelihood function is Gaussian with weighted L2-
norm given by

p(Y |θ ,Snt ,nr )

= det (2π6ϵ)
−
Ne
2

× exp

(
−
1
2

Ne∑
k=1

∥∥y
k
(Snt ,nr ) − g(θ ,Snt ,nr )

∥∥2
6ϵ

−1

)
, (10)

where for a given vector x and a covariance matrix 6ϵ , the
matrix norm is given by ∥x∥2

6ϵ
−1 = xT6ϵ

−1x, also known
as the Mahalanobis norm. To characterize the prior density
πpr(θ ), the domain D is assumed rectangular [−d0, d0] ×

[−d0, d0] where d0 is a positive real number. Moreover an
improper uniform prior probability density is utilized for θ :

θ ∼ U
(
[−θm, θm]2

)
,where θm = d0 − φ.

Note that, although the uniform form of the prior density
seems non-informative, since πpr(θ ) is constant, the likeli-
hood setting guarantees a proper posterior distribution.

C. BAYESIAN EXPERIMENTAL DESIGN
1) EXPECTED INFORMATION GAIN
Bayesian experimental design seeks to pinpoint the optimal
network S∗

nt ,nr from a set of potential networks Snt ,nr that
provides the most informative data, resulting in the least
uncertainty in estimating θ . The utility function to assess
the quality of a network is the Kullback-Leibler divergence,
denoted by DKL [47], [52]. It evaluates the amount of
acquired information about θ between the prior πpr(θ ) and
the posterior πpos(θ |Y ,Snt ,nr ) and is given by

DKL
(
πpos(θ |Y ,Snt ,nr )||πpr(θ )

)
=

∫
2

log
(

πpos(θ |Y ,Snt ,nr )
πpr(θ )

)
dπpos(θ |Y ,Snt ,nr ). (11)

The larger the value of DKL is, the more informative the
data Y is about the parameter of interest θ t . The uncertainty
in the data is tackled by considering the expectation of DKL
over the sample space ⊆ Rq, with q = ntnr . The EIG
I(Snt ,nr ) is then given by

I(Snt ,nr ) =

∫ ∫
2

log
(

πpos(θ |Y ,Snt ,nr )
πpr(θ )

)
× πpos(θ |Y ,Snt ,nr )dθp(Y |Snt ,nr )dY

=

∫
2

∫
log

(
p(Y |θ ,Snt ,nr )
p(Y |Snt ,nr )

)
× p(Y |θ ,Snt ,nr )dYπpr(θ )dθ . (12)

The latter equality in (12) follows from Bayes’ rule. In gen-
eral, the approximation of I requires a large number of
evaluations of the forward model and exhibits several com-
putational issues due to the double integration over high
dimensional domains. In the next section, the Laplace approx-
imation is introduced and then explored to reduce the
computational cost of estimating I.

2) LAPLACE APPROXIMATION
In the absence of multiple scatterers, the posterior distribution
of θ is concentrated around the MAP (Maximum A Posteri-
ori) estimate θ̂ . The Gaussian approximation of the posterior
distribution then provides an accurate inversion. The LA [50]
is known to be an efficient computational method in the
sense that it significantly reduces the computational cost of
profiling the posterior distribution. The LA is based on the
second-order Taylor expansion of the logarithmic posterior
distribution, around its mode. Adopting LA for the estimation
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of the EIG reduces the double integration (12) to a single inte-
gral over the parameter space. This credits an important asset
of computational efficiency to LA although it comes with an
extra computational bias that is inversely proportional to the
number of repetitive experiments. The posterior distribution
of θ , according to Bayes’ rule (9) with the likelihood (10),
is given by

πpos(θ |Y ,Snt ,nr )

= det (2π6ϵ)
−
Ne
2

×

exp

(
−

1
2

Ne∑
k=1

∥∥y
k
(Snt ,nr ) − g(θ ,Snt ,nr )

∥∥2
6ϵ

−1

)
πpr(θ )

p(Y |Snt ,nr )
,

and its Gaussian approximation π̃pos(θ |Y ,Snt ,nr ) has the
form

π̃pos(θ |Y ,Snt ,nr ) = (2π )−
d
2 det

(
6̂
)− 1

2

× exp
(

−
1
2
∥θ − θ̂∥

2
6̂

−1

)
, (13)

where d = 2, stands for the dimension of the parameter of
interest, and θ̂ = θ̂ (Y ,Snt ,nr ), which by definition is given
by

argmin
θ∈2

[
1
2

Ne∑
k=1

∥∥y
k
(Snt ,nr ) − g(θ ,Snt ,nr )

∥∥2
6ϵ

−1 − h(θ )

]
(14)

and

6̂
−1

= NeJ(θ̂(Y ,Snt ,nr ))⊤6ϵ
−1J(θ̂ (Y ,Snt ,nr ))

− ∇θ∇θh(θ̂ (Y ,Snt ,nr )) +OP
(√

Ne
)

is the inverse Hessian matrix of the negative logarithm of the
posterior PDF evaluated at θ̂ . Moreover

h(θ ) = logπpr(θ ) and J(θ ,Snt ,nr ) = −∇θg(θ ,Snt ,nr ).

It has been shown [50] that, for a sufficiently large number of
repetitive experiments Ne,

θ̂ (Snt ,nr ) = θ t +OP

(
1

√
Ne

)
, (15)

where OP refers to the big O in probability and θ t is the true
value of the parameter of interest. Incorporating (13), the LA
formulation of the EIG follows:

I =

∫
2

[
−
1
2
log

(
(2π )d det

(
6̂(θ )

))
−
d
2

− h(θ )
]

πpr(θ )dθ

+O
(

1
Ne

)
. (16)

In the next section, the Monte Carlo sampling of (16) is
detailed.

3) ESTIMATION USING THE MONTE CARLO-LAPLACE
APPROXIMATION
The Monte Carlo Laplace Approximation (MCLA) estimator
of the EIG is established through the use of Monte Carlo
sampling:

Ila(Snt ,nr )

def
=

1
Ns

Ns∑
l=1

(
−
1
2
log

(
(2π )d det

(
6̂(θ l)

))
−
d
2

− h(θ l)
)

,

(17)

where the samples θ l , l = 1, · · · ,Ns, are realizations from
the prior distribution πpr(θ ). Note that the MAP θ̂ is replaced
by the parameter of interest θ t , that is viewed as a random
variable in the MCLA estimator (17). The Jacobian matrix
J is approximated using central finite differences, resulting
in an average computational burden 2dNsh̄nt ,nr , where h̄nt ,nr

is the computational cost of one evaluation of the forward
model for a network of nt transmitters and nr receivers. The
total error introduced [33], for approximating I by Ila can be
estimated by

|I−E [Ila]| ≤ C1h̄nt ,nr +
C2

Ne
+ o(h̄nt ,nr ), (18)

V [Ila] =
C3

Ns

, (19)

where C1 is a constant dependent on the total number of
elements, N , and the excitation frequency, C2 is associated
with the error introduced with the Laplace approximation,
and C3 is another constant accounting for the statistical error.
The EIG approximation using the estimator (17) with a sam-
ple size of Ns is described in Algorithm 1.

Algorithm 1 Computation of Ila(Snt ,nr )
Input:

Prior distribution πpr(θ )

Forward model g

Network of sensors Snt ,nr
Output: Expected Information gain Ila

1) Generate θ1, · · · , θNs from πpr(θ )
2) for l in {1, · · · ,Ns} do

a) Evaluate h(θ l) and ∇θ∇θh(θ l)
b) Approximate the Jacobian ∇θg(θ l)
c) Compute the Hessian 6̂(θ l)

3) Return the arithmetic mean Ila given at (17).

III. NUMERICAL RESULTS
In particular, we consider (i) studying the EIG profile when
only a limited number of transmitters and receivers are avail-
able, (ii) fixing the number of transmitters and receivers and
varying their location, (iii) what could be the optimum num-
ber of transmitter and receivers that would provide enough
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FIGURE 2. (a) problem setup (one phantom is considered at a time), (b) the EIG (approximated by (17),
‘‘dimensionless’’) as a function of varying number of transmitters and receivers, and (c) The uncertainty reflected in
the posterior distributions for three different phantom locations (row wise) and for three different sensor setups
(column wise). The red + indicates θ t , the true center location of the cylindrical phantom.

and non-redundant information. By looking at the EIG pro-
file, a fewmeasurement setups are picked, and for each setup,
multiple true phantoms (with a random θ t , and considering
only one at a time) are placed in D, and the posterior dis-
tribution is plotted to demonstrate the level of uncertainty.
The numerical tests presented in this section does not pertain
individually to a different physical application, rather they

analyze different measurement configurations, even for one
common application. The potential applications involve but
are not limited to externally monitoring the interior of a
chamber filled with dangerous (e.g., radioactive) waste [53],
through-wall imaging radar, or choosing few boreholes from
many available to collect geophysical measurements [48],
and when few sensors are at hand: in such cases, simulations
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FIGURE 3. (a) problem setup: two receivers are independently rotated
w.r.t a fixed transmitter, (b) the EIG (approximated by (17),
‘‘dimensionless’’) as a function of the angular positions (labeled along
the horizontal and vertical axes) of both the receivers, (c) conclusive
findings: receivers to be positioned at an equal and opposite angular
distance w.r.t the transmitter, (d) selected sensor setups to analyze their
effect on the accuracy of inversion.

are cheap but deploying sensors into boreholes by trial and
error might be expensive.

Moreover, unless stated otherwise, for all the simulations,
(i) the frequency of operation is set to 120 MHz, (ii) the

scattering object is a dielectric cylinder of radius 0.25λ hav-
ing permittivity fixed to 1.2, and its position is characterized
by the spatial co-ordinates of its center θ t , (iii) the investi-
gation domain has physical dimension of 7m × 7m which
corresponds to electrical dimensions of about 3λ × 3λ at
120 MHz, and (iv) the transmitters and receivers are setup on
a circular path surrounding the investigation domain. Once θ̂

is estimated, τ̄ is readily reconstructed by forming a cylinder
of radius 0.25λ at θ̂ .

Herein, to simulate realistic electromagnetic (EM) mea-
surements, the synthetic data is contaminated with additive
white (wideband) Gaussian noise, such that the signal-to-
noise ratio is maintained at 25dB. Additional analysis of the
quality of the reconstruction will be conducted using the
continuous ranked probability score (CRPS) in cases where
a direct comparison of posterior distributions may not be
obvious. CRPS is a score function that compares a single
ground truth value to a cumulative distribution functionF and
is given by

CRPS(F, y) =

∫ (
F(t) − 1{t≥y}(t)

)2 dt,
where 1 stands the indicator function. The CRPS is expressed
in the same unit as the observed variable y, that can be the
abscissa x or the ordinate z. It generalizes the mean absolute
error as it reveals both the bias and the level of uncertainty of
each marginal posterior distribution marginal in the way that
the small its value is the better is the marginal accuracy of the
reconstruction.

A. TEST 1: EXHAUSTING COMBINATIONS OF UNIFORMLY
SPACED SENSORS
In this example, the EIG is analyzed as a function of a
gradual increase in the number of transmitters and receivers,
positioned equally spaced on a circle surrounding the inves-
tigation domain, Fig. 2a. The number of transmitters and
receivers in a measurement setup exhausted all possible
combinations from the sets {4, 5, . . . , 16} and {6, 7, . . . , 32}
respectively, Fig. 2a. The EIG in Fig. 2b reflects a gradual
increase with the increase in the number of transmitters and
receivers. To study the effect of a particular measurement
setup (i.e., a given number of transmitters and receivers),
on the accuracy of inversion, three different measurement
setups S6,8 : {nt = 6, nr = 8}, S12,20 : {nt =

12, nr = 20}, and S15,32 : {nt = 15, nr = 32} are
arbitrarily selected, and the posterior PDFs are evaluated for
these setups for three different phantom (i.e., the dielectric
cylinders, whose centers are randomly positioned, herein
called the ‘‘Phantom’’, Fig. 2a). The posterior distributions
are plotted in Fig. 2c, wherein going from top to bottom
(i.e., along the rows) the posteriors correspond to three differ-
ent phantoms (Pt1,Pt2,Pt3) for a given measurement setup,
and going from left to right (i.e., along the columns) the
posteriors correspond to three different measurement setups
(S6,8,S12,20,S15,32) for a given phantom. The results in
Fig. 2c conclude that the uncertainty in the posteriors reduces
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FIGURE 4. Posterior distributions for four different phantom locations (row wise) and for four different sensor setups
(column wise).

FIGURE 5. Problem setup: the positions of the transmitters are fixed,
while the receivers are simultaneously rotated in incremental angular
steps (herein called αsector). (a) nt = nr = 6, (αsector = 30◦),
(b) nt = nr = 3, (αsector = 60◦).

for an increase in the number of transmitters and receivers
in a given measurement setup (e.g., see the posteriors in

TABLE 1. CRPS scores for the marginal posterior distributions across the
three different setups of sensors in case T1.

TABLE 2. CRPS scores for the marginal posterior distributions across the
three different setups of sensors in case T2.

the third column, showing reduced variance, for all three
scenarios). In fact determining the optimal number of sensors
to use in an experiment is closely tied to the cost or budget
of deploying them. Using n + 1 sensors with the optimal
configuration always leads to better performance than using
only n sensors in their optimal configuration, as more data
results in a tighter posterior distribution and less uncertainty
in the reconstruction. However, it is also important to note
that there is a threshold after which adding more sensors
will not significantly improve the reconstruction accuracy.
This is because the EIG’s surface becomes saturated beyond
this point. Such an effect is observed around the top-right
corner in Fig. 2b suggesting that the corresponding number
of sensors can be deployed given the allocated budget is large
enough.
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FIGURE 6. Problem setup: (a)&(c) the EIG as a function of αshift for setups in Fig. 5(a) and Fig. 5(b) respectively, (b)&(d) sensor
arrangements chosen for setups in Fig. 5(a) and Fig. 5(b) respectively, to analyze their effect on the accuracy of inversion.

FIGURE 7. Posterior distributions for two phantom locations (row wise) and for three different sensor
setups (column wise), (a) for setup in Fig. 6(a), and (b) for setup in Fig. 6(c).

B. TEST 2: LIMITING THE NUMBER OF SENSORS
In this test, a transmitter is fixed, and two receivers are
independently rotated with respect to the fixed transmitter,

in a circular path surrounding D at a range of angular posi-
tions, Fig. 3(a). The EIG in Fig. 3(b) is plotted as a function
of the angular positions (labeled along the horizontal and
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FIGURE 8. problem setup (a) sensors places in a circle surrounding D,
(b) EIG for a circle setting, (c) sensors in a bore-hole configuration.
Measurements are cascaded by switching the bore-holes, (d) EIG for the
borehole configuration.

vertical axes) of both the receivers. The EIG is observed max-
imum whenever both the receivers are positioned at an equal
and opposite angular distance with respect to the transmitter

(shown by the dark blue pixels along the diagonal), whereas
when the two receivers are located at the same position,
it does not add new/independent information, instead the
predicted scattered electric field will have repeated values,
that is, the posterior covariance matrix will become rank
deficient which means that its determinant becomes zero.
As a result the EIG will be negative, as shown by the bright
white pixels along the diagonal in the EIG plot. The blue
pixelated corner positions on the EIG plot represent receivers
placed at an angular offset relative to the transmitter (placed
in between them). These positions could be important for
collecting back-scattered information. The angular offset is
not so small as to cause ill-conditioning or redundant mea-
surements. These three observations turned out to be the
conclusive findings from this experiment, and are summa-
rized in Fig. 3(c).

To study the effect of the position of the two receivers,
on the accuracy of inversion, four different setups, S1

1,2 :

(α1 = 112.5◦, α2 = 247.5◦), S2
1,2 : (α1 = 247.5◦, α2 =

112.5◦), S3
1,2 : (α1 = 236.25◦, α2 = 191.25◦), and, S4

1,2 :

(α1 = 112.5◦, α2 = 67.5◦), are arbitrarily selected, Fig. 3(d),
and the posterior probability density functions are evaluated
for these setups for three different phantoms

The posterior distributions are plotted in Fig. 4, wherein
going from top to bottom (i.e., along the rows) the pos-
teriors correspond to three different phantoms for a given
measurement setup, and going from left to right (i.e., along
the columns) the posteriors correspond to four different mea-
surement setups (S1

1,2,S
2
1,2,S

3
1,2,S

4
1,2) for a given phantom.

It can be noted that S1
1,2 and S2

1,2 correspond to the sce-
nario where the receiver positions are interchanged, therefore
the posterior distributions in the first two columns behaves
identically. An interesting outcome of the analysis in Fig. 4
is that the inverse solution has less uncertainty when the
receivers are placed on opposite sides (not necessarily at
equal distances) relative to the transmitter. This is consistent
with the analysis of the EIG in Fig. 3(b). The posterior
distributions corresponding to S3

1,2 and S
4
1,2 shows relatively

higher levels of uncertainty, since both the receivers are posi-
tioned along the same arc, on either side, with respect to
the transmitter. It is observed in Fig. 4 that the predictions
for the phantom θ t3 are far off. The CRPS scores, which
measures how each marginal of the posterior distribution
approximates the abscissa and the ordinate of the phantom
center using the data collected across the setups, are evalu-
ated, for the corresponding posteriors, to be (0.663, 0.363),
(0.659, 0.363), (0.798, 0.377) and (0.763, 0.388), for all four
measurement setups respectively, which indicated that setups
S1
1,2 and S2

1,2 have similar scores and moreover better than
the other two setups.

C. TEST 3: ANGULARLY OFFSETTING RECEIVERS RELATIVE
TO TRANSMITTERS
In this test, equal number of transmitters and receivers, (i.e.,
nt = nr ), that are equally spaced on a circle surrounding D,
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FIGURE 9. Posterior distributions for two phantom locations (row wise) and for five different excitation frequencies (column wise) for the
borehole setup.

are considered. The EIG is analyzed as a function of simul-
taneous rotation of all the receivers, in incremental angular
steps (herein called αshift), in a predefined sector around the
transmitters (having fixed positions). The transmitter receiver
arrangement corresponding to the maximum angular dis-
placement for the two different test cases, (T1 : αsector = 30◦)
and (T2 : αsector = 60◦) is shown in Fig. 5(a) and Fig. 5(b).
Fig. 6(a) and Fig. 6(c) represent the variation of the EIG,
respectively, in case T1 and case T2. In both cases, small
variation in the magnitude is noticed, although the magnitude
of the EIG in case T1 (nt = nt = 6) is higher. This is aligned
with the findings in Section III-A: more observational data,
reduces the uncertainty in the inversion. To study the effect
of the position of the receivers, on the accuracy of inversion,
three different setups, for each test case. For the setting nt = 6
(T1 → S1

6,6 : αshift = 1.2◦, S2
6,6 : αshift = 18◦, and,

S3
6,6 : αshift = 24◦) and for the setting nt = 3 (T2 → S1

3,3 :

αshift = 2.4◦, S2
3,3 : αshift = 36◦, and, S3

3,3 : αshift = 48◦),
are arbitrarily selected. The said arrangement is shown in
Fig. 6(b) and Fig. 6(d). The posterior distribution for both
setups is plotted in Fig. 7. A comparison of the posteriors also
shows that addingmore observational data, reduces the uncer-
tainty in the inversion. However for a better understanding of
what is the difference in the quality of posterior for the three
chosen setups, the CRPS score is calculated. No significant
change is observed. The results of this numerical experi-
ment indicate that the quality of inversion is not significantly
impacted when sensors are regularly placed between a set of
transmitters.

D. TEST 4: SENSOR’S OPERATING FREQUENCY
In this test, the operating frequency of the illumination is
varied from 60 MHz to 140 MHz in steps of 20 MHz,
while the physical dimensions of the investigation domain
as well as the discretization size are kept fixed. Moreover a
bore-hole likemeasurement setup, Fig. 8(c) is also considered

in addition to the circular one, Fig. 8(a). The positions of the
transmitters and receivers are interchanged for the bore-hole
setup, to complete the measurement set.
The EIG profiles for both setups in Fig. 8(b) and 8(d), have

shown a decrease with the increase in frequency and vice
versa. Note that the EIG for both the setups are individual
entities and does not present any correlated information and
the variation of the magnitude of the EIG is more noticeable
and is monotone for the borehole configuration. The EIG
can be related to the ability of the imaging system to dis-
tinguish between different features or structures within the
object being imaged and this ability is often related to the
spatial resolution of the imaging system, which is generally
higher at higher frequencies. However, other factors, such as
the penetration depth and scattering properties of the object,
can also affect the information gain. A higher EIG for low
frequencies, suggests that these other factors may be more
important for the specific object being imaged than the spatial
resolution.
To study the effect of choosing a particular operating

frequency, given a bore hole measurement setup, on the
accuracy of inversion, the posterior PDFs are evaluated for
two different phantoms, Fig.9. The posterior distributions are
horizontally elongated representing relatively a higher level
of uncertainty in resolving target of interest in the top and
the bottom regions. This is expected, because, for a borehole
setup, there were no measurements from the top and the
bottom directions. This experiment concluded with that there
is no significant impact on the quality of measurements,
given a particular operating frequency as long as it satisfies
the requirements for a certain penetration depth and spatial
resolution.

IV. CONCLUSION
In conclusion, this study investigated the sensor place-
ment in electromagnetic imaging experiments using Bayesian
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experimental design. The results showed that an increase in
the number of transmitters and receivers reduces uncertainty
in the posteriors, while given the sensors are arranged in a
circle around the investigation domain, the EIG is maximized
when the receivers are positioned at equal and opposite angu-
lar distances with respect to the transmitter. The quality of
inversion is not significantly impacted when sensors are reg-
ularly placed between a set of transmitters, and the operating
frequency does not significantly impact the quality of mea-
surements as long as it satisfies the requirements for a certain
penetration depth and spatial resolution. This study provides
a preliminary investigation into three-dimensional geophys-
ical inversion problems, with ongoing efforts underway to
extend and build upon the foundation established by this
work.

We have investigated some standard situations but the
methodology used is very general and flexible and can be
applied to a large variety of practical sensor configura-
tions in the characterization (2D and 3D) or the monitoring
(time-lapse) phase of any subsurface geophysical exploration
phase. Moreover, this methodology can be applied at any
scale, from near-surface (environmental, engineering, or agri-
culture geophysics) to deep (geothermal, mining, and Oil
and Gas) geophysical applications. The decision for proper
sensor placement and density (number of sensors used)
is critical for acquiring accurate data collection with the
highest resolution, affecting the final interpreted subsurface
model.
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