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ABSTRACT The availability of educational data in novel ways and formats brings new opportunities to
students with special education needs (SEN), whose behaviour and learning are highly sensitive to their
body conditions and surrounding environments. Multimodal learning analytics (MMLA) captures learner
and learning environment data in various modalities and analyses them to explain the underlying educational
insights. In this work, we appliedMMLA to predict SEN students’ behaviour change upon their participation
in applied behaviour analysis (ABA) therapies, where ABA therapy is an intervention in special education
that aims at treating behavioural problems and fostering positive behaviour changes. Here we show that
by inputting multimodal educational data, our machine learning models and deep neural network can
predict SEN students’ behaviour change with optimum performance of 98% accuracy and 97% precision.
We also demonstrate how environmental, psychological, and motion sensor data can significantly improve
the statistical performance of predictive models with only traditional educational data. Our work has been
applied to the Integrated Intelligent Intervention Learning (3I Learning) System, enhancing intensive ABA
therapies for over 500 SEN students in Hong Kong and Singapore since 2020.

INDEX TERMS Applied behavior analysis (ABA), multimodal learning analytics (MMLA), predictive
modeling, special education needs (SEN).

I. INTRODUCTION
Students with special education needs (SEN) often exhibit
behavioural characteristics such as hyperactivity, short atten-
tion span, and emotional liability. Many are also at risk for
academic and social problems [1]. Research suggests that
inappropriate behaviours in SEN students, such as those
with autism spectrum disorders (ASD), are associated with
abnormalities in brain development [2]. Besides, attention
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deficit hyperactivity disorder (ADHD) and some learning
disabilities also have their genetic origin [3]. Contextually
inappropriate behaviours (such as aggression and self-harm)
can hinder SEN students’ social and personal development.
Therefore, promoting positive behaviours is an important
learning outcome in special education.

Applied behaviour analysis (ABA) therapy is an interven-
tion approach aiming at SEN students’ behaviour change [4].
ABA strategies are designed based on behavioural sci-
ence and principles such as reinforcement and stimulus
control. Through promoting desirable behaviour change,
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socially significant outcomes can be facilitated [5]. Recently,
Alves et al. offered a systematic review of ABA technolo-
gies [6], including support systems for ABA applications
(p.118667). The reviewed works ranged from web-based
services and data visualisation for teaching children with
low-functioning autism [7] to real-time monitoring [8] and
data management [9] for personalised intervention. However,
a dearth of works targeting ABA outcomes prediction exists.
It is worth noting that the behaviour analysis processes in
ABA therapy are evidence-based and highly systematic. This
nature makes data-driven techniques such as learning analyt-
ics (LA) suitable for enhancing ABA-related technologies.
Meanwhile, LA is often employed in educational practice to
understand and optimise learning and the learning environ-
ment [10], giving it the potential to enhance existing ABA
practice.

This work aims to enhance existing ABA therapy by pre-
dicting SEN students’ behaviour change using educational
data in multiple modalities. In particular, our study is guided
by the following research questions.

• RQ1 What are the statistical characteristics of ambient
environmental, physiological, and motion data collected
from SEN students’ ABA therapy sessions?

• RQ2 Can sensors and wearable data enhance the predic-
tion of SEN students’ behaviour change over traditional
educational data?

• RQ3 Can machine learning (ML) algorithms be applied
to MMLA for SEN students’ behaviour change predic-
tion, and what is their performance compared with other
existing works in MMLA?

The above questions will be answered thoroughly in
Section IV and Section V of the current paper. Our work’s
contributions include the following:

• We design and develop a multimodal data collection
system for ABA therapies, collect and analyse data from
1,130 ABA therapy sessions, and provide detailed statis-
tical interpretations of our results.

• We show, with statistical evidence, that sensors and
wearable data can significantly enhance the prediction
of SEN students’ behaviour change over traditional edu-
cational data.

• We demonstrate that ML algorithms and deep neural
networks (DNN) can predict SEN students’ behaviour
change accurately. We also provide extensive perfor-
mance evaluations of our predictive models and bench-
mark our results with other existing works.

Our research will provide new insights into ABA practices,
especially in predicting students’ learning with the help of the
Internet of Things (IoT) sensors and wearables. Through this
work, the broad engineering community will further realise
the application of MMLA to enhance behavioural interven-
tions in SEN students and promote their skills acquisition.
The new findings presented in this article also provide valu-
able references for future research in technologies for special
education.

II. THEORETICAL BACKGROUND
A. APPLIED BEHAVIOR ANALYSIS
Applied Behavior Analysis (ABA) is an intervention method
in which pedagogical strategies derived from the principles of
behaviour are systematically applied to promote socially sig-
nificant behaviours and reduce problem behaviours [4]. The
set of basic principles, which are statements about how envi-
ronmental variables act as input to a function of behaviour,
have been evaluated scientifically by experimental analyses
of behaviours (p.155). In ABA, behaviour is viewed as the
learner’s interaction with his or her surrounding environment
and involves the movement of some part(s) of the learner’s
body. Learning behaviour occurs within the environmen-
tal context. At the same time, the learning environment is
regarded as the full set of physical circumstances in which
the learner is situated.

The learning outcome of ABA lessons is the achievement
of behaviour changes that improve learners’ quality of life in
communication and daily living skills. A systematic andmea-
surable behaviour assessment scheme is defined before the
ABA lessons. The target behaviour is often broken down into
smaller tasks, while positive reinforcements are often used
to encourage goal achievement. Assessment criteria include
whether the target task is achieved (plus) or not (minus),
whether a prompt from the therapist (prompt) is needed to
facilitate task achievement, or if the student is behaving in
a way that is unrelated to the task (off task). Furthermore,
behaviour change is effective if it is durable over time [11].
Therefore, a subsequent follow-up reassessment of the devel-
oped behaviour is needed to ensure the effectiveness of the
therapy.

B. FACTORS AFFECTING SEN STUDENTS’ LEARNING
1) AMBIENT ENVIRONMENTAL FACTORS
Students with special needs can be susceptible to ambient
environmental conditions due to their dysfunction in sensory
processing. A previous study showed that high levels of CO2
content caused fatigue and difficulties in concentration in
SEN students, especially those with ADHD [12]. Another
study performed with intellectually disabled preschool stu-
dents revealed that classroom thermal discomfort (e.g., high
nearby ambient temperature) could distract them from learn-
ing and influence their mood and health [13]. The same study
also suggested that students with intellectual disabilities (ID)
are more vulnerable to acoustic discomforts due to their psy-
chologically stressful conditions (p.115). Researchers also
studied the relationship between classroom lighting and SEN
students’ comfort. They found that inappropriate lighting
and glare affect individual SEN students to different extents,
while they felt tired and irritated because of lighting discom-
fort, in general [14]. However, teachers and therapists often
have no control over lighting characteristics except switching
on or off (p.105).

2) PHYSIOLOGICAL FACTORS
Emotion can affect learning and engagement in students with
and without SEN. In particular, students with ID often exhibit
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anxiety due to internal stress. Blood pressure, body temper-
ature, and heart rate are physiological markers for stress that
hinder learning [15]. It was shown that mild conditions could
reduce these inhibitors in SEN students [16]. It is known that
abnormally high or low levels of skin conductance (mea-
sured through galvanic skin response, GSR) hindered the
learning performance of SEN students [17]. Besides, a study
also found that body movement facilitated by motion-based
technology positively impacted SEN students’ short-term
memory skills [18].

C. MULTIMODAL LEARNING ANALYTICS
MMLA employs multiple sources and formats of educa-
tional data such as activity logs, audio, video and biosensors
to enrich learning analytics [19]. MMLA is significantly
enhanced by the Internet of Things (IoT) technologies
because the latter allows convenient capturing of multimodal
data from the complex learning environment [20]. Multi-
modal educational data collected by IoT sensors include
those detecting learners’ motion (e.g., head and body) and
physiological (e,g., heart, brain, and skin) behaviour, as well
as those measuring the ambient learning environment (e.g.,
light, humidity, temperature, and noise). These data were col-
lected from physical objects or human bodies, then encoded
into a machine-interpretable format and served as input to
MMLA [21]. Possible interpretations of the observed learn-
ing process can be assigned based on validated learning
theories.

MMLA has been used to study a variety of learning goals
for SEN students. For example, motion sensor data were
combined with cognitive skills measurement data (short-term
memory, visual processing, and crystallised knowledge) to
evaluate the effect of movement-based educational games on
SEN students’ academic performance [22]. Body movement
log data were also compared with teachers’ observations
and interviews in physically impaired students’ psychomotor
abilities and psychomotor speed gains [23]. Besides, mul-
timodal (audio, video, and autonomic physiology) learning
data collected during robot-assisted therapy were evaluated
to estimate the effect and engagement of children with
autism [24]. In a recent study, wearable biosensors were
employed to collect peripheral physiological (cardiovascu-
lar and electrodermal activity) and motion (accelerometer)
signals of youth with ASD to predict their aggression
behaviours [25].

A few existing works combined MMLA and machine
learning (ML) to develop predictive models for various
learning outcomes. For example, using multimodal data
obtained from natural language processing (NLP) and video
recognition to detect students’ impasses during collaborative
problem-solving [26]; using data such as seat pressure, heart
rate, and facial expression to detect students’ drowsiness dur-
ing e-learning lessons [27], and predicting computer science
students’ course performance by motion data in addition to
traditional demographics and educational data [28]. Other
related works [29], [30], [31], [32] are listed in Table 15.

TABLE 1. Baseline demographics and diagnosed conditions of the
participants.

III. METHOD
A. CONTEXT
The current study was conducted in ABA therapy sessions
carried out between students and teachers in a one-to-one
manner. Each session was targeted at a behavioural task in
one of the following six domains:

1) Academic and Learning
2) Communication
3) Social Emotion
4) Sensory Motor Skills
5) Independent and Self-help
6) Behavioural Development

Each task was further broken down into a chain of
behaviour components that the student could have already
performed with a little support. The training sessions were
around 20 - 30 minutes long. Following the ABA practice,
our sessions comprised behaviour-analytic-based instruction
procedures consisting of antecedent (A) stimulus, behaviour
(B), and consequences (C) events. An antecedent is a stimulus
in the student’s environment before a target behaviour occurs.
A behaviour is an activity that the student does. A conse-
quence is a stimulus following the behaviour that changes
immediately according to the behaviour.

B. PARTICIPANTS AND PROCEDURE
The participants were thirty-two SEN students from two K12
special schools and one preschool education centre. Their
baseline characteristics are given in Table 1. The written
consent of every participant’s parent or guardianwas obtained
prior to the commencement of the study. The steps below
were performed between a participant and a therapist:

1) The system recommends a target behavioural response.
2) The therapist teaches the recommended task by:

a) presenting one or more stimuli; and
b) observing the student’s response.
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FIGURE 1. Overall 4-tier IoT system architecture for data collection.

3) The therapist observes the student’s response. When-
ever necessary, the therapist provides a prompt (such
as a verbal or gestural message or physical guidance)
to facilitate the student’s correct response.

4) The therapist observes and assesses the student’s
response.

5) Steps 2 to 4 are repeated recursively until the student
has mastered the target behaviour or the session ends.

In addition, maintenance probe sessions were conducted
six months after the training of individual tasks to determine
whether the mastered behavioural skills could be maintained
over time. In the end, a total number of 1,130 within-subject
therapy-probe session pairs were obtained.

C. SYSTEM DESIGN AND DEVELOPMENT
We have developed an IoT-based system to collect multi-
modal educational data arising from ABA therapy sessions.
The overall system architecture is illustrated in Fig. 1.
Our system has been integrated into the Integrated Intelli-
gent Intervention-learning system (3I Learning system) [34]
developed by the authors of the current work. The system
consists of four tiers, namely the perception layer, edge layer,
network layer, and analytics layer:

• The perception layer includes physiological sensors
(that detect the participants’ physiological conditions,
including skin temperature, heart beat rate, skin con-
ductance, and motion in terms of acceleration in three
dimensions) and environmental sensors (that sense the
indoor carbon dioxide concentration, light intensity,
temperature, and humidity) (Fig. 2). Besides, this layer
also includes a client interface that allows the thera-
pists to enter their assessment results of the learner’s
behaviour responses (Fig. 3).

• The edge layer includes a Bluetooth low energy [BLE]
wearable (Empatica E4 wristband), a system on a
chip (SoC) controller, and an edge tablet personal

FIGURE 2. Perception layer equipment set of the current study. It includes
an Empatica E4 wristband (left), a IoT sensors box with SoC controller
(right), an edge tablet PC for assessment labels input (bottom), and a
display screen of real-time data (top).

computer (edge PC). The wearable contains physiologi-
cal sensors. The SoC controller contains environmental
sensors, and the edge PC provides an assessment
interface for the therapists to input their assessment
results.

• The network layer consists of a BLE personal area
network connecting the edge layer devices (the edge PC,
SoC controller, and the Empathica E4 wristband) to the
analytics layer.

• The analytics layer contains a tablet PC that temporarily
stores the gathered data and transmits it to the cloud
server. It also provides a simple visualisation of the
measurement values.
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FIGURE 3. Assessment interface of the 3I Learning system installed on an
edge tablet PC in the perception layer.

FIGURE 4. The overall workflow of the current study.

IV. THE CURRENT WORK
We frame our prediction problem as a binary classification
task. The inputs are educational data, ambient environmental
data, physiological data, and motion data. The prediction
target is behaviour change achievement, represented by the
Changed class and the No Changed class. The overall work-
flow for our MMLA is summarised in Fig. 4. It consists of
three main stages, namely:

1) Multimodal learning data collection: This includes the
performance of the ABA therapies and the capturing of
the raw learning data arising in multiple modalities.

2) Data pre-processing and annotation: This refers to
extracting useful data from the raw records, producing
data traces in the required modality, performing data
fusion by combining the traces, and adding the learning
labels to the fused data to form labelled samples.

3) Data processing, model building and evaluation: This
consists of standardML procedures, including any nec-
essary resampling, model building, training, testing,
and performance evaluation.

The subsequent subsections will be more elaborate on each
of the above stages and the involved procedures.

A. MULTIMODAL LEARNING DATA COLLECTION
We used the IoT-based system presented in Section III-C to
carry out multimodal learning data collection at this stage.

FIGURE 5. The setting of an ABA session in our study. (A) A screen display
shows various real-time data related to the ABA session recommended by
the 3I-Learning System. (B) An IoT sensors box contains environmental
sensors. (C) An assessment interface records the therapist’s task analysis
results in real-time. (D) An Empatica E4 wristband collects the student’s
physiological and motion data.

A typical data collection scenario is shown in Fig. 5, in which
a student and a therapist conduct ABA training using our
system’s perception layer equipment set. The multimodal
learning data collected are described below.

1) EDUCATIONAL DATA
The educational data include demographic or contextual
information such as the School (integer values representing
each of the participating schools), the Student (distinct integer
values representing the participants anonymously), and the
Task domain (integer values representing the domain of the
behavioural task performed). These data are encoded as three
categorical variables: school, student, and task domain.

2) ENVIRONMENTAL DATA
The environmental data include the ambient carbon dioxide
level (CO2), relative humidity (Humidity), ambient tempera-
ture (Temperature), and light intensity (Light) in lumens per
square meter. These data were collected by a set of environ-
mental sensors installed in an IoT sensor box (Fig. 2). All
measurements were made at 1 Hz.

3) PHYSIOLOGICAL DATA
The physiological data include blood volume pulse (BVP)
collected by a photoplethysmography sensor at 64 Hz, the
inter-beat interval (IBI) time derived from BVP, galvanic skin
response (GSR) collected by the electrodermal activity sensor
at 4 Hz, and the participant’s skin temperature (Skin Tem-
perature) measured by the optical thermometer at 4 Hz. The
collected data reflected the students’ physiological condition
during the ABA sessions in real time.

4) MOTION DATA
The motion data capture the participant’s body movement in
the left (+ve) and right (−ve), up (+ve) and down (−ve), and
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FIGURE 6. Data collection and features generation.

front (+ve) and rear (−ve) directions simultaneously. They
were called Acceleration X, Y, and Z, respectively. These
values are detected by the MEMS-type 3-axis accelerometer
on the BLE wearable and are recorded from the participant’s
wristband-wearing hand at 32Hz.

5) PERFORMANCE DATA
Following the criteria of ABA assessment, each behaviour
response observed during the therapy sessions was assessed
as plus (‘‘+’’), minus (‘‘−’’), prompt (‘‘P’’), or off task
(‘‘OT’’). The therapists input these assessment markers based
on their subjective judgment. The inter-rater reliability alpha
of this study is 0.96.

B. DATA PRE-PROCESSING AND ANNOTATION
At this stage, the raw data are pre-processed, fused, and anno-
tated for further analysis. We also perform statistical analyses
to determine if further data pre-processing procedures, such
as data standardisation, are necessary.

1) FEATURE ENGINEERING
The environmental data (collected by the SoC controller),
physiological and motion data (collected by the wristband),
and performance data (collected by the edge tablet PC)
collectedwere stored in three separate JSONfiles, with times-
tamps being appended to every datum. The raw sensor data
streams are treated as time series signals. As illustrated in
Fig. 6, the session averages of each of the data streams are
generated as features.

2) LEARNING LABELS GENERATION AND ANNOTATION
We use the ABA therapy correct rate of response (CR%) as
the student’s performance indicator. The CR% is defined as
the number of correct responses (#‘‘+’’) divided by the total
number of response opportunities within an observed interval.
Since every response opportunity was given an assessment
marker, therefore we have the following:

CR% =

(
#‘‘+’’

#‘‘+’’ + #‘‘-’’ + #‘‘P’’ + #‘‘OT’’

)
×100%. (1)

We compute our outcome variable according to themastery
criteria in the behaviour analysis literature [35]. The outcome
is a binary variable that indicates whether a behavioural
skill mastered in the therapy session can be maintained later.
It is jointly determined by the therapy session CR% and the
corresponding maintenance probe session CR%, where:

1) Behavior Change = 1 if therapy session CR% ≥

90 and probes session CR% ≥ 90; and
2) Behavior Change = 0 otherwise.
The values of Behavior Change are used as the learn-

ing labels. In the end, the environmental, physiological, and
motion features are fused with the educational data and learn-
ing labels to become annotated multimodal samples.

3) STATISTICAL ANALYSES
We use RStudio (with R v.4.2.2) and IBM SPSS v.27 to
perform statistical analyses. First, we undergo outliers iden-
tification, removal, and missing value replacement. We then
obtain the descriptive statistics (mean, standard deviation,
skewness, and Kurtosis value) to gain a preliminary under-
standing of our data distribution. We also explore the
statistical relationship between different features by corre-
lation analysis and examine whether specific handling of
statistical issues such as multicollinearity is needed.

We run binomial logistic regression analyses to learn the
predictive relations of various features and the outcome.
We also compare models to investigate whether the IoT sen-
sor data can improve the predictive performance of a model
containing only educational data. Since our features span a
wide range of values (e.g., mean equals 770.60 for CO2 and
0.59 for IBI), we perform feature standardisation to improve
the ML algorithms’ potential performance. For a variable x,
we obtain its standardised Z-score x ′ by the formula where

x ′
=

x − mean(x)
standard deviation(x)

. (2)

C. MODELING BUILDING AND EVALUATION
Given the annotated samples resulting from the data pre-
processing stage, we carry out standard ML procedures, such
as class balancing, training, cross-validation, and testing,
to produce our predictive model.

1) DATA PROCESSING PIPELINE
The data pipeline of ourML procedures is presented in Fig. 7.
Firstly, we divide our samples (N = 1,130) into training and
test sets in an 80% to 20% ratio. The test samples (n =

226) are held out and used exclusively for the testing phase.
Various resampling methods are then applied to the training
set (n = 904). Validation sets have been randomly extracted
from the resampled training set to assess the training model’s
convergence. Lastly, the held-out training samples are used to
evaluate the optimised model. We evaluate all trained models
with metrics, including accuracy, precision, recall, and F-1
scores. The most optimum predictive model for the data is
selected.

VOLUME 11, 2023 63243



R. Y.-Y. Chan et al.: Predicting Behavior Change in Students With SEN Using MMLA

FIGURE 7. Data pipeline of the current study.

TABLE 2. Resampling methods and algorithms used in the current study.

TABLE 3. Descriptive statistics of the feature variables (N = 1,130).

2) RESAMPLING AND CLASS BALANCING
Uneven class balance is a frequent problem in real-world ML
practice. Prior to our ML modelling process, we examine our
statistical analysis result to detect any uneven class balance
within our dataset.We then apply any necessary data augmen-
tation techniques to enhance the class balance of our training
data. We use APIs from the Python imbalanced-learn
toolbox to perform data resampling.

The imbalanced classes problem exists in our annotated
samples, where the size of negative and positive samples are
n0 = 951 and n1 = 179, respectively. Therefore, we apply
those standard resampling methods and algorithms listed in
Table 2 to augment our training dataset.

3) ML MODELS BUILDING AND EVALUATION
We employed a range of well-established classifiers to
construct the predictive models. Specifically, we used the

TABLE 4. Binary Logistic Regression Results (N = 1,130).

k-nearest neighbours (kNN), decision tree (DT), random for-
est (RF), Naive Bayes classifier (NBC), multi-layer percep-
trons (MLP), support vector machine (SVM), and XGBoost
algorithms to build these classifiers. In addition, we also
utilised a deep neural network (DNN) as a more advanced
ML technique for classification.

To ensure that our models were reliable and accurate,
we followed rigorous training, validation, and testing pro-
cedures in standard ML practice. We used the data pipeline
described in Fig. 7 to split the data into training and testing
sets. The training set was used to train the classifier models,
while the validation set was used to tune their hyperparam-
eters and prevent overfitting. Finally, the testing set was
used to evaluate the performance of the models on unseen
data. This approach allowed us to identify the most suitable
ML algorithm for our specific problem and to optimise its
performance through careful hyperparameter tuning.

V. RESULTS
A. DESCRIPTIVE STATISTICS
Descriptive statistics of each of the features are listed in
Table 3. Both skewness and Kurtosis values of our variables
indicate that the data in most of our variables were not
normally distributed. Therefore, non-parametric statistical
methods that do not assume data normality will be used in
our subsequent analyses.

B. BINARY LOGISTIC REGRESSION ANALYSES
We performed a series of binary logistic regression analyses
to study the predictive effects of the measured variables on
participants’ behaviour change. We compared the predictive
ability among statistical models with (1) IoT sensor data
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TABLE 5. Spearman’s Rho Partial Correlation Matrix of the Study Variables Controlled by Student, School, and Task Domain (N = 1,130).

(model 1), traditional education data (model 2), and a combi-
nation of both IoT sensor data and traditional education data
(model 3). The resulting models are specified in Table 4.

Omnibus tests show that all of the models are statistically
significant, where χ2(11) = 43.59, p < .001 (model 1),
χ2(29) = 264.45, p < .001 (model 2), and χ2(41) = 293.51,
p < .001 (model 3). Model 3 significantly improves over
model 2 (1χ2

= 29.06, 1df = 11, p < .01), and explains
most of the variation of the outcome (Nagelkerke’s R2 =

41.5%). Hosmer-Lemeshow tests indicate that the data fit
both model 1 (χ2

=10.92, df = 8, p = 0.21) and model 3
(χ2

=12.57, df = 8, p = 0.13) but not model 2 (χ2
=16.88,

df = 8, p = 0.03).

C. CORRELATION ANALYSES
Zero-order correlation matrix amongst the non-categorical
variables is provided in Table 5. Partial correlation with the
School, Student, and Task domain variables controlled is
performed. Correlations between the predictors are found.
For example, the CO2 level is significantly and positively
correlated to GSR (ρ = 0.14, p < 0.001) and negatively
correlated to Acceleration Y (ρ = −0.11, p < 0.001). Humid-
ity negatively correlates to Acceleration Z (ρ = −0.13, p <
0.001). Temperature is significantly correlated to most of the
physiological (IBI ρ = -0.13, p < 0.001; GSR ρ = 0.21, p <
0.001; Skin temperatureρ = 0.33, p < 0.001) and motion pre-
dictors (Acceleration X ρ = 0.14, p < 0.001 and Acceleration
Y ρ = 0.08, p < 0.01); except the BVP andAcceleration in the
Y direction. While Light is significantly correlated to GSR
(ρ = 0.18, p < 0.001), Skin temperature (ρ = 0.11, p < 0.001),
Acceleration X (ρ = −0.17, p < 0.001) and Acceleration Z
(ρ = 0.17, p < 0.001). Nevertheless, no strong correlations
(ρ ≥ 0.40) that might indicate multicollinearity is found
among the predictors.

D. ML MODELS EVALUATION
1) MODEL OPTIMIZATION AND CROSS-VALIDATION
We used GridSearchCV of the scikit-learn 1.2.2
Python open-source library to tune the hyper-parameters
of our classifiers. The grid search method exhaustively
generates candidate values specified in a custom-defined

TABLE 6. Accuracy, precision, recall, and F1 score of the optimised SVM
classifiers for each resampling algorithm.

TABLE 7. Accuracy, precision, recall, and F1 score of the optimised Naive
Bayes classifier for each resampling algorithm.

TABLE 8. Accuracy, precision, recall, and F1 score of the optimised
Decision Tree classifier for each resampling algorithm.

hyperparameter space and returns the values for the best
cross-validation score. We used 10-fold cross-validation to
verify the generalisation ability of the resulting classifiers.
We repeat the above process for each of the resampling
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TABLE 9. Accuracy, precision, recall, and F1 score of the optimised
Random Forest classifier for each resampling algorithm.

TABLE 10. Accuracy, precision, recall, and F1 score of the optimised
k-Nearest Neigbhour classifier for each resampling algorithm.

TABLE 11. Accuracy, precision, recall, and F1 score of the optimised
Multi-layer Perceptron classifier for each resampling algorithm.

methods. In order to emphasise the successful classification
of minority cases, classifiers with the highest F1 scores (cal-
culated from precision and recall) are selected.

2) CLASSIFIERS MODEL PERFORMANCE AND EVALUATION
The details of the performance of our classifiers are given
in Tables 6 to 11. Accuracy, precision, recall, and F1 scores
for models using each classification method and resampling
algorithm introduced above are listed.

Our results show that the classifiers can predict the achieve-
ment of behaviour change with high accuracy in general.
In particular, the RF classifier with SMOTE upsampling
achieves the highest accuracy of 97.79%. The same RF clas-
sifier also achieves the highest precision (96.77%) and F1
score (92.31%). At the same time, the XGBoost classifier
(with SMOTETomek hybrid resampling) gives the high-
est recall (97.06%). In general, the kNN classifier has the
best performance in terms of the averages of all matrices.

TABLE 12. Accuracy, precision, recall, and F1 score of the optimised
XGBoost classifier for each resampling algorithm.

FIGURE 8. Mean accuracy, precision, recall, and F1 score by classifiers.

FIGURE 9. Mean accuracy, precision, recall, and F1 score by resampling
methods.

Its average accuracy, precision, recall, and F1 score are
88.35%, 64.55%, 80.72%, and 70.24%, respectively. How-
ever, the NB classifier has the poorest performance with
average accuracy, precision, and F1 score equal to 62.44%,
20.39%, and 28.45%, respectively. In comparison, the MLP
classifier has the lowest recall (44.44%).

The mean performance scores by classifiers and by resam-
pling methods are shown in Fig. 8 and 9, respectively. It is
shown that, on average, kNN classifiers have the best per-
formance. NB classifiers have the lowest accuracy, precision,
and F1 scores, whileMLP has the lowest recall and F1 scores.
For resampling methods, the hybrid method produces the best
performance. Downsampling gives the worst performance in
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FIGURE 10. Training and validation accuracy by epochs.

TABLE 13. Optimum Performance for DNN.

terms of accuracy, precision, and F1 score, while the perfor-
mance in terms of recall is the poorest when no resampling
method is applied (i.e., original).

3) DEEP NEURAL NETWORK BUILDING, TRAINING, AND
EVALUATION
We used TensorFlow 2.11.0 to build our deep neural
network (DNN) and ran our program on a GPU (NVIDIA
RTX A2000 12GB). We established a DNN with 46 input
nodes (for the predictive variables) and two output nodes
(for the two classes). Our best-performed DNN model did
not use any resampling, and the resulting DNN has four
hidden layers, each having 32 nodes, respectively. We use
hyperbolic tangent (tanh) as the activation function. We have
run 5 000 epochs with a batch size of 118, a dropout rate of
0.1, a momentum of 0.92, and an initial learning rate of 0.002.

We present the performance of our DNN using two sets of
learning curves. The training and validation accuracy curve
(Fig. 10) shows an increasing trend in our model’s training
accuracy. An increasing trend can also be observed in the val-
idation accuracy curve, but there is no further improvement in
the validation accuracy after 3 000 epochs. The training and
validation loss curves (Fig. 11) show that both the training
and validation loss of our model decreased over epochs. The
evaluation metrics are given in Table 13.

4) OVERALL PERFORMANCE
The Precision vs Recall scattered plot of all classifiers and
the DNN in the current study is provided in Fig. 12. The
best-performed classifier-resampling method combinations

FIGURE 11. Training and validation loss by epochs.

FIGURE 12. Precision vs Recall scattered plot of all classifier-resampling
method combinations.

are located in the upper left-hand corner of the plot. Theworse
ones are located in the lower left-hand corner.

VI. DISCUSSIONS
A. STATISTICAL CHARACTERISTICS AND RELATIONS
BETWEEN PREDICTORS
Most of our predictor variables (Table 4) are not normally
distributed. Therefore, we used non-parametric statistical
methods in our correlation and regression analyses. We also
standardised our data before feeding them to the ML
algorithms and DNN. These precautions can enhance the
generalisation and performance of our prediction models.

Spearman’s rho partial correlation analyses show statisti-
cally significant correlations between the environmental and
physiological predictors (Table 3). For example, the CO2
level of the classroom is significantly and positively cor-
related to the participants’ GSR (ρ = 0.11, p < 0.001).
The classroom temperature is significantly correlated to
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participants’ skin temperature (ρ = 0.33, p < 0.001), GSR
(ρ = 0.20, p < 0.001), and IBI (ρ = −0.13, p < 0.001).
Besides, classroom light intensity is significantly correlated
to participants’ GSR (ρ = 0.17, p < 0.001) and skin
temperature (ρ = 0.11, p < 0.001).
Our results show that SEN students’ motions significantly

correlate to the ambient learning environment. As reflected
from Acceleration Y (upward vs downward motions), the
classroom CO2 level is negatively correlated to participants’
upward position (ρ = −0.10, p < 0.01). Acceleration Z
(forward vs backward motions) is negatively correlated to
humidity (ρ = −0.12, p < 0.001). Besides, light intensity is
positively correlated to downward (ρ = −0.17, p < 0.001)
and forward motions (ρ = 0.16, p < 0.001).
No strong correlations (ρ ≥ 0.4) were found among

our predictors. Besides, the Variance Inflation Factor (VIF)
values of our predictors range from 1.00 (BVP) to 1.49 (tem-
perature). Therefore, we confirm that our predictors are only
moderately correlated, and our regression analyses are not
likely to be subject to multicollinearity.

B. PREDICTION OF BEHAVIOR CHANGE IN SEN
STUDENTS USING SENSORS AND WEARABLE DATA
Our binary logistic regression analysis results (Table 5) show
that traditional educational data (model 2) can explain 38%
(Nagelkerke’s R2) of the variance in participants’ state of
behaviour change. The percentage is further improved to 42%
when sensors and wearable data are included (model 3). This
result suggests that the inclusion of sensors and wearable data
can better predict behaviour change than using traditional
educational data alone.

Our full model shows statistically significant predictive
relations of light intensity (B = −0.40, SE = 0.20, p <

0.05) and GSR (B = 0.28, SE = 0.15, p < 0.05) on
behaviour change. These results align with existing literature
in special education. The negative relation between exces-
sive imminence from classroom lighting and discomfort in
SEN students has been reported in the literature (e.g., [36]).
Indeed, strong lighting should be avoided in classroom set-
tings for children with ASD, including those with Asperger
syndrome [37], because their neural system is often over-
sensitive to light sources. The induced pattern glare might
affect their learning performance [38]. The identified positive
predictive relation of GSR also aligns with findings from
special education research [17], where SEN students who did
not actively engage in the task were found to have low skin
conductance levels. In particular, SEN students who could
not maintain a constant attention level had significantly lower
skin conductance levels (p.45). The relationship between
GSR and social skills was further supported by a study on
students with intellectual disabilities [39], in which a higher
sympathetic activation was related to more skin conductance
responses. Since skin conductance is directly involved in
human emotional and behavioural regulation [40], our results
suggest that GSR is a plausible feature for predicting SEN
students’ behavioural learning.

Besides, we find significant and positive predictive rela-
tions of skin temperature (B = 0.58, SE = 0.22, p <

0.01) on behaviour change. Our result aligns with a recent
study [41], where typically developed students’ skin tem-
perature during learning increases significantly in high
engagement over low engagement (p.279). However, devel-
opmental disabilities such as ASD may be associated with
atypical autonomic nervous responses, making SEN students’
skin temperature change response to anxiety less salient than
the typically developed student groups [42]. Lastly, both
Student and Task domain categorical variables significantly
predict behaviour change (p < 0.001). This result suggests
that student-oriented personalisation and learning-task cus-
tomisation of MMLA models are necessary for accurate
prediction.

C. MMLA AND PREDICTIVE MODELING IN BEHAVIOR
CHANGE FOR SEN STUDENTS
We have developed eight predictive models (sevenML-based
classifiers and a DNN) and evaluated their performance. The
overall performance in terms of specificity (precision) and
sensitivity (recall) is summarised in Fig. 11. Up-sampling
methods generally outperform the others in precision, while
hybrid and down-sampling methods give the best recall.
In particular, the XGBoost-Hybrid and RF-Up Sampling
combinations give the best performance in terms of recall
and precision, respectively. Meanwhile, our optimised DNN
falls onto the good performance cluster (the red cross). Clas-
sifiers with MLP-Down Sampling combination and all NB
classifiers generally perform worse than the rest of the com-
binations. Table 14 lists our optimised classifiers by their
accuracy scores and provides their pros and cons concerning
the context of MMLA for SEN.

We compare the prediction performance of our models
with other existing MMLA models. Table 15 lists the accu-
racy, precision, recall, and F1 score presented in each work.
The performance of our models is comparable to those in the
previous works. Our RF classifier outperforms the existing
works in terms of all metrics. While our RF, XGBoost, and
DNN are equally well performed in terms of F1 scores. How-
ever, it is also noted that there are diverse prediction targets
and data modalities among these MMLA models. Therefore,
Table 15 could only be used as a reference. Lastly, by con-
sidering both performance and the pros and cons among our
eight models, we select the XGBoost classifier for behaviour
change prediction.

VII. LIMITATIONS AND FUTURE WORK
We are aware of several limitations of our current work:

• Our prediction target is a binary output, which limits the
available information regarding students’ ABA learning
for the teachers and therapists.

• The current data collection system works in a
one-to-one therapist-to-student setting. While in the
daily special education context, classroom teaching
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TABLE 14. Ranking of optimised classifiers in the current study by accuracy scores; and their pros and cons with MMLA for SEN considerations.

TABLE 15. Comparison of the predictive performance of MMLA models.

is often conducted in one-to-few or one-to-many
manners.

• Themeasurement hardware in the current study is costly.
For example, Empatica E4 wristbands were used, while
an E4 wristband can cost more than a thousand US
dollars.

The following future works are proposed based on the
existing achievements of the current work:

• The current study affirms a statistically significant pre-
dictive relation between multimodal educational data
and SEN students’ behavioural change. As a future
work, prediction models with multiple outcomes and
at multiple levels can be developed. In this way, the
system can providemore faceted information about SEN
students’ behavioural change to ABA practitioners.

• The current study demonstrates the feasibility of an
MMLA predictive model for one-to-one ABA therapy.
Thework can be expanded to one-to-few or one-to-many
settings.

• The current study has revealed a number of environ-
mental and physiological variables that can predict
behaviour change. In the future, alternative or new mea-
surement devices at a lower cost can be explored or
developed for SEN students.

VIII. CONCLUSION
In this paper, we applied MMLA to predict behaviour
change in SEN students participating in ABA therapies.
A novel MMLA approach for the prediction of SEN students’
behaviour change achievement in ABA therapy is presented.
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We introduced IoT sensors data, including ambient envi-
ronmental measurements (namely CO2 level, humidity,
light intensity, and temperature), physiologicalmeasurements
(namely IBI, BVP, GSR, and skin temperature), and motion
measurements (accelerometer values in X, Y, and Z direc-
tions) to develop statistical models for ABA therapy. We also
apply ML and DNN techniques to predict SEN students’
behaviour change.

We studied the statistical characteristics of the multi-
modal educational data and found that most of our data are
not normally distributed. Significant correlations between
the variables had been identified, but the problem of mul-
ticollinearity did not exist in our variables. We further
showed that sensors and wearable data could significantly
enhance the prediction of SEN students’ behaviour change
achievement. Various ML algorithms and a DNN were built,
optimised, and evaluated. Our results demonstrated that ML
(including deep learning) could be applied to MMLA for
predicting SEN students’ behaviour change. While the per-
formance of our classifiers and DNN surpass most of the
existing MMLA models. However, we also observed varia-
tions in the prediction targets among the compared models.

Promoting positive behaviours in SEN students is impor-
tant for their personal and social development. At the same
time, ABA therapy is an effective intervention approach
that aims at behaviour change in this population group. The
learning environment and the learner physiology conditions
during ABA therapy sessions are essential for understanding
behaviour skills acquisition and their effect on subsequent
behaviour change. The current study has affirmed the pre-
dictive relations between the learning environment, learner
physiology, and the learning outcome in ABA therapy.
A number of limitations and necessary future works are also
presented. Overall, our work echoes the growing demands in
applyingML to the learning and education of those with brain
and developmental disorders [43].
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