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ABSTRACT To improve the accuracy of feature extraction and description of various scales in traditional
Oriented FAST and Rotated BRIEF (ORB) feature matching algorithm, this paper proposes an ORB
feature matching algorithm based on multi-scale feature description fusion and feature point mapping error
correction. Firstly, when establishing the feature scale pyramid, the method of using the same patch-size for
description on each feature layer is adopted instead of using different patch-sizes on a unified feature layer in
the original algorithm, which enhances the robustness of the descriptor and improves the matching accuracy.
Secondly, FAST-SCORE maps are established on different scales, and the coordinates of high-level feature
points mapped to the bottom layer are corrected to further improve the positioning accuracy of feature points.
The algorithm is verified in remote sensing images, autonomous driving, and industrial automation fields.
Experimental results show that when resisting theoretical interference, the average matching accuracy of the
proposed algorithm is 67.9%, which is about 2.0 times that of the ORB algorithm, and the average stability
is 14.0, which is about 1.5 times that of the ORB algorithm. After correcting the feature point mapping, the
matching accuracy can be further improved by 19.2%, indicating that the improved algorithm has excellent
robustness when resisting interference. In the experiments on the KITTI and custom datasets, the matching
accuracy of the proposed algorithm reached 88.70% and 96.88%, respectively, which is an improvement
of 10.15% and 1.2% compared to the ORB algorithm. At the same time, the matching time was reduced by
17.34% and 24.30%, ensuring the accuracy and real-time performance of the algorithm in practical scenarios.

INDEX TERMS Feature matching, machine vision, image processing, ORB.

I. INTRODUCTION
Feature matching algorithm is one of the important research
technologies in the field of computer vision. Compared with
traditional template matching algorithms, feature matching
algorithms can take into account the local sub-features of
objects, thereby improving matching accuracy and speed.
Therefore, it has been widely used in many fields such as
3D reconstruction, remote sensing image stitching, and robot
SLAM [1], [2], [3], [4], [5]. However, there are still some

The associate editor coordinating the review of this manuscript and
approving it for publication was Miaohui Wang.

problems in the feature extraction part of the algorithm.
In practical environments, it is easy to introduce a lot of
interference information, which affects the subsequent fea-
ture matching and tracking work. Therefore, how to improve
the matching accuracy and robustness of the algorithm in
practical application scenarios has always been the goal of
many researchers.

Currently, the main idea of feature matching algorithms is
to extract feature points from images and describe them, com-
paring the similarity between feature points in two images
to determine whether they match. The SIFT algorithm [6]
is a classic feature matching algorithm that has rotation and
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scale invariance and good robustness to changes in lighting,
but it is computationally expensive. To address this issue,
the SURF algorithm [7] was proposed, which uses integral
images for image convolution, and a metric based on the
Hessian matrix and a distribution-based descriptor for the
detector to speed up the extraction process. The algorithm’s
efficiency is significantly improved compared to SIFT, but
it still cannot meet the real-time requirements of most use
cases. The ORB algorithm [8] is a feature matching algorithm
that achieves high efficiency while implementing rotation
invariance, but its matching accuracy is not as good as SIFT.
Currently, improvements to feature matching algorithms are
mainly carried out in two aspects. The first aspect is to
improve the ability to extract and describe image features.
Gao and Sun [9] used the position and orientation system
(POS) to simulate image distortion to improve the quality
of feature extraction. Mur-Artal and Tardós [10] proposed
the Qtree_ORB (quadtree-based ORB algorithm) algorithm
based on ORB, which uses a quadtree to segment the image
and combines adaptive thresholds to extract feature points.
Yao et al. [11] further limited the segmentation depth by
using the quadtree segmentation technique.Wu [12] analyzed
the influence of the number of layers in the image pyramid
on the matching accuracy of ORB feature points and pro-
posed the optimal parameter distribution of the algorithm
to improve the matching accuracy. Lv et al. [13] proposed
a method based on hue, saturation, and value (HSV) and
histogram equalization, which extracts the HSV information
of the image to construct a feature vector as the descriptor
information and uses the PatchMatch algorithm with local
consistency to search for the nearest neighbor for matching.
Finally, the dense linear fitting method is used to improve
the detection accuracy. Ma et al/ [14] used the difference in
image grayscale information as a new feature descriptor, and
Yan et al. [15] constructed a fusion of ORB feature descrip-
tors and point cloud feature descriptors to further improve
the matching effect. The second aspect is to improve the
screening ability of feature point matching. Muja and Lowe
accelerated the matching speed of high-dimensional descrip-
tors by establishing kd-tree [16] and k-means tree [17], but
could not effectively eliminate mis-matched feature points.
Bian et al. [18] proposed the Grid-based Motion Statistics
(GMS) algorithm, which uses the support in the matching
point neighborhood to identify mis-matched points, but the
matching accuracy decreases when the image is disturbed by
blur and other factors.

This paper aims to improve the effectiveness of image
feature extraction, thereby reducing the mismatch rate and
improving the matching accuracy. To achieve this, we pro-
pose a multi-scale feature fusion-based ORB feature match-
ing algorithm. The algorithm first establishes a scale feature
pyramid, performs feature extraction and description on each
layer, and then fuses the extracted feature points from each
layer. When mapping feature position information down-
ward, we use the FAST-SCORE map of the bottom layer
to correct the coordinates of the high-level feature points,

thereby improving the positioning accuracy of the feature
points. Finally, we use the RANSAC algorithm to elimi-
nate mismatched points. This method not only ensures the
real-time performance of the algorithm but also improves the
matching accuracy and robustness.

The innovations of this paper mainly include the following
aspects:

(1) Adaptively describing the corresponding feature layer
based on the scale information of the feature points, enhanc-
ing the robustness of the descriptor;

(2) Establishing FAST-SCORE maps at different scales
and correcting the coordinates of high-level feature points
mapped to the bottom layer, further improving the positioning
accuracy of the feature points.

Specifically, in the second section of this paper, we intro-
duce the improved multi-scale feature description method
and coordinate mapping correction method. In the third
section, we compare the previous algorithm with the pro-
posed algorithm through experiments and summarize the
experimental results. Finally, in the fourth section, we con-
clude the paper.

II. IMPROVED ALGORITHM
The proposed improved algorithm in this paper consists of
three main parts: image preprocessing, multi-scale feature
description, and feature point coordinate mapping correc-
tion, as shown in Figure 1. The image preprocessing part
mainly aims to reduce the influence of noise and illumination
changes on matching accuracy by performing denoising and
histogram equalization on the input image. The multi-scale
feature description part utilizes the FAST algorithm to
quickly screen feature points at each feature layer and per-
form feature description based on their scale information in
the corresponding layer. The feature point coordinate map-
ping correction part first establishes FAST-SCORE maps at
various scales of the image and calculates the optimal target
position of each high-level feature point in the correspond-
ing position of the FAST-SCORE map, and finally performs
coordinate correction.

A. IMAGE PREPROCESSING
Preprocessing is an important step in image matching, which
mainly includes two parts: image denoising and histogram
equalization. In the process of image matching, the original
image may be affected by imaging hardware and environ-
mental factors, resulting in noise that affects the subsequent
matching effect. In order to preserve the fine details of
the image as much as possible while removing these noise
points, we use the P-M equation (anisotropic diffusion partial
differential equation) for denoising. This method uses the
gradient of the image as an edge detection operator, which can
protect the boundary information of the image while denois-
ing [19]. Secondly, we use histogram equalization technology
to enhance the contrast of the image and improve the percep-
tion ability of machine vision for key features of the image.
This method is less affected by external lighting changes and
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FIGURE 1. Improved feature extraction algorithm framework.

has good stability. After the above two steps of processing,
the image will be sent to the multi-scale feature description
part for the next step of operation, in order to achieve more
accurate matching results.

B. MULTISCALE FEATURE DECRIPTION
ORB features are one of the commonly used image features
in the field of computer vision, and are widely applied due
to their rotation invariance and real-time performance. The
ORB algorithm uses the FAST algorithm to determine feature
points by comparing the difference between the pixel values
of the test point and its surrounding pixels. However, since
the FAST algorithm compares points on a radius of 3 around
the feature point, the extracted corner points themselves do
not have scale invariance.

To address this issue, the ORB algorithm establishes a
feature scale pyramid and extracts FAST corner points on
each layer to achieve scale invariance of the corner points.
Meanwhile, the ORB algorithm uses BRIEF descriptors to
describe feature points, which have the advantages of rotation
invariance and fast matching. However, the descriptors of
the ORB algorithm still rely on the mapping position of
feature points on the bottom layer image for description [20],
which leads to the introduction of invalid information into the
majority of feature point descriptors when the image loses
pixel-level features due to external factors such as changes
in lighting and motion blur, thereby reducing the matching
performance of the algorithm.

To enhance the effectiveness of keypoint description in
our algorithm, we have improved the original feature scale
pyramid. The specific steps of the algorithm are as follows:

1) Establish a feature scale pyramid, where each layer of
the image is obtained by Gaussian blur and downsampling of
the next layer. The bottom layer of the pyramid has a larger
image size and contains low-dimensional texture features,
while the upper layers have smaller image sizes but retain
large-scale global features. Describing at different layers is
beneficial for the algorithm to extract features at various
scales. The number of layers L in the pyramid is mainly
determined by the size of the image and the patch-size of the
descriptor, which is calculated as follows:

L = [logk (min(w, h))− logk (patch_size · 4)] (1)

where, k is the downsampling coefficient (here k is set to 2),w
and h are the width and height of the image, and patch_sizeis
the scale of the feature point description.

2) Utilize the FAST algorithm to extract feature points
in each layer of the pyramid image. To ensure a balanced
distribution of feature points in each layer, the number of
feature points N i

f extracted in each layer should be adjusted
according to the downsampling coefficient k , and satisfy the
following equation:

L∑
i=1

1
k i−1

N i
f = Nf (2)
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where, Nf represents the total number of extracted feature
points, which is usually set to 500 in the ORB algorithm.

For each layer of the image, the number of feature points
extracted based on the FAST algorithm, nif , is compared
with the predetermined number of feature points for that
layer, N i

f . If n
i
f ≥ N i

f , we select the top N i
f best points

based on the FAST score. If nif < N i
f , it indicates that

the texture features at the corresponding scale of that layer
have been affected and it is not possible to extract enough
feature points effectively. In this case, blindly lowering
the feature point extraction threshold to increase the number
of feature points may introduce a large number of invalid
feature points, making subsequent matching difficult [21].
Therefore, this paper keeps the feature point extraction
threshold unchanged and distributes the missing feature
points proportionally based on the remaining layers’ N i

f . This
method can extract enough feature points while ensuring the
quality and uniform distribution of feature points extracted
from each layer.

Due to the characteristics of feature scale pyramid, as the
number of layers increases, the size of the image decreases
while retaining higher-dimensional scale features [22]. In the
original algorithm, different scales of features were described
by changing the patch_size of the descriptor directly on
the bottom layer image. However, the receptive field of the
descriptor does not increase with the increase of patch_size,
which leads to insufficient description of large-scale features
of the target. Therefore, a method is needed to adjust the
receptive field of the descriptor according to the demand.
In this paper, descriptors with the same patch_size are used
to describe different scales of features on each feature layer,
as shown in Figure 2. As the feature pyramid increases,
the receptive field of the image expands with the increase
of layers, so descriptors with the same patch_size can also
fully describe various scales of features on each feature layer.
The equivalent feature scale patch_sizer extracted from each
feature layer satisfies:

patch_sizer = patch_size · k i−1(1 ≤ i ≤ L) (3)

3) In order to achieve scale invariance in feature matching
algorithms, it is necessary to fuse feature information from
different scales. In the pyramid structure, the coordinates of
features in the upper layers need to be mapped to the lower
layers in a top-down manner for matching, while keeping the
descriptors unchanged. In order to ensure that the relative
positions of upper-level feature points remain unchanged
when mapped to lower-level images, the mapping relation-
ship needs to satisfy Equation (4):

{(xi, yi) = k j−i(xj, yj)+ 0.5 · k j−i|1 < i < j < L} (4)

In the equation, (xi, yi) (xi, yi)and
(
xj, yj

)
represent the

coordinates of feature points in the i-th and j-th layers, respec-
tively, while k denotes the downsampling factor.
The following is the pseudocode of Algorithm 1, which

demonstrates the implementation of multi-scale feature
description fusion.

FIGURE 2. Description method in this article.

Algorithm 1Multi-scale Feature Description FusionMethod
Input :initial_image,
Output :Key_points,descriptors
1 fori =1; i < NL; i++do
2 image_i = blur&down_sample(initial_image)
3 ORB_detect(image_i)
4 If nf > Nf then
5 Key_points← thefirstNf Key_points based on

FAST SCORE
6 else
7 Upgrade otherNf
8 ORB_describe(Key_points)
9 Coordinate mapping(Key_points)

C. FEATURE POINT COORDINATE MAPPING CORRECTION
Compared to low-level images, high-level images can extract
more global features, thus possessing stronger adaptability
to interference. Figure 3 shows the distribution of matching
errors of each feature layer under the influence of interference
factors. It can be observed from the figure that in practical
application scenarios, the matching loss of feature extraction
in high-level images is significantly higher than that in low-
level images, demonstrating stronger anti-interference ability.

Figure 4 illustrates the distribution of matching errors for
each feature layer under the condition of macroscopic match-
ing correctness. It can be observed from the figure that the
micro-matching loss continuously expands with the increase
of layers. This is because the high-level images undergo
multiple downsampling processes, resulting in a significant
reduction in the precision of feature point coordinates. As a
result, when using a fixed upsampling method to map coor-
dinates back to the original image, the coordinate error will
increase exponentially with the increase of layer difference,
thereby affecting the performance of the algorithm.

In order to alleviate the phenomenon of magnified match-
ing errors when mapping high-level feature point coordinates
to the bottom level, it is necessary to adopt a method that inte-
grates high-level image feature informationwith bottom-level
image feature point location information. Specifically, while
extracting features from the high-level image, the texture
information of the bottom-level image is analyzed to correct
the coordinates of the mapped feature points, thereby achiev-
ing more accurate matching results.
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FIGURE 3. Macroscopic matching error distribution of each feature layer.

FIGURE 4. Microscopic matching error distribution of each feature layer.

In the pyramid algorithm, the image feature points in
each layer are extracted using the FAST9-16 algorithm.
To obtain the correction amount of each layer’s feature points
in the bottom layer image, it is necessary to establish the
FAST-score map of the bottom layer image in each scale
range. To improve algorithm efficiency and reduce compu-
tational complexity, different scales of box filter f (x, y, s)
are used instead of Gaussian filters. Based on the number
of layers in the previous feature scale pyramid, the original
image I (x, y) is convolved at different scales to obtain each
layer image Ii(x, y), which satisfies:

Ii(x, y) = f (x, y, si) ∗ I (x, y), 1 ≤ i ≤ NL + 1 (5)

f (x, y, si) =
1

s2i
, 1 ≤ x, y ≤ si (6)

where, ∗ denotes convolution calculation,and si represents the
scale factor of the filter.

In order to efficiently obtain FAST-SCORE maps at dif-
ferent scales, we perform a weighted differential calculation
on the L+1 images, followed by a difference calculation with
the original image I (x, y), resulting in L approximate FAST-
SCORE maps. Taking the construction of a 4-layer feature
pyramid as an example, the specific process is illustrated
in Figure 5.

FIGURE 5. Approximate fast_score flowchart.

In the figure 5, each layer of the approximate FAST-
SCORE graph is obtained from equations (7) to (9)

FAST − SCOREi
= δi+1→i · Ii+1(x, y)− δi→i · Ii(x, y)− I (x, y) (7)

δi+1→i =
s2i+1

s2i+1 − s
2
i

(8)

δi→i =
s2i

s2i+1 − s
2
i

(9)

where, δi+1→i represents the weighting coefficient between
the i+ 1th layer image of the filtering layer and the ith layer
image of the differential layer.

When mapping the coordinates of feature points in the
upper layer image to the lower layer image, it is necessary
to consider the score distribution of the corresponding ROI
region in the approximate FAST-SCORE map, in order to
calculate a suitable target position. The specific calculation
process of this position is shown below:

According to the score values within the ROI region, the
coordinates within the region are weighted and the geometric
moments are calculated under different weighting coeffi-
cients χ . Specifically, the following formula (10) can be used:

Mχ
pq =

∫ ∫
xpyqIχ (x, y)dxdy, (x, y) ∈ ROI (10)

For a two-dimensional discrete function representing an
image, the above equation can be rewritten as:

Mχ
pq =

∑
(x,y)∈ROI

xpyqIχ (x, y) (11)

Therefore, the centroid Cχ of the scores within the ROI
region can be obtained by the following formula:

Cχ
= (

Mχ
10

M00
,
Mχ

01

M00
) (12)

The weighting coefficient χ represents the correlation
between the score distribution within a region and the map-
ping result. As χ changes, C represents the target position
under different selection methods, thereby affecting the map-
ping effect. When χ = 0, C is the geometric center of the
region; when χ = 1, C is the centroid of the region; when
χ →∞, C is the coordinate of the highest score point within
the region. If χ is too large, the mapping process is prone to
local optimal points, which affects the matching accuracy.
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If χ is too small, the mapping amount is too small, and the
mapping effect is not significant. Therefore, a momentum
coefficient η is introduced to enhance the mapping effect
while avoiding local optimal solutions. Since the mapping
adjustment is limited to the ROI region where the feature
point is located, the upper bound of the mapping amount
needs to be restricted. Thus, the mapping correction rela-
tionship based on the approximate FAST-SCORE map is as
follows:

(xi, yi)1<i<j<L

=

{
k j−i(xj, yj)+ C0

+ η(Cχ
− C0)0 < η ≤ 1

k j−i(xj, yj)+ Cχ
+ (η − 1)(C−1 − Cχ ) 1 < η ≤ 2

(13)

In this experiment, a comparative study was conducted by
varying the values of χ and η, and applying the mapping
correction method described above. For each mapping cor-
rection method, the mapping accuracy was calculated under
the maximum layer difference, and the results were presented
in the form of a heatmap, as shown in Figure 6.

FIGURE 6. Heatmap of mapping accuracy.

From the above figure, it can be observed that the mapping
error is significantly reduced when χ and η are respectively
set to 1 and 1.5. This mapping method can determine the
mapping coordinates by comprehensively considering the
overall score level within the ROI region. However, the upper
right region of the figure, although showing better results,
is susceptible to interference from individual scores within
the ROI region, which may affect the mapping accuracy.
Therefore, further improvements are needed to enhance the
accuracy and stability of the mapping method.

The following is the pseudocode of Algorithm 2, which
demonstrates the process of coordinate mapping correction
for the Lth layer.

III. EXPERIMENT AND RESULTS
A. EXPERIMENTAL ENVIROMENT
The computer configuration used in this study includes an i7
processor and 16GB of memory. The experimental images
were obtained from the DOTA [23] dataset, KITTI [24]
dataset, and industrial application scenarios. To validate the

Algorithm 2 Coordinate Mapping Correction
Input :initial_key_points
Output :improved_key_points
1 FS_map[L]= FAST_SCORE_map(image)
2 fori =1; i < Nf ; i++do
3 (x_offset, y_offset) = C1(FS_map[L].ROI )
4 key_point[i].x+ = x_offset
5 key_point[i].y+ = y_offset
6 End

effectiveness of our algorithm, a certain number of images
were selected for testing. The experiment will evaluate the
algorithm’s performance from both theoretical and practi-
cal perspectives. The theoretical performance experiment
includes tests of anti-interference ability, feature point match-
ing quality, and coordinate mapping correction effects, using
the DOTA dataset for validation. The practical performance
experiment includes tests of autonomous driving and indus-
trial application scenarios, using the KITTI dataset and actual
industrial case images for validation. The experiment will
comprehensively evaluate the algorithm’s performance based
on metrics such as matching accuracy, stability (standard
deviation of matching accuracy), AP, and matching error. The
calculationmethods for each evaluationmetric are as follows:

Based on the algorithm mentioned above, the matching
point information of the two images is obtained, and the
Hamming distance between each feature point is calculated.
A coarse screening is performed based on the Hamming
distance between the nearest neighbor point pairs and the
second nearest neighbor point pairs. The selected point pairs
m satisfy the following condition:

m.dis tan ce < cof · n.dis tan ce (14)

where,m represents the closest neighbor pair, n represents the
second closest neighbor pair, and cof represents the predeter-
mined screening threshold.

The percentage of the number of feature points NC after
coarse screening to the total number of matching points NS
can be expressed as the coarse screening rate P:

P =
Nc
Ns
× 100% (15)

Based on the preliminary screening of matching point
information, the RANSAC algorithm is used to filter the
inliers, and the percentage of inliers Ni to the number of
initially screened feature pointsNc is calculated as the match-
ing accuracy. Specifically, the matching accuracy A can be
expressed as:

A =
Ni
Nc
× 100% (16)

Due to the direct impact of coarse screening rate on the
accuracy of matching, it is generally believed that the lower
the coarse screening rate, the higher the matching accuracy.
However, in a single situation, the coarse screening rate
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FIGURE 7. (a-l) Variation of matching accuracy for each algorithm.

and matching accuracy cannot comprehensively evaluate the
overall performance of the algorithm. Therefore, this paper
introduces a new evaluation index AP to take into account
the algorithm performance in various situations. The specific
calculation method is as follows:

AP =
∫ 1

0
AdP (17)

B. COMPARATIVE EXPERIMENT ON ANTI-INTERFERENCE
ABILITY
The aim of this experiment is to compare the feature extrac-
tion performance of ORB, SIFT, SURF, and the proposed
algorithm on the DOTA dataset. The DOTA dataset is a
large-scale dataset for aerial images, containing 2806 images

with pixel sizes ranging from 800∗800 to 4000∗4000, cov-
ering various scales of feature information, which can be
used to evaluate the matching performance of algorithms
at different scales. In this experiment, the images in the
dataset are divided into three groups according to their sizes,
namely 1024∗1024, 2048∗2048, and 4096∗4096, to detect
the matching performance of each algorithm at different
scales. To ensure parameter consistency, consistent interfer-
ence information is introduced into the images, and the coarse
screening rate of each algorithm is unified to 80% for the
experiment.

The experimental results in Figure 7 show that after intro-
ducing interference factors such as salt and pepper noise,
Gaussian noise, image compression, and image blur, the
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TABLE 1. Summary of matching accuracy for each algorithm.

FIGURE 8. P-A Curve.

matching accuracy of the compared algorithms is signifi-
cantly affected, and the decrease is obvious. The proposed
algorithm has improved the accuracy decrease compared to
other algorithms.

From Table 1, it can be seen that the proposed algorithm
achieves significant improvements in matching performance
compared to other algorithms. Particularly, in the DOTA-
1024 dataset with lower image resolution, the proposed
algorithm performs best in salt-and-pepper noise and image
compression, with a respective increase of 19.33% and 7.34%
in matching accuracy compared to the original algorithm.
Although the proposed algorithm is slightly inferior to the
SURF algorithm in Gaussian noise and image blur, it shows
significant advantages in all aspects in the DOTA-4096
dataset with larger image resolution.

Specifically, when introducing salt-and-pepper noise and
Gaussian noise, the proposed algorithm improves the match-
ing accuracy by 38.91% and 40%, respectively, compared to
the original algorithm, while the stability is also improved
by 5.52% and 7.58%, indicating an enhanced ability to resist
noise. In the case of image blur, the proposed algorithm
improves the matching accuracy by 35.16% and the stability
by 12.2%. In the case of image compression, the proposed
algorithm improves the matching accuracy by 23.28% and
the stability by 1.46%.

FIGURE 9. Distribution of matching errors.

FIGURE 10. Comparison of matching loss distribution before and after
mapping correction.

C. COMPARATIVE EXPERIMENT ON FEATURE POINT
MATCHING QUALITY
Generally speaking, the matching accuracy of an algorithm
is greatly influenced by the coarse screening rate. The lower
the coarse screening rate, the higher the matching accu-
racy, but too low a coarse screening rate will result in an
insufficient number of matched point pairs, thereby affect-
ing the matching effect. Therefore, an excellent matching
algorithm needs to ensure a certain matching accuracy while
a sufficient number of point pairs are screened out. In this
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FIGURE 11. Matching results of each algorithm.

FIGURE 12. Histogram of matching accuracy for each algorithm.

experiment, based on Experiment 3.1, the matching accuracy
and corresponding screening rate were calculated under dif-
ferent screening thresholds, and the P-A (coarse screening
rate-matching accuracy) curve was plotted. The experimen-
tal results are shown in Figure 8, and the specific data is
shown in Table 2. The matching error distribution of each

FIGURE 13. Summary of matching time for each algorithm.

algorithmwas calculated for unmatched point pairs, as shown
in Figure 9.

As can be seen from the figure, when the screening thresh-
old is set low, the matching accuracy of several algorithms
is relatively good. Among them, the ORB algorithm has the
highest accuracy, but as the screening threshold increases, the
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FIGURE 14. Matching results of each algorithm.

matching accuracy of the ORB, SIFT, and SURF algorithms
all decrease significantly, and the decrease of the proposed
algorithm is the smallest. Further analysis of the data in
the figure shows that although the matching accuracy of the
proposed algorithm is slightly lower than that of the other
algorithms when the matching threshold is set to a lower
value, it significantly exceeds the other algorithms in terms
of screening rate. Combined with the data in the table, it is
not difficult to find that when the matching accuracy of the
ORB algorithm reaches 99.1%, the screening rate is 9.5%; the
screening rates of the SURF and SIFT algorithms at the same
accuracy level are only 0.5% and 4.2%, respectively. This
indicates that the matching accuracy of these algorithms is
achieved at the expense of sacrificing screening rate. In con-
trast, the proposed algorithm achieves a screening rate of
23% at a matching accuracy of 99.1%, which is significantly
better than other algorithms. When the screening threshold

TABLE 2. Experimental results.

is set to 1, that is, the screening rate is 100%, the matching
accuracy can reflect the quality of feature extraction of the
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TABLE 3. Experimental results.

algorithm without relying on screening. The corresponding
matching accuracy of the proposed algorithm also reaches
43.3%, which is much higher than the 20.7% of the ORB
algorithm, the 1.2% of the SIFT algorithm, and the 12.0% of
the SURF algorithm. The AP can reflect the comprehensive
performance of the algorithm at various screening rates. The
AP value of the proposed algorithm reaches 63.63%, which
is 18.89% higher than that of the ORB algorithm. It can
also be clearly seen from Figure 11 that the matching loss
distribution of the proposed algorithm is mostly concentrated
on the right side of the coordinate system, indicating that most
of the matches are correct.

D. COMPARATIVE EXPERIMENT ON COORDINATE
MAPPING CORRECTION
In order to validate the effectiveness of coordinate map-
ping correction, we recorded the coordinate information of
matching points before and after mapping correction on the
experimental images, and plotted the distribution of match-
ing losses for each layer of feature points, as illustrated in
Figure 10. It can be observed from the figure that the mapping
effect is relatively weak for the second layer of feature points,
but from the third layer onwards, the distribution of matching
errors after mapping correction shows a clear rightward shift,
indicating a certain reduction in matching errors after coor-
dinate correction. The experimental results are presented and
compared in Table 3.

From Table 3, it can be observed that the effect of mapping
correction is most significant in the 5th layer, with a reduc-
tion in error of up to 19.2%. In contrast, the effect is least
significant in the 2nd layer, with a reduction in error of only
3.5%. The error reduction in the 3rd and 4th layers is 9.0%
and 12.9%, respectively.

E. COMPARATIVE EXPERIMENT ON REAL-WORLD
APPLICATION SCENARIOS
To validate the performance of the algorithm in practi-
cal application scenarios, we conducted comparative tests
on the matching accuracy and matching time of the algorithm
in the fields of autonomous driving and industrial automation.
The test images were from the KITTI dataset and the actual
industrial production pot bottom label dataset. The KITTI
dataset is currently the largest computer vision algorithm
evaluation dataset in autonomous driving scenarios, contain-
ing real image data collected in urban, rural, and highway
scenes, with various degrees of occlusion and truncation
in each image. The dataset is divided into five categories:

FIGURE 15. Histogram of matching accuracy summary for each algorithm.

FIGURE 16. Summary of matching time for each algorithm.

‘Road’, ‘City’, ‘Residential’, ‘Campus’, and ‘Person’. The
pot bottom label dataset contains various pot bottom label
images in actual production, with different degrees of lighting
changes and surface reflections for each pot type. To ensure
consistency of the parameters, we unified the screening
threshold rate of each algorithm to 0.8 for the experiment.
We compared the matching accuracy and matching time
of each algorithm, and the experimental results are shown
in Figures 11-16, and the summary results are shown in
Tables 4-7.

According to the data from Table 4 and Table 5, it can
be seen that our algorithm performs the best on the KITTI
dataset, with a matching accuracy of 88.70% and a matching
time of only 0.143 seconds. Compared to the ORB algorithm,
our algorithm improves the matching accuracy by 10.15%
and reduces the matching time by 17.34%. However, in the
Residential category, our algorithm’s matching accuracy is
slightly inferior to that of the SURF algorithm. This is
because there are certain and complex texture information
in the image, which makes it difficult for the algorithm to
accurately describe it in high-level images.
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TABLE 4. Experimental sample matching accuracy (KITTI Dataset).

TABLE 5. Matching time of experimental samples (KITTI Dataset).

TABLE 6. Experimental sample matching accuracy (Cookware Bottom Label Dataset).

TABLE 7. Experimental sample matching accuracy (Cookware Bottom Label Dataset).

According to the data from Table 6 and Table 7, our
algorithm performs well on the pot bottom label dataset.
In terms of real-time performance, our algorithm’s aver-
age speed is about 2.5 times faster than that of the SURF
algorithm, and it only takes 75.70% of the time of the ORB
algorithm. In terms of accuracy, our algorithm’s average
matching accuracy on each group of samples is 96.88%,
which is better than the ORB algorithm’s 95.68%, the SIFT
algorithm’s 95.94%, and the SURF algorithm’s 96.13%.

IV. CONCLUSION
This paper proposes an improved feature point extraction
algorithm based on multi-scale feature fusion to address the
low accuracy and poor robustness issues of traditional ORB
algorithm. In the establishment of feature scale pyramid, the
algorithm extracts features at each layer of the image to
achieve multi-scale feature extraction. Furthermore, in the
fusion of feature coordinate information, the algorithm cor-
rects the mapped coordinates by establishing FAST-SCORE
maps at different scales to alleviate the accuracy degradation
caused by downsampling, thus improving the accuracy and
robustness of feature extraction.

Comparative experiments were conducted on ORB
algorithm, SIFT algorithm, SURF algorithm, and the pro-
posed algorithm. The results show that the proposed
algorithm has significantly better resistance to interference

and has significant advantages inmatching time andmatching
accuracy in industrial practical applications.

However, it was found in the experiments that the proposed
algorithm has certain requirements for the scale of the image,
and the advantages of multi-scale feature extraction can only
be fully utilized in larger images. Therefore, in further opti-
mizing the algorithm, particle swarm optimization (PSO) can
be used to determine the position of feature points, making the
distribution of feature points more uniform and reducing the
dependence on image size, thus further improving the feature
extraction capability of the algorithm.

REFERENCES
[1] B. Liu, F. Yang, Y. Huang, Y. Zhang, and G. Wu, ‘‘Single-shot three-

dimensional reconstruction using grid pattern-based structured-light vision
method,’’ Appl. Sci., vol. 12, no. 20, Oct. 2022, Art. no. 10602.

[2] S. Quan, K. Yin, K. Ye, and K. Nan, ‘‘Robust feature matching for 3D
point clouds with progressive consistency voting,’’ Sensors, vol. 22, no. 20,
p. 7718, Oct. 2022.

[3] I. Misra, M. K. Rohil, S. M. Moorthi, and D. Dhar, ‘‘A novel country-level
integrated image mosaic system using optical remote sensing imagery,’’
Earth Sci. Informat., vol. 15, no. 4, pp. 2181–2193, Dec. 2022.

[4] J. Ni, X. Wang, T. Gong, and Y. Xie, ‘‘An improved adaptive ORB-SLAM
method for monocular vision robot under dynamic environments,’’ Int. J.
Mach. Learn. Cybern., vol. 13, no. 12, pp. 3821–3836, Dec. 2022.

[5] J. Ma, A. Fan, X. Jiang, and G. Xiao, ‘‘Feature matching via motion-
consistency driven probabilistic graphical model,’’ Int. J. Comput. Vis.,
vol. 130, no. 9, pp. 2249–2264, Sep. 2022.

[6] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

VOLUME 11, 2023 63819



C. Yao et al.: ORB Feature Matching Algorithm

[7] H. Bay, T. Tuytelaars, and L. Van Gool, ‘‘SURF: Speeded up robust
features,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), vol. 3951, Jul. 2006,
pp. 404–417.

[8] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ‘‘ORB: An efficient
alternative to SIFT or SURF,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 2564–2571.

[9] J. Gao and Z. Sun, ‘‘An improvedASIFT image featurematching algorithm
based on POS information,’’ Sensors, vol. 22, no. 20, p. 7749, Oct. 2022.

[10] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,’’ IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[11] J. Yao, P. Zhang, Y. Wang, Z. Luo, and X. Ren, ‘‘An adaptive uniform
distribution ORB based on improved quadtree,’’ IEEE Access, vol. 7,
pp. 143471–143478, 2019.

[12] M. Wu, ‘‘Research on optimization of image fast feature point matching
algorithm,’’ EURASIP J. Image Video Process., vol. 2018, no. 1, pp. 1–27,
Dec. 2018.

[13] C. Lv, J. Li, Q. Kou, H. Zhuang, and S. Tang, ‘‘Stereo matching algorithm
based on HSV color space and improved census transform,’’ Math. Prob-
lems Eng., vol. 2021, pp. 1–17, Jul. 2021.

[14] C. Ma, X. Hu, J. Xiao, H. Du, and G. Zhang, ‘‘Improved ORB algorithm
using three-patch method and local gray difference,’’ Sensors, vol. 20,
no. 4, p. 975, Feb. 2020.

[15] Z. Yan, H. Wang, Q. Ning, and Y. Lu, ‘‘Robust image matching based on
image feature and depth information fusion,’’ Machines, vol. 10, no. 6,
p. 456, Jun. 2022.

[16] M. Muja and D. G. Lowe, ‘‘Fast approximate nearest neighbors with auto-
matic algorithm configuration,’’ in Proc. Int. Conf. Comput. Vis. Theory
Appl., vol. 2, Feb. 2009, pp. 331–340.

[17] M. Muja and D. G. Lowe, ‘‘Scalable nearest neighbor algorithms for high
dimensional data,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11,
pp. 2227–2240, Nov. 2014.

[18] J. Bian,W. Lin, Y.Matsushita, S. Yeung, T. Nguyen, andM.Cheng, ‘‘GMS:
Grid-based motion statistics for fast, ultra-robust feature correspondence,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 2828–2837.

[19] S. Kumar, N. Kumar, and K. Alam, ‘‘A nonlinear anisotropic diffu-
sion equation for image restoration with forward-backward diffusivities,’’
Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents Electr. Elec-
tron. Eng.), vol. 14, no. 4, pp. 428–434, Jun. 2021.

[20] R. Taranco, J.-M. Arnau, and A. González, ‘‘LOCATOR: Low-power ORB
accelerator for autonomous cars,’’ J. Parallel Distrib. Comput., vol. 174,
pp. 32–45, Apr. 2023.

[21] S. Li, Q. Wang, and J. Li, ‘‘Improved ORB matching algorithm based
on adaptive threshold,’’ J. Phys., Conf. Ser., vol. 1871, no. 1, Apr. 2021,
Art. no. 012151.

[22] G. Babu and P. A. Khayum, ‘‘Elephant herding with whale optimization
enabled ORB features and CNN for Iris recognition,’’ Multimedia Tools
Appl., vol. 81, no. 4, pp. 5761–5794, Feb. 2022.

[23] G. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo,
and L. Zhang, ‘‘DOTA: A large-scale dataset for object detection in
aerial images,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 3974–3983.

[24] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘‘Vision meets robotics:
The KITTI dataset,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
Sep. 2013.

CHENGXIAN YAO received the bachelor’s and
master’s degrees in engineering from the Shanghai
University of Engineering Science. He is currently
focused on developing feature matching algo-
rithms to improve image processing and feature
matching performance in complex environments,
with applications in industrial automation and
autonomous driving. His research interests include
machine vision, image processing, and feature
matching.

HAIFENG ZHANG received the bachelor’s degree
in computer science and technology and the mas-
ter’s degree in computer application technology
from Chang’an University, in 2000 and 2004,
respectively, and the Ph.D. degree in control
science and engineering from Xi’an Jiaotong Uni-
versity, in 2007. From 2017 to 2018, he was a
Visiting Scholar with the Department of Elec-
trical and Computer Engineering, Kansas State
University. He is currently an Associate Professor

with the School of Mechanical and Automotive Engineering, Shanghai
University of Engineering Science, specializes in machine vision technology
and applications, and image processing. He has led several research projects,
including visual inspection of brake joint appearance, design of an automatic
internal thread appearance inspection and control systems, and development
of a visual inspection and control system for plug-in quick installation
plates. His research results have been published in various domestic and
international journals.

JIA ZHU received the B.E. degree from the
Shanghai University of Engineering Science,
in 2020, where she is currently pursuing the mas-
ter’s degree. Her research interests include the
development of algorithms and software for com-
puter vision, image processing, and measurement
and control systems. Her research aims to improve
the accuracy and efficiency of computer vision
and image processing systems, with applications
in fields such as robotics, automation, and medical
imaging.

DIQING FAN received the master’s degree in
mechanical design and theory from Shanghai
Ocean University, in 2006. From 1998 to 2003,
he was a Technical and Quality Supervisor with
companies, such as Zhuhai Dongda Group Com-
pany Ltd. and Shanghai Science Atlanta Company
Ltd. As the project leader, he completed the ‘‘Auto-
matic Detection Equipment for Square Joint Seal-
ing Surface,’’ applied for five invention patents,
authorized one patent, and authored one textbook.

He is skilled in the development of automation assembly, processing and
testing equipment, and intelligent equipment. His research interests include
mechanical and electrical control systems and engineering, and machine
vision.

YU FANG received the Ph.D. degree inmechanical
manufacturing and automation from the Harbin
Institute of Technology, in 2006. He conducted
Postdoctoral Research with the School ofMechan-
ical Engineering, Donghua University, in 2006.
Since 2008, he has been with the Shanghai Univer-
sity of Engineering Science, where he is currently
the Vice Dean of the Urban Rail Transit Col-
lege, the Director of the Academic Affairs Office,
the Research Office, and the Technology Transfer

Center, and the Dean of the School of Mechanical and Automotive Engi-
neering. His main research interests include special robots and intelligent
equipment, machine vision, and image detection.

LIN TANG is currently pursuing the Bachelor of
Engineer degree from Xi’an Jiaotong University.
Her current major is automation, and her research
interests include computer vision, image process-
ing, machine learning and so on.

63820 VOLUME 11, 2023


