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ABSTRACT In the era of 5G and beyond wireless networks, the simultaneous support of enhanced
Mobile Broadband (eMBB) and Ultra-Reliable Low Latency Communications (URLLC) poses significant
challenges in managing radio resources efficiently. By leveraging the puncturing technique, we propose
an intelligent resource management framework for meeting the strict latency and reliability requirement of
URLLC services and the high data rate for eMBB services. In particular, a semi-supervised learning and
deep reinforcement learning (DRL) based architecture is proposed to manage the resources intelligently.
We decompose the optimization problem into two subproblems: 1) resource block allocation (RBA)
strategy for eMBB slice, and 2) URLLC scheduling. Through extensive simulations and performance
evaluations, we demonstrate the effectiveness of the proposed technique in optimizing resource utilization,
minimizing latency for URLLC users, and maximizing the throughput for eMBB services. Simulation
findings demonstrate that the proposed methodology can ensure the URLLC reliability requirements while
maintaining higher average sum rate for eMBB and higher convergence rate. The proposed framework paves
the way for the efficient coexistence of diverse services, enabling wireless network operators to optimize
resource allocation, improve user experience, and meet the specific requirements of eMBB and URLLC
applications.

INDEX TERMS 5G, DNN, DRL, RAN slicing, eMBB, URLLC.

I. INTRODUCTION
The 5th Generation (5G) network is revolutionizing human
lives by stretching the performance bounds of mobile
networks to support a variety of use cases. The industrial
network has become more interesting due to the increasing
demand for digitalization, and there is a huge prospect
of its growth in years to come. However, due to the
heterogeneity of the network, it is challenging to implement
different types of services on existing networks. There
are different types of requirements for different types of
services, which include control for precision manufacturing
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and automation as it needs to meet the criteria of reliability
and latency [1]. This makes resource allocation more
challenging in meeting the requirements of these services
due to the limitations of traditional networks [2]. Next-
generation wireless networks (NGWN) can overcome these
issues and provides a flexible environment where resources
can be managed intelligently at a low cost. According to ITU
Radio communication Sector (ITU-R), 5G is categorized into
three services termed enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-LatencyCommunications (URLLC), and
massive Machine-Type Communications (mMTC) [3], [4].
The purpose of eMBB services is to serve high data rates
applications such as augmented reality (AR), virtual reality
(VR), and ultra high definition (UHD) video with tolerable
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reliability [5]. On the other hand, URLLC services focus
on higher reliability and low-latency communications by
transmitting shorter packets in length with a packet error rate
(PER) in the range of 10−6. It covers mission-critical appli-
cations such as vehicular communications, remote health
services, and industrial automation. Packets are transmitted
at shorter transmission time intervals (TTI) to meet the
requirements of low latency. In Long Term Evolution (LTE)
systems, latency is higher because control messages occupy a
large part of the transmission. So, At the physical layer of 5G
new radio (NR) systems, certain modifications are proposed
to fulfill the requirements of URLLC [6]. Whereas mMTC’s
objective is to accommodate a massive number of Internet
of Things (IoT) devices where each device can communicate
with each other and the base station (BS) at a low data rate.

Generally, eMBB and URLLC services are mostly dis-
cussed in 5G networks [7]. We have considered these two
services in our paper and proposed a novel approach to
optimize their performance.Whereas, the pre-5G architecture
does not support these two services [8]. The latency and
reliability issues can be overcome by leveraging the concept
of network slicing (NS) [9]. In NS, a single common
physical channel is partitioned into multiple logical sub-
networks, where each logical sub-network has its dedicated
channel [10]. Better utilization of the resources can be
achieved through logical separation and virtualization, which
makes NS more flexible. Each logical sub-network has its
radio access approach, and network virtualization functions
(NVF). Radio access network (RAN) slicing is a type
of NS that focuses on the RAN portion of the network.
It allows operators to provide dedicated logical networks
with customer-specific functionality without losing the
economies of scale of a common infrastructure. The 5G
RAN slicing helps operators manage the RAN resources
needed for NS to operate. RAN slicing enables radio
resources to be sliced in different ways, such as allocating
different physical resource blocks (PRB) to different network
slices.

In RAN slicing, resource management can be challenging
due to the heterogeneity of the network. There are limited
available radio resources to meet the requirements of URLLC
and eMBB slices. In URLLC, packets need to have a short
symbol length to meet the low-latency requirements. To meet
the low-latency requirement, one option is to transmit the
packet by reducing its symbol period. However, this approach
is only suitable for mm-Wave bands because of the less delay
spread due to smaller cell size [11]. Another possible method
involves utilizing mini-slots with shorter TTIs by reducing
the number of symbols to a minimum [11]. Slicing can be
implemented on the RAN and core network (CN) parts. In this
paper, we focus on the RAN part by intelligently allocating
the resources to each user equipment (UE) according to the
user demand. Note that the dynamic assignment of resources
combined with the rapid user demands poses a formidable
challenge. We utilize the above-mentioned features to
design an intelligent and effective approach to overcome

the resource allocation problem of URLLC and eMBB
services.

The development of a dynamic framework of radio
resource allocation in RAN slicing has become a primary
focus for researchers [12], [13]. The heterogeneous traffic
in the network requires an optimal resource management
approach to meet the quality of service (QoS) requirements.
The URLLC service cannot be held back due to its
stringent low-latency requirement. The arriving URLLC
traffic needs to be given priority over any ongoing eMBB
transmission. To achieve this aim, two schemes have been
proposed in the 3GPP standard [14]: 1) puncturing, and
2) orthogonal scheduling. In puncturing, to meet the latency
requirement, BS ends the ongoing eMBB transmission and
URLLC packets are scheduled in mini-slots over the already
scheduled eMBB transmission. Through puncturing, low-
latency requirements can be achieved, but it can affect the
capacity and reliability of the system. Whereas in orthogonal
scheduling, frequency channels are withheld before the
URLLC transmission. The drawback of this scheme is that
in case of no URLLC traffic the frequency channels reserved
for URLLC transmission will not be utilized, which results in
wastage of resources.

In this paper, we evaluate the puncturing technique to
manage the radio resources in NS. As stated earlier, the
instantaneous scheduling of URLLC transmission, which
interrupts the eMBB traffic, has a significant impact on
both system capacity and reliability. Furthermore, it leads
to a degradation in the performance of the eMBB ser-
vice. Hence, we develop an optimization-based approach
to address the resource allocation problem, where it is
important to not just focus on maximizing the capacity of the
system, but also consider the reliability of the URLLC and
eMBB services.

A. CONTRIBUTIONS AND CHALLENGES
It is challenging to handle the co-existence of eMBB and
URLLC services over a common physical resource. In this
paper, we get the better of this issue by using the puncturing
technique. We proposed an efficient framework to ensure
the capacity and reliability of the system while meeting
the low latency requirement. This study addresses not only
the problem of maximizing eMBB rates while meeting
latency requirements but also investigates the influence of
URLLC traffic on system capacity and reliability. There
are some constraints associated with URLLC services due
to the fact that URLLC-based services are optimized to
operate independently of other services. URLLC systems
are often optimized in a standalone manner, meaning that
they are designed and implemented without considering
other systems that may be operating in the same environ-
ment. It is challenging for this approach to manage the
URLLC transmission characteristic in a dynamic network
environment. Furthermore, in the worst case, it can break
the URLLC reliability constraints in order to get the optimal
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solution of the optimization problem, which can affect the
QoS requirements. Due to the heterogeneous environment,
randomness, and stringent requirements of URLLC traffic,
the radio resources need to be allocated intelligently. ML-
based algorithms such as semi-supervised and DRL can
solve complex optimization problems in real-time in order
to allocate the resources intelligently [15]. We apply the
co-training method of semi-supervised learning in the
strategy. In the existing co-training approach, a predefined
policy fails to consider the sampling bias of the chosen
samples between the labeled and unlabeled data samples [16].
Existing works related to resource management based on
ML are largely dependent on labeled data samples. Though
unlabeled data samples can be generated easily it requires
a complex computational process to obtain the output of
each data sample. Thus, we propose a novel framework
to improve learning ability. In certain scenarios, acquiring
labeled data for training DRL models can be challenging due
to data sparsity. The Co-training DRL (CDRL) approach can
mitigate this issue by leveraging a combination of labeled
and unlabeled data. The labeled data can provide valuable
information for training the model, while the unlabeled
data can aid in discovering hidden patterns and improving
generalization. This can be particularly beneficial in the
context of eMBB RB allocation, where obtaining a large
amount of labeled data might be difficult. In this work,
we propose a CDRL approach to address the eMBB resource
allocation problem. We present a novel CDRL approach
based on q-learning, to improve the policy by choosing
the unlabeled samples after taking the action at each TTI.
We generate the labeled data through a two-sided matching
technique, and use DRL with a semi-supervised based co-
training method to predict the resource block for each user
associated with eMBB slice. The implementation of DRL
in URLLC poses challenges due to the stringent latency,
and reliability requirements. Slow convergence of DRL can
also be an issue in the implementation. We have considered
all these challenges in our work and proposed a novel
framework incorporating optimization-based techniques with
semi-supervised learning and DRL to enhance the resource
allocation capabilities for eMBB and URLLC traffic in
5G and beyond wireless networks. In this work, our key
contributions are:
• Firstly, the resource allocation problem is expressed
as an optimization-based problem, where we aim to
maximize the sum rate of the eMBB service while
fulfilling the URLLC constraints.

• Secondly, we decompose the problem into two sub-
problems, consisting of eMBB resource block allocation
strategy, and URLLC scheduling. Each sub-problem is
treated separately depending on its framework in order
to obtain the optimal solution.

• In the eMBB resource block allocation strategy,
we propose the CDRL approach for resource block
allocation, wherewe useDRLwith co-training to predict
the resource block for each user. To learn the best

sample selection policy in co-training, we propose a
q-learning approach, which utilizes the policy to train
the model.

• In the URLLC scheduling sub-problem, we present
a DRL-based DDQN approach to meet the latency
and reliability requirements and to intelligently man-
age the URLLC traffic over the punctured eMBB
slots. We propose the DDQN approach based on
Thompson sampling to overcome the problem of slow
convergence.

• Finally, we evaluate the performance of the proposed
schemes. Simulation results demonstrate that the pro-
posed methodology can ensure the URLLC reliability
requirements while maintaining higher average sum rate
for eMBB users.

Given the differing requirements of eMBB and URLLC, it is
challenging to optimize resource allocation simultaneously to
satisfy both types of services. The high data rate demands of
eMBB may lead to increased latency and reduced reliability
for URLLC services if resources are not allocated efficiently.
Conversely, prioritizing URLLC requirements may result
in under-utilization of resources and lower data rates for
eMBB users. Optimizing each layer individually allows for
fine-tuning and maximizing the performance metrics specific
to that layer, enabling better performance for both eMBB
and URLLC users. By customizing the optimization process,
it becomes possible to enhance the performance metrics
relevant to each layer, leading to improved outcomes for
both types of users. By employing different DRL algorithms
customized for specific traffic types, resource allocation
efficiency can be enhanced. In this work, our aim is to propose
an approach that can effectively converge to near-global
optimal solutions or provide satisfactory performance in
practical settings. Because a resource allocation in network
slicing is a complex and multi-dimensional optimization
problem. It involves numerous variables, constraints, and
objectives. The solution space can be vast and non-linear,
making it difficult to analytically derive global optimal
solutions. The problem complexity and the presence of
local optima can limit the assurance of reaching the global
optimum. However, combining CDRL with DDQN and
Thompson sampling to solve the coexistence problem of
eMBB and URLLC users provide a way to leverage the
strengths of each algorithm to achieve near-global optimal
solutions.

We have organized this paper in the following manner.
In section II, we review the related work before introducing
our system model in section III including the URLLC
data rate and eMBB data rate after puncturing. Further,
the problem formulation is presented in section IV. Then,
we present the proposed resource block allocation (RBA)
strategy in section V, and an intelligent URLLC scheduling
framework based on deep reinforcement learning (DRL) is
presented in section VI. In section VII, the simulation results
of the proposed algorithms have been presented. Section VIII
presents the conclusion of the paper.
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II. RELATED WORK
A. URLLC AND eMBB REQUIREMENTS
Extensive research work on the RAN resource management
approach is being carried out in both industry and academia.
Mainly, it focuses on how to develop an effective RAN
resource management approach, and how to address the
issues related to it. In [17], the authors presented a slicing
approach for the LTE network to manage the resources
efficiently, so the services can be provided to different
mobile network operators (MNOs). A slicing and scheduling
approach has been proposed in [18] to ensure services by
allocating resource blocks (RBs) to each virtual network.
For a single-cell orthogonal frequency-division multiple
access (OFDMA) network, the authors proposed an effective
sub-carrier and power allocation approach in [19]. Due
to the limitations of the aforementioned works, it cannot
meet the QoS requirements of the NGWN. With the
advancement of applications, 5G systems needs to support
a massive number of devices by meeting the strict low-
latency requirements. In [6], the authors mentioned the main
URLLC requirements and also highlighted its issues at the
physical layer. In [20], the authors showed that overlapping
URLLC traffic over eMBB transmission after every mini-slot
can significantly improve the performance of a system in
terms of resource efficiency. For the design of URLLC, the
authors have discussed theoretical aspects such as massive
MIMO, and medium access control (MAC) protocols in [21].
In [22], the constraints of URLLC have been discussed
and future research direction of URLLC was given for the
NGWN and termed eXtreme URLLC (xURLLC). To avoid
transmission delay, the blocklength in URLLC should be
finite. Whereas, Shannon’s capacity theorem is applicable
when blocklength is infinite. In [23], authors have analyzed
the resource management problem for URLLC service given
the achievable data rate in the context of finite blocklength.
The optimization problem focuses on optimizing the power
allocation and bandwidth allocation subject to the reliability
and latency constraints.

In [24], the authors have proposed an approach for Vehicle-
to-Vehicle (V2V) networks based on an optimization problem
that aims to reduce the power subject to latency and reliability
limitations. Here, they applied the extreme value theory and
defined the reliability measure with regard to the maximum
queue length paired between vehicles. The work in [25]
evaluated the joint optimization of the V2V communications,
where it aims to optimize the radio resources, modulation
schemes, power control, and increase the capacity of cellular
users while ensuring the stringent requirements of vehicle
users in terms of latency and reliability. To solve the joint
optimization problem and to reach the optimal solution,
the authors have used binary search methods and Lagrange
dual decomposition. The study conducted in [26] proposed
an approach based on concurrent scheduling of URLLC
and eMBB traffic, with the objective of maximizing the
capacity available to eMBB users while simultaneously
ensuring compliance with stringent latency and reliability

requirements. The authors discussed the effect on eMBB
service due to the incoming URLLC traffic.

The authors in [27] presented a proportional fairness
scheme, where radio resources are allocated to incoming
URLLC transmission while guaranteeing the reliability
requirements of eMBB and URLLC services. In [28], the
authors discussed eMBB and URLLC transmission services
in terms of cloud RAN, where multi-cast and unicast
transmissions are marked for eMBB and URLLC services,
respectively. A general revenue-based maximization problem
was presented as mixed-integer nonlinear programming for
RAN slicing. The work in [29] proposed an approach for
eMBB and URLLC services to find the optimal policy
to the resource scheduling problem. For multiplexing of
eMBB/URLLC traffic, authors in [30] studied the orthogonal
multiple access (OMA) and non-orthogonal multiple access
(NOMA) schemes and discussed the trade-offs between
them. The results are simulated with different decoding
schemes such as puncturing and successive interference
cancellation (SIC), and it shows that the OMAminimizes the
interference among eMBB and URLLC traffic, but degrades
the performance of the URLLC service. Whereas, NOMA
with SIC scheme improves the URLLC performance while
enhancing the capacity of eMBB service. In [27], a risk-
sensitive framework was presented in order to manage the
radio resources in NS. The resource allocation problem was
specified as an optimization problem that aims to increase
the capacity of the eMBB slice while considering the risk
measure function. The aforementioned works do not discuss
the impact of data transmission with URLLC requirements
over eMBB slots, so we present an in-depth analysis and
look to develop a dynamic resource allocation approach to
schedule the URLLC and eMBB users effectively.

B. MACHINE LEARNING (ML) FOR RESOURCE
MANAGEMENT
The allocation of radio resources in NS can be an issue and it
can be resolved by implementing the machine learning (ML)
algorithms [9], [31]. In wireless communication, supervised
learning-based models such as deep neural network (DNN)
have been used widely by researchers. DNN can solve
complex problems and it helps in finding the optimal solution
to an optimization problem. In [32], the authors proposed
DNN based algorithm to manage the radio resources, where
DNN was used to predict the transmit power policy. The
work in [33] proposed a deep learning (DL) based algorithm
to optimize the energy efficiency and spectrum efficiency in
cognitive radio. The authors presented a convolutional neural
network (CNN) based optimization problem in [34], which
aims to determine the transmit power while maximizing
the energy efficiency and spectrum efficiency with less
computation time. Simulation results show that after training
the model, the presented approach helps to predict the trans-
mit power taking less computation time compared to other
schemes. As it has been presented in the above-mentioned
studies [32], [33], [34], the DNN strategy can be utilized
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without distinctly finding the solution of the complex optimal
control approach of the wireless network. DL strategy
can be utilized as an intelligent tool to solve complex
optimization problems in resource management, such as
resource block allocation, power control, and scheduling.
In a real-time environment, DL based resource management
approach can determine the network and user state in the
wireless network, which helps to manage the radio resources
accordingly. This type of intelligent approach is very crucial
to meet the URLLC requirements in 5G and beyond
wireless systems [35], [36]. The label samples can affect
the performance of the DL model. It is not quite difficult to
get a large number of unlabeled samples in the ML-based
approach towards resource management. However, in this
scenario, there is a requirement to use more computation to
obtain the result of each sample [37]. So, there is a need for an
algorithm to enhance the learning performance and minimize
dependency. In this paper, we present a novel approach based
on semi-supervised DRL with a co-training method to solve
the resource allocation problem. Labeled samples are taken
from the predicted approach and trained, and incorporated
with a large number of unlabeled data. Co-training is a
semi-supervised learning approach, where two learners are
initialized by the learner. It utilizes the estimated labels on the
unlabeled data and samples are chosen based on the highest
confidence. The wastage of resources can be evaded and the
issue of poor generalization can be solved by applying the
semi-supervised based approach.

In recent times, many studies are conducted in order to
manage the radio resources by using the DRL [15]. In [38],
the authors presented a framework based on actor-critic
reinforcement learning (RL) to optimize power, resource
allocation, and joint selection of transmission mode in V2V
based device-to-device (D2D) enabled Internet of Vehicle
(IoV) networks. It aims to increase the capacity of vehicle-
to-infrastructure (V2I) nodes. The authors in [39] proposed
a DRL-based framework to meet the URLLC requirements
subject to power control and rate in the downlink of an
OFDMA system.ML has been applied in various RRM tasks,
such as spectrum sensing, channel prediction, interference
management, and resource allocation. Another promising
application of ML in RRM is to predict channel conditions
and optimize transmission parameters. In a recent study,
authors in [40] proposes a novel approach for resource
allocation in RAN using Hierarchical Deep Learning (HDL)
to meet the diverse QoS requirements of eMBB and URLLC
services. The paper presents a novel approach for resource
allocation in RANs using HDL, but it also has some
limitations. The HDL model uses a two-level approach,
with the first level performing resource allocation for eMBB
and the second level optimizing resource allocation for
URLLC. The proposed approach aims to maximize network
utilization, minimize resource wastage, and ensure that the
QoS requirements of both eMBB and URLLC services are
met. However, the authors in [40] have not considered the
impact of interference from neighboring cells, which may

affect the QoS. Further, the proposed approach assumes
a centralized resource allocation scheme, which is not
be suitable for large-scale networks with distributed and
dynamic traffic patterns.

The work in [41] presented a DRL-based deep q-learning
framework for the co-existence problem of eMBB and
URLLC. The existing works do not highlight the larger action
space problem (i.e., increased number of possible actions at
each time slot) while taking the decision about the allocation
of RB. An agent starts exploring meaningless actions (e.g.,
actions that cannot fulfill the URLLC constraints), which
results in a slow convergence rate that affects the performance
of theDRLmethod.We proposed a novel framework incorpo-
rating a DRL-based double deep q-learning network (DDQN)
with Thompson sampling to enhance the resource allocation
capabilities for URLLC traffic in 5G and beyond wireless
networks. Authors in [42] present a dynamic RL approach
for resource provisioning in virtualized networks, specifi-
cally targeting D2D-based communications. The proposed
framework adopts a three-stage layered structure, wherein the
initial stage introduces a dynamic virtual resource allocation
scheme based on DRL. In [43], authors propose an approach
for autonomously provisioning and customizing resources
in virtualized RAN to accommodate mixed traffics. The
proposed scheme leverages a DRL algorithm to dynamically
allocate resources based on the specific requirements of
different traffic types. Existing studies have used the e-greedy
approach as the exploration-exploitation strategy in DRL-
based approaches to address the resource allocation problem
in network slicing. Using Thompson Sampling in the DRL
approach can potentially provide advantages over the greedy
method [44]. Greedy methods typically focus on exploitation
by always selecting the action with the highest estimated
reward. While this can be effective in some cases, it may
lead to sub-optimal solutions or being stuck in local optima.
Whereas Thompson sampling uses a probabilistic approach
where each action’s selection is influenced by a distribution.
This distribution allows for exploration by occasionally
selecting sub-optimal actions to gather more information
about their potential rewards. By exploring different options,
Thompson Sampling can potentially discover better resource
allocation strategies that may not be immediately apparent
through a purely greedy approach. The network conditions,
user demands, and traffic patterns may vary over time.
Using Thompson Sampling enables the DRL agent to
continually learn and adapt to these changing conditions.
It can adjust its resource allocation decisions based on the
most recent information, leading to improved performance
and responsiveness. Efficient exploration can lead to quicker
identification of optimal or near-optimal allocation strategies.

III. SYSTEM MODEL
We consider the downlink transmission scenario of hetero-
geneous network. In the considered scenario, the coverage
area of a macro cell is populated with a random distribution
of multiple small cells, and set of all BS is denoted by

VOLUME 11, 2023 65209



R. M. Sohaib et al.: Intelligent Resource Management for eMBB and URLLC

TABLE 1. List of Abbreviations & Notations.

B = {1, 2, . . . , b, . . . , |B|}. We focus on two kinds of
downlink requests, eMBB and URLLC. As shown in Fig.1,
there are different kinds of UEs such as AR/VR, smart
transportation, and smartphones scattered randomly and
connected to each BS. In this model, several edge servers are
placed at the edge of a network, and these edge servers are
linked to a larger centralized cloud server. The set of eMBB
and URLLC users present in the network can be denoted as
We

b = {1, . . . ,W
e
b }, and W

u
b = {1, . . . ,W

u
b }, respectively.

The available radio resources in 5G-NR can be presented
in frequency and time domain, whereas frequency and time
domain is divided into a number of N radio resources or
RB, where each RB has a bandwidth defined as B in the
frequency domain. The set of RBs can be defined as N =
{1, . . . , n, ..,N }. In the time domain, every TTI has a duration
of 1 ms, so in one time slot, there are total N number of
available RBs. Each RB has 7 symbols and consists of 12 sub-
carriers, so there are 84 resource elements (RE) in a single
RB. The available time slot is further split into K smaller
units called short TTI or mini-slots. Generally, to enhance
the SE, eMBB service spans multiple TTIs. Due to stringent
latency requirements, the incoming URLLC traffic cannot be
held back during the ongoing eMBB communication service.

So, we puncture the eMBB slots and transmits the
URLLC traffic. In this regard, we schedule URLLC
service at short TTI (duration of 0.5 ms), and eMBB
service with the duration of 1 ms. Because of this, the
instantaneous scheduling of URLLC transmission, which
involves interrupting eMBB traffic, can have a significant
impact on both the system’s capacity and reliability, lead-
ing to a degradation in the performance of the eMBB
service. So, a proper framework is required to meet the
QoS requirements.

A. eMBB THROUGHPUT
Transmitting the URLLC traffic over the punctured eMBB
slots can affect the bit rate of eMBB services. We introduce
a decision variable for the purpose of puncturing as stated
below.

ξ
b,w
n,k (t) =


1, if the k th mini-slot is punctured by the wth

URLLC user, ∀ n ∈ N ,
0, otherwise.

(1)

There’s a problem in allocating the total number of radio
resources to the users, because each RB needs to be assigned
to active user. We assume that one RB of each BS is
occupied by a single user. Mathematically RBA strategy can
be represented as:

abw,n(t) =


1, If the RB n of BS b is assigned to the

eMBB user w, ∀ b ∈ B,
0, otherwise.

(2)

The signal-to-noise-and-interference-ratio (SINR) of the
eMBB user w can be computed as:

ζ
e,w
b,n (t) =

pe,wb,n (t)g
e,w
b,n (t)∑

b′∈B
b′ ̸=b

pe,wb′,n(t)g
e,w
b′,n(t)︸ ︷︷ ︸

eMBB interference

+
∑
b′∈B
b′ ̸=b

pu,wb′,n(t)g
u,w
b′,n(t)︸ ︷︷ ︸

URLLC interference

+σ 2 ,

(3)

where pe,wb,n (t), and g
e,w
b,n (t) represents the transmitted power

and channel gain, respectively, of eMBB user w of BS b over
RB n, and σ 2 is the noise power. The throughput of an eMBB
user w of BS b on RB n at time slot t can be approximated
as:

re,wb,n (t) = B

(
1−

∑K
k=1 ξ

b,w
n,k (t)

K

)
log2

(
1+ ζ e,wb,n (t)

)
, (4)

where the term
∑K

k=1 ξ
b,w
n,k (t)

K represents the loss of eMBB rate
due to puncturing. Thus, the total sum rate achieved by the
eMBB user w can be expressed as:

reb,w(t) =
∑
n∈N

abw,n(t)r
e,w
b,n (t). (5)
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FIGURE 1. System model.

B. URLLC THROUGHPUT
To avoid transmission delay, the blocklength in URLLC
should be finite. Whereas, Shannon’s capacity theorem is
applicable when blocklength is infinite. In [23], the authors
have analyzed the resource management problem for URLLC
service given achievable data rate in the finite blocklength
regime. Thus, the work in [45] describes the achievable data
rate in URLLC for finite blocklength as follows,

ru,wb,n (t) =
∑
n∈N

Bn
(∑K

k=1 ξ
b,w
n,k (t)

K

)[
log2

(
1+ ζ u,wb,n (t)

)

−

√√√√ Y u,wb,n

vu,wb,n (t)
.Q−1(x)

]
, (6)

where ζ u,wb,n (t) refers to the SINR of URLLC user, expressed
as

ζ
u,w
b,n (t) =

pu,wb,n (t)g
u,w
b,n (t)∑

b′∈B
b′ ̸=b

pu,wb′,n(t)g
u,w
b′,n(t)︸ ︷︷ ︸

URLLC interference

+
∑
b′∈B
b′ ̸=b

pe,wb′,n(t)g
e,w
b′,n(t)︸ ︷︷ ︸

eMBB interference

+σ 2 .

(7)

Here, Y u,wb,n indicates the dispersion of the channel, and
determines the channel randomness of user, and can be
represented as:

Y u,wb,n = 1−
1(

1+ ζ u,wb,n (t)
)2 (8)

The number of symbols in each mini-slot is represented
by vu,wb,n (t), and Q−1(x) represents the Gaussian inverse
CDF Q-function, where x indicates the error rate.

IV. PROBLEM FORMULATION
In this paper, we aim to maximise the sum rate of the eMBB
user, while fulfilling the URLLC constraints. The resource
allocation problem is formulated as an optimization-based
problem. In the beginning, we assign transmission power and
RBs to eMBB UEs at each TTI. We assume that total power
is equal over all sub-carriers. Then, we puncture the eMBB

slots and transmit the URLLC traffic over them. Puncturing
can affect the capacity and reliability of the system. So,
we propose a new approach to maximize the eMBB rate
subject to URLLC constraints while minimizing the effect
on eMBB reliability. For URLLC users, we suppose that the
users create small packets fragments, and the packet arrival
rate at mini-slot k ∈ K = {1, . . . , k, ..,K } at TTI t follows
a Poisson point process (PPP) distribution. We denote the
number of arrived small packets with a random variableψk (t)
such that

ψ(t) =
∑
k∈K

ψk (t) (9)

ψ(t) indicates the total number of URLLC packets that
arrived at TTI t . Thus, the reliability of URLLC service can
be obtained by the following equation:

P

 ∑
w∈Wu

b

ru,wb,n (t) ≤ κψ(t)

 ≤ ηu, ∀b ∈ B (10)

where κ refers to the packet size of URLLC service. The
above equation indicates the outage probability should not
exceed the threshold value η. So, the optimization problem
of joint resource allocation of eMBB and URLLC can be
mathematically formulated as follows:

P : max
a,ξ

 ∑
w∈We

b

reb,w

 (11a)

subject to
∑
w∈We

b

abw,n(t) ≤ 1, ∀n ∈ N , b ∈ B (11b)

∑
w∈Wu

b

ξ
b,w
n,k (t) ≤ 1, ∀n ∈ N , b ∈ B (11c)

P

 ∑
w∈Wu

b

ru,wb,n (t) ≤ κψ(t)

 ≤ ηu, ∀b ∈ B
(11d)

abw,n(t) ∈ {0, 1}, ∀w ∈We, n ∈ N (11e)

ξ
b,w
n,k (t) ∈ {0, 1}, ∀w ∈W

u, n ∈ N (11f)

where (11a) aims to maximize the eMBB rate. Con-
straint (11b) indicates the RB allocation limitations, and it
ensures that only a single user should be associated with
a RB. Whereas, (11c) represents the puncturing constraint.
Constraint (11d) guarantees the URLLC reliability. The key
objective is to execute dynamic allocation of the resources
in order to increase the capacity (in terms of sum rate) of
the eMBB users subject to different constraints. It can be
observed in (11) that optimization problem P is a NP-hard
non-convex problem, and it is challenging to find the optimal
solution in general. There is a requirement for an intelligent
approach for solving this optimization problem. The resource
allocation approaches for URLLC and eMBB services are
different. URLLC services need to meet the low-latency
requirements and also prioritized access to the network, while
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eMBB services require high data-rate and optimized network
utilization. These differences in resource allocation strategies
make it difficult to optimize both services simultaneously,
and decomposing the optimization problem can help to
optimize each service’s resource allocation separately. To find
the optimal solution to the resource allocation optimization
problem, we break the problem P into two sub-problems, P1:
RB allocation for eMBB slice, and P2: URLLC scheduling.

V. RB ALLOCATION STRATEGY FOR eMBB SLICE
The RB allocation problem can be expressed as:

P1 : max
a

 ∑
w∈We

b

reb,w

 (12a)

subject to
∑
w∈We

b

abw,n(t) ≤ 1, ∀n ∈ N , b ∈ B (12b)

abw,n(t) ∈ {0, 1}, ∀w ∈We, n ∈ N (12c)

We propose a novel CDRL approach, where we use DRL
with a semi-supervised based co-training method to predict
the resource block for each user associated with eMBB slice.
First, we modify the P1 in (12) into a loss function and
then achieve the optimal solution of the RB allocation by
minimizing the loss function such that:

min
Â
∥Â− argmax reb,w∥

2

subject to
∑
w∈We

b

abw,n(t) ≤ 1, ∀n ∈ N , b ∈ B

abw,n(t) ∈ {0, 1}, ∀w ∈We, n ∈ N (13)

where Â indicates the forecasted RB allocation strategy.
In Algorithm 1, we have presented the two-sided matching
approach in order to produce the initial RB allocation
strategy. RBs and different users associated with different
slices are considered as two contestants seeking the max-
imization of their specific objective function. Co-training
is a semi-supervised learning method where two models
are trained by utilizing a large number of unlabeled data.
From Algorithm 1, we have generated the labeled data
which consists of gain values gu,wb,n (t) and RB allocation
strategy abw,n(t). Algorithm 1 based on two-sided matching
technique serve as an initial RB allocation mechanism for
the CDRL approach for eMBB RB allocation. The initial
RB allocation based on the two-sided matching technique
provides a foundation for further optimization by providing
an initial allocation of RBs based on user preferences, which
can then be refined and optimized using the CDRL approach.
The CDRL algorithm can learn from the initial RB allocation
and user feedback to improve the RB allocation policy over
time. By continuously interacting with the environment and
optimizing the allocation based on the learned policy, the
CDRL approach can improve the RB allocation efficiency
and adapt to changing network conditions. The parameters
�b
w,n and �

b
w indicates the users assigned to RB (n) and the

users of unallocated RBs, respectively.

Algorithm 1 Initial RB Allocation Strategy Based on
Two-Sided Matching Method
1: RB allocation A is initialized
2: for a BS b from the set of BS B do
3: Initialize �b

w,n as users assigned to RB(n)
4: Specify �b

w for users of unallocated RBs
5: while �b

w ̸= {} do
6: for users do
7: Select the RB (n) with the highest signal-to-

interference-noise-ratio (SINR) based on channel
quality indicator (CQI)

8: if �b
w,n = 1 then

9: abw,n(t) = 1
10: Update �b

w,n and �
b
w

11: end if
12: if �b

w,n = 2 then
13: The utility function of the two users assigned

to RB(n) needs to be calculated
14: Choose the users that increases the sum rate of

the RB
15: Update �b

w,n and �
b
w

16: end if
17: end for
18: end while
19: end for

It can be presented in matrix form as follows:

dl = {(G1,A1), (G2,A2), . . . , (Gl,Al)}, (14)

whereas, unlabeled data can be presented as:

du = {Ĝ1, Ĝ2, . . . , Ĝl}, (15)

where l is the number of data samples. Our main objective
is to predict the label value A from unlabeled data G. The
existing co-training method is based on a policy of choosing
the samples which have high-confidence values. In this paper,
we have used DRL based q-learning approach to improve
the policy by choosing the unlabeled samples after taking
the action at at each TTI. First, we decompose the unlabeled
samples into various sub-samples according to their similar
traffic behavior. The DRL agent employs a policy to chose
one sub-sample at each TTI t instead of selecting one sample,
which can enhance the computational efficiency and reduce
the latency, and then the two learners are updated. The
decomposition of unlabeled samples can be presented as
follows:

℧u = {℧1,℧2, . . . ,℧j}, (16)

where j is the number of data samples. First, the two learners
are trained with a small amount of labeled data dl at the start
of training. At each TTI, the DRL agent takes a decision
(action), and then the unlabeled sub-samples are chosen to
train the learners. The backbone of our proposed model
is the q-learning approach, where best quality unlabeled
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FIGURE 2. CDRL framework.

sub-samples are chosen for co-training by the agent after
understanding the optimal policy through training. The state-
space st is observed by the agent at each TTI t and takes the
best possible action at , and then the two learners Z1 and Z2 are
updated with℧u. Our objective is to train the learner Z , which
can accurately predict the RB allocation such that

Z : G→ A

Let’s assume that Z (g/θ ) indicates the Gaussian distribution,
then the distribution can be presented as [37]:

Z (g/θ ) =
dl∑
i=1

δiZ (g/θi) (17)

There is a parallel vector latent variable against each data
sample. This variable is determined by themixture coefficient
δi, and corresponding component h can be obtained by using
this coefficient. The probability of h and g can be given as
P(vi)|gi, hi. The optimal classification can be formulated as:

Z (g) = max
k

∑
j

P(vi = j|gi, hi=j)P(hi = j|gi), (18)

where;

P(hi = j|gi) =
δjZ (gi|θj)∑dl

i=1 δiZ (gi/θdl )

From the above equation, it can be observed that training
samples can be used to predict Z (g).

A. STATE SPACE
The agent should be well familiar with the distribution of the
unlabeled sample in order to choose the best sub-samples.
We examine the probability distribution of two learners and
it can be formulated as:

st = Cat(β|γ ) (19)

pθ (g|st , h) = f (g; st , h, θ) (20)

where β and γ represents the probability distribution of
two learners Z1 and Z2 respectively, and Cat indicates the

Algorithm 2 CDRL Approach for eMBB RB Allocation
1: Input: Labeled samples of RB allocation dl , labeled

validation samples d ′l , unlabeled sub-samples ℧u;
2: for t = 1 to T do
3: for j = 1 to 2 do
4: Train Zt,j with labeled samples dl ;
5: Take action at = maxa Q(st , a);
6: Use Z1 to label the sub-samples ℧′u;
7: Upgrade Z2 with pseudo-labeled sub-samples ℧′u,

and labeled samples dl ;
8: Z2 is used to label the sub-samples ℧′u;
9: Upgrade Z1 with pseudo-labeled sub-samples ℧′u,

and labeled samples dl ;
10: Determine the reward rt based on validation labeled

samples d ′l ;
11: Determine st+1;
12: Update parameter θ ;
13: Compute loss function using (32);
14: end for
15: end for

concatenation operation. Whereas, f (g; st , h, θ) represents a
nonlinear likelihood function.

B. ACTION SPACE
The q-learning agent chooses the best possible action by
choosing the best quality unlabeled sub-samples at TTI t after
learning the optimal policy such that

at = max
a
Q(st , a) (21)

C. REWARD
The reward of each learner can be formulated as:

rt =

{
r1 × r2, if r1 & r2 > 0,
0, otherwise

(22)

where r1 and r2 represent the model accuracy of learners
Z1 and Z2, respectively determined on the labeled testing data
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samples at TTI t . The agent aims to take a decision or action at
at each TTI t which can increase the future discount reward.

Rt =
τ∑
t=1

3trt , (23)

where 3 refers to the discount factor. The main focus is
to maximize the reward Rt by finding an optimal policy.
The q-agent in the q-learning network will learn the optimal
policy by interacting with the two learners which act as the
environment. The loss function can be presented as:

Loss(θi) = Es,a

[
(Y (θi−1)− Q(s, a; θi))2

]
(24)

where,

Y (θi−1) = Es′
[
(r +3max

a′
Q(s′, a′; θi−1|(s, a))

]
(25)

The above equation indicates that θ learn the optimal policy
by using the gradient descent method. During testing, the two
learners Z1 and Z2, and the q-learning agent were simulated
together without the labeled validation samples. The agent
learns the optimal policy and takes action at and chooses the
unlabeled sub-samples. Finally, learner Z can be defined as:

Z = ϕZ1 + (1− ϕ)Z2 (26)

where ϕ indicates the weight factor based on learning policy.
The detail is provided in Algorithm 2. A depiction of CDRL
framework is presented in Fig. 2.

VI. URLLC SCHEDULING
Due to the heterogeneity of URLLC traffic, it has become
essential to intelligently and dynamically assign the radio
resources to the incoming URLLC traffic. Thus, we present
a DRL-based URLLC scheduling approach to manage the
radio resources for the incoming URLLC traffic.We can state
the URLLC scheduling problem as follows:

P2 : max
ξ

 ∑
w∈We

b

reb,w

 (27a)

subject to
∑
w∈Wu

b

ξ
b,w
n,k (t) ≤ 1, ∀n ∈ N , b ∈ B (27b)

P
[ ∑
w∈Wu

b

ru,wb,n (t) ≤ κψ(t)
]
≤ ηu, ∀b ∈ B

(27c)

ξ
b,w
n,k (t) ∈ {0, 1}, ∀w ∈W

u, n ∈ N (27d)

TheURLLC scheduling obtained by the CDRL algorithm can
not fulfill the low latency and reliability reliability constraint
due to the slow convergence of DRL-based q- network. So,
we use CDRL approach for eMBB resource allocation and
propose a novel approach based on Thompson sampling
for URLLC scheduling. We ensure that the constraints
(27b-27d) meets the requirements while actively engaging
with the environment. In this algorithm, we present a
DDQN based approach to meet the latency and reliability

requirements and to intelligently manage the URLLC traffic
over the punctured eMBB slots. A RL model is described by
action, state, and reward.
State-Space: We define the state space st by describing

the throughput of each user of BS b associated with eMBB
service without puncturing depending on the channel gain,
allocated RBs, incoming URLLC traffic, and transmission
power. So, the throughput of each user associated with eMBB
service without puncturing can be presented as:

r̂eb,w(t) =
∑
n∈N

abw,n(t)B log2
(
1+ ζ e,wb,n (t)

)
.

Thus, the state space st can be defined as:

st =
[
r̂eb,w(t), g(t), ψ(t)

]
(28)

where ψ(t) is defined in (9) and g(t) is channel gain.
Action Space: The action space at can be described as the

N × K puncturing matrix which indicates the K number of
mini-slots within each RB that have been punctured.

at = {ξ
b,w
n,k (t), ∀n ∈ N ,w ∈W

e
b} (29)

Reward: Considering the QoS requirements of different
slices and associated applications, we present a reward
function which can be given as:

rt =
( I︷ ︸︸ ︷
max
ξ

∑
w∈We

b

reb,w
)
− ϑ(t)

( II︷ ︸︸ ︷∑
w∈Wu

b

ru,wb,n (t)− κψ(t)
)
(30)

where ϑ(t) indicates the time varying weight coefficients of
part II. We introduce this coefficient to ensure the URLLC
reliability constraint. The following equation can be used to
describe it:

ϑ(t + 1) = max{ϑ(t)+ η(t)− ηu, 0}, (31)

where η(t) represents the achieved outage probability as
stated in (10). Part I represents the eMBB rate we want to
maximize, whereas part II indicates the URLLC constraint.
The agent aims to select an optimal policy π in order to
increase the reward, which means with the lowest outage
probability and the highest sum rate are achieved. The policy
π = πKa can be defined as the given network state st observed
by the agent and the agent takes action at on the number of
punctured mini-slots K from each allocated RB a. Then by
using (30), the reward is calculated by the agent based on
decisions taken, and new state information of the network is
given to the agent. Let us assume thatQπ (st , at ) indicates the
q-function, the cumulative discounted reward for the given
network state with a policy π can be formulated as:

Qπ (st , at ) = E
[ ∞∑
t=1

3(t)rt (st , at )|s0 = st , π
]

(32)

where 3(t) and s0 represents the discount factor and initial
state, respectively. The above function only takes the current
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reward into account. According to [46], it can be rewritten as:

Qπ (st , at ) = rt (st , at )+
∞∑
t=1

3Qπ (st+1, at+1) (33)

A DNN is used for the approximation of the above function.
The main objective of the earlier mentioned approach is to
find the optimal policy π which can increase the reward. The
optimal policy π can be expressed as follows:

π = maxQπ (st , at ) (34)

To optimize the policy π in (34), different RL techniques
can be employed such as policy gradient and q-learning.
Therefore, the work in [47] shows that the q-learning
technique converges slowly and it is hard for it to solve
the optimal policy. Whereas, policy gradient method results
in high variance and converges to a local optimum. Thus,
we propose the DDQN method with Thompson sampling to
learn the policy which results in a faster convergence rate.

A. DDQN WITH THOMPSON SAMPLING
We present the Thompson sampling method with DDQN
in order to improve the convergence rate and balance the
exploitation and exploration. The Thompson sampling is
based on probability-based exploration, where the agent
takes an action randomly depending on the best probability.
Thompson sampling is a very effective and efficient method
in the context of exploitation and exploration, because the
agent never selects the actions with less probability, and
avoids consuming time on meaningless explorations which
result in a faster convergence rate [48]. Therefore, combining
the DDQN with Thompson sampling results in reliable and
effective resource management for URLLC traffic. It helps in
handling large state spaces as it avoids exhaustive exploration
of the entire space. Only actions with higher probabilities of
being optimal are more likely to be selected. By repeatedly
sampling and selecting actions based on the estimated
probabilities, the algorithm gradually learnswhich actions are
more likely to yield better results. In our previous work [49],
we employed Thompson sampling to enhance network
efficiency and fulfill the stringent URLLC requirements
within a resource-constrained and highly dynamic V2X
(Vehicle-to-Everything) environment. DDQN method was
proposed by Hasselt [50] to solve the overestimation problem
in q-learning. There are two different DNN utilized by the
DDQN: 1) deep q network (DQN), and 2) target network.
It can be mathematically expressed as follows:

y← rt+1 +3Q̂π (st+1, â) (35)

where,

â = max
a
QπDQN (st+1, a) (36)

Further, Q̂π (st+1, â) refers to the target network where DQN
chooses the maximum Q-value by taking the best action a
of the next state. Then the target network Q̂ calculates the

approximated Q-value by taking action â. The Q-value of
DQN is updated based on the approximation from the target
network Q̂. Then the parameters of the Q̂ are updated based on
the DQN parameters. The architecture of DDQN comprises
a DNN where the Q-value indicates a linear function. Thus,
for any network state st and action at , it can be expressed as
follows:

Qπ (st , at ) = φθ (st )Tωat (37)

where ωat and φθ (st ) denote the weight of the last layer and
linearity of the output layer parameterized by θ , respectively.
Similarly, the output layer and weight of the target network
can also be represented by the φ

θ̂
(.) and ω̂at , respectively.

Further, (35) and (36) can be rewritten as:

Qπ (st , at ) = φθ (st )Tωat →y =rt+1 +3φθ̂ (st+1)
Tω̂at (38)

where,

ât = argmaxaφTθ ωat (39)

The loss function can be computed as:

∇(Qπ , Q̂π ) = E
[(
Qπ (st , at )− Q̂π (st , at )

)2] (40)

We employed Gaussian Bayesian linear regression in order
to approximate the posterior on the weight of the last layer
and the Q-network function. In this paper, we estimate the
distribution by using Gaussian Bayesian linear regression
over the Q-values and formulate an effective and balance
exploration-exploitation scheme by utilizing Thompson sam-
pling. The posterior distribution is estimated as:

wat =
1
℘2Covat9

θ
at Q̂

π (st , at ) (41)

wat ∼ M(wat ,Covat ) (42)

wherewat and℘ indicate themean and variance of likelihood,
respectively. Through (42) the agent employs Thompson
sampling to sample wat around mean wat and co-variance
Cov for every decision at . DDQN agent keeps the prior and at
the beginning of each TTI updates the posterior and extracts
weight of the last layer and follows the optimal policy π . The
training details are given in Algorithm 3. Fig. 3 shows the
block diagram of the proposed framework.

Initially, the BS assigns RBs to eMBB service users
according to the optimal policy obtained by the CDRL
approach. Then it sends the state space to Algorithm 3.
The experience replay buffer of the proposed Algorithm 3
is initialized based on the results obtained by the CDRL
approach. This information can serve as input to the URLLC
RB allocation decision-making process. Then, Algorithm 3
which is based on Thompson sampling chooses an action
based on its observed environment, and perceive the imme-
diate reward rt and next state s(t + 1), and accumulates the
state space, action, reward and next state in the experience
replay buffer. The transfer of states between the eMBB
and URLLC components facilitates a collaborative learning
process. It allows the components to leverage relevant

VOLUME 11, 2023 65215



R. M. Sohaib et al.: Intelligent Resource Management for eMBB and URLLC

FIGURE 3. Block diagram of the proposed framework.

Algorithm 3 DDQN With Thompson Sampling for Intelli-
gent URLLC Scheduling
1: Initialize Q-value function
2: Initialize θ, θ̂ ,Cova, ωat , and ω̂at
3: Set replay memory=∅
4: for each TTI do
5: Observe the network state st =

[
r̂eb,w(t), g(t), ψ(t)

]
6: Samples a Q-function
7: if t mod posterior update period=0 then
8: Update mean wat and co-variance Cova of posterior

distribution
9: end if

10: if t mod posterior sampling period=0 then
11: Extract samples using (42)
12: end if
13: Set θ̂ ← θ after every target update
14: Execute using (39)
15: Store transition (st , at , rt , st+1) in replay memory
16: if replay memory is full then
17: Sample a mini-batch from the replay memory
18: end if
19: Update Q̂π (st , at ) using (38)
20: Update parameter θ by minimizing a loss function
21: end for

information from each other to improve the overall RB
allocation performance and ensure the specific requirements
of both eMBB and URLLC users are considered. Finally, the
weight coefficient value ϑ(t) is updated.

VII. PERFORMANCE ANALYSIS
We show the performance of our proposed algorithms
in this section through inclusive empirical analysis for
different parameters. The network dynamics are modeled
by considering factors which includes channel conditions,
interference levels, traffic variations, and resource utilization.

TABLE 2. Simulation parameters.

The model can simulate the evolution of these factors
over time, enabling the DRL agent to observe and learn
from the network dynamics during the training process.
The dynamics of the network model are incorporated into
the DRL training by allowing the DRL agent to observe
the current state of the network, take actions, and observe
the resulting state transitions and rewards. By interacting
with the model, the DRL agent can learn to make optimal
resource allocation decisions in response to changes in
the network dynamics. The Thompson sampling algorithm
can adaptively explore, and exploit actions based on their
estimated probabilities of being optimal. This allows the
algorithm to dynamically adjust its scheduling decisions in
response to changes in network conditions and requirements.
In this work, we evaluate our results by comparing them
with different approaches such as PGACL [11]: a risk-averse
based approach to increase the reliability, Q-learning, DQN,
optimal approach, and random search. PGACL achieves
policy learning with a rapid convergence rate by integrating
policy and value learning. The algorithm leverages the
gradient method. PGACL is made up of the actor and the
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FIGURE 4. CDF of the eMBB sum rate obtained by different schemes.

critic. The actor component is responsible for policy control
based on the current state of the network, determining the
actions to be taken. On the other hand, the critic component
evaluates the effectiveness of the chosen policy by utilizing
the reward function, providing feedback on the quality of the
selected actions.

A. SIMULATION FRAMEWORK
The eMBB and URLLC services are utilized by a diverse
set of users randomly scattered across a 3-cell cluster in
a 4km area and control packets are sent between network
nodes and devices. The duration of 1ms is assigned to TTI,
and further, each TTI is decomposed into seven orthogonal
mini-slots. A RB consists of 84 RE having 12 sub-carriers
and 7 OFDM symbols with a bandwidth of 180 kHz for each
RB and the system bandwidth is 20 MHz. The pathloss is
defined as 120.8 + 37.5 log10(d) dB, where d refers to the
distance between user and basestation. Simulation parameters
are provided in Table 2.

B. PERFORMANCE EVALUATION OF CDRL ALGORITHM
In this section, we analyze the performance of the CDRL
algorithm for RB allocation and compare the results with
single DNN [40] and semi-supervised learning (SSL) with
DL.

In Fig. 4, the eMBB sum rate obtained by semi-supervised
learning with DL and single DNN for RBA has been
shown. It can be seen that system performed differently for
different schemes. CDRL result performs better than the other
schemes, value ranging from 20 Mbit/sec to 60 Mbit/sec. It is
evident that the proposed CDRL algorithm performs better
than DL schemes. This shows that co-training with DRL can
solve the problem of RBA for eMBB service users in NS.

C. RELIABILITY EVALUATION OF URLLC
First, we analyze the worst URLLC reliability scenario
achieved by Algorithm 3 based on DDQN with Thompson
sampling and compare the performance with Q-learning and
PGACL. URLLC reliability analysis is shown in Fig. 5 by

FIGURE 5. CCDF of the URLLC reliability.

FIGURE 6. Convergence analysis.

plotting the CCDF. It can be observed from the CCDF plot
that DDQN with Thompson sampling reduces the tail-risk
of URLLC outage probability. The proposed Algorithm 3
guarantees that its values do not violate the threshold η,
whereas Algorithm 2 violate the reliability threshold. Our
proposed method adjusts the weight parameters according to
the behavior of URLLC traffic. This helps to achieve reliable
URLLC transmission. Thus, Algorithm 2 fail to guarantee
strict URLLC reliability requirements due to their inability to
adjust according to channel variations. The Q-learning based
method converges slowly and it is hard for it to solve the
optimal policy for stringent URLLC service, which results
in poor performance. It can be observed from Fig. 5, that
the outage probability achieved by the Algorithm 2 performs
poorly when the threshold value is 0.037 with a violation
probability value around 0.13.

D. CONVERGENCE ANALYSIS
Next, we analyze the convergence behavior of the proposed
approach and compare it with the centralized method, where
every user has complete awareness of the environment. In this
case, the agent takes the decision selection of all agents,
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FIGURE 7. eMBB reliability for different URLLC packet rate ψ(t).

increasing the dimension of the action space which effects
the convergence rate.

In Fig. 6, we plot the convergence reward value over a
number of episodes. It can be seen that the centralizedmethod
experiences a poor convergence performance initially and
then converges after some episodes. However, the proposed
approach based on DDQN coupled with Thompson sampling
performs better than centralized approach, at the beginning
it converges fast and achieves a better reward value. So,
our proposed method performs better in a heterogeneous
environment and finds an optimal policy with a fast
convergence rate.

E. eMBB RELIABILITY ANALYSIS
Due to incoming URLLC traffic, it is necessary to analyze
the reliability of the eMBB service. The reliability of eMBB
is determined by calculating the number of eMBB users
who achieve a data rate higher than a specific target rate
(Rmin) and dividing it by the total number of eMBB users.
This helps us determine the percentage of eMBB users who
experience satisfactory service levels in a particular scenario
characterized by specific channel conditions and URLLC
traffic.

It can be seen in Fig. 7 that the PGACL based risk-averse
formulation and proposed method achieves higher reliabil-
ity. The PGACL based risk-averse formulation performs
better than other schemes because the variance of eMBB
users punctures only those users with higher SNR, which
results in better reliability of eMBB service. However, our
proposed algorithm achieves comparable eMBB reliability
with PGACL and a much higher sum-rate, because the
URLLC service is scheduled over eMBB time slots given the
cost function to increase the sum rate of the system while
ensuring the QoS requirements of users associated with the
eMBB service. The proposed approach ensures the eMBB’s
reliability by efficiently finding the optimal policy of radio
resource management.

Furthermore, it can also be noticed that as the target data
rate Rmin increases, the eMBB reliability decreases with
it. The proposed algorithm and PGACL based risk-averse

FIGURE 8. Average eMBB users rate for different ψ .

formulation keep the higher reliability at almost 90% when
the target data rate is 15Mbps, while Q-learning fails to keep a
tolerable eMBB reliability. Furthermore, when the target data
rate is increased to Rmin = 30 Mbps the reliability achieved
by the proposed algorithm and PGACL based risk-averse
approach is near 80%, while the other schemes fail to achieve
the tolerable reliability. It is because the agent in our proposed
approach allocate the RBs to the users which has higher SINR
and meet the objective function. It can also be seen that as
the number of URLLC users increases, the reliability of the
eMBB service decreases, because more eMBB slots needs to
be punctured which effects the eMBB reliability.

F. eMBB RATE PERFORMANCE
We study the effect of puncturing on eMBB data rate, and
compare the results with other methods for various loads
of incoming URLLC traffic by plotting the average data
rate of the eMBB service. In Fig. 8, it can be seen that the
incoming URLLC traffic affects the data rate of the eMBB
service because the users associated with the URLLC service
are given priority and more radio resources are assigned
to URLLC users in order to meet the stringent latency
requirements of URLLC service. Furthermore, as compared
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TABLE 3. Comparative analysis of the proposed approach and several ML-assisted approaches.

to other methods the proposed algorithm achieves a higher
average data rate for eMBB users up to 48 Mbps when
URLLC load is 45. The random search policy performs
poorly because it randomly finds the optimal policy, and is
based on a simple architecture. The PGACL based risk-averse
approach achieves less average data rate than DQN and
the proposed algorithm. The proposed approach achieves a
higher average data rate at the beginning of the arrival of
URLLC traffic and starts decreasing when the arrival rate of
URLLC traffic is increased, hence keeping the higher average
data rate than other methods.

G. COMPARATIVE ANALYSIS
Table 3. provides a summary of the ML-based methods
employed in to address the resource management problem.
The table highlights the convergence behaviour, variance,
QoS, communication overhead and data requirements of
each approach. It also acknowledges the scalability in
large networks. The other approaches, such as Q-learning,
DQN, PGAC, and DNN, are compared based on the above
mentioned features to the field of reinforcement learning and
resource management.

VIII. CONCLUSION AND FUTURE WORK
In this work, we have analyzed the issues related to the
coexistence of eMBB and URLLC services in 5G and beyond
networks. Using the puncturing technique, we proposed an
efficient framework to ensure the capacity and reliability
of the system while meeting the low-latency require-
ments. Moreover, we have employed ML-based algorithms
such as semi-supervised and DRL methods to solve the
complex optimization problems in real-time in order to
allocate the resources intelligently. A co-training method
of semi-supervised learning is used in the RB allocation
strategy phase. We have addressed the URLLC scheduling
sub-problem by proposing a DRL-based DDQN approach
with Thompson sampling to meet the latency and reliability
requirements and to intelligently manage the URLLC traffic
over the punctured eMBB slots. The simulation results
verified that the algorithms proposed in this study aim to
fulfill the reliability requirements of URLLC users while
simultaneously ensuring the reliability and achieving a higher
average sum rate for eMBB users.

Training the CDRL model can be computationally inten-
sive and time-consuming. In particular, the convergence
time of the algorithm may be lengthy, especially in com-
plex network scenarios. Hence, balancing the need for
accurate optimization and real-time decision-making can

pose a challenge. Furthermore, the integration of intelligent
resource management algorithms may introduce additional
communication overhead to the network. This could be due
to the exchange of information between network elements,
coordination mechanisms, or feedback loops, potentially
affecting overall network performance and efficiency. In the
future, we look to explore the applications of advanced ML
to address these challenges and limitations.
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