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ABSTRACT Accurate location of characteristic points in wearable ECG signals may be a challenge due to
the high noise. Taking the time sequence of waveforms and missing waveforms into account, we design a
location regression network ECG_SCRNet, combined with the sequential constraints to accurately identify
characteristic points of wearable ECGs. We add a classification head to determine whether there is a
P-wave or a T-wave missing. This architecture ensures that the network considers both the time sequence of
physiological waveform and class information to improve the accuracy in locating characteristic points. The
proposed ECG_SCRNet was evaluated on a wearable dataset and the LUDB, achieving highly accurate
results compared to other state-of-the-art methods. On the wearable dataset, the average Sen, PPV and
Flscore are 97.13%, 99.96%, and 99.51%. On the LUDB, the average Sen, PPV and FI score are 96.86%,
99.83%, and 98.97%. These results demonstrate that the proposed ECG_SCRNet has good flexibility and
reliability when applied to signal characteristic point detection, and it is a reliable method for analyzing ECG
signals in real time.

INDEX TERMS Wearable ECG, ECG characteristic points, heartbeat segmentation, CNN.

I. INTRODUCTION

Analysis of electrocardiogram (ECG) signals is one of the
most important steps in the diagnosis of cardiac disorders [1].
Usually, cardiologists perform a visual inspection of the
ECG in order to diagnose a patient, interpreting poten-
tial pathological deviations in the waveform. ECG signal
characteristic points detection is the process of identify-
ing characteristic points, such as onsets, peaks, and offsets
of different ECG waveforms. Figure 1 shows an idealized
ECG heartbeat with waves labeled including P, QRS and
T-wave. Characteristic points detection can be performed
directly on all available leads (multi-lead) or individual leads
(sing]e_lead). In order to achieve hlgh diagnostic performance FIGURE 1. Idealized ECG heartbeat with characteristic points of different
almost all the ECG analysis tools/software require informa- segment waveforms (P-QRS-T).

tion about the location and morphology of different segment
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waveforms (P-QRS-T) in ECG records. Wave segmentation
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and the segments in between can be derived and used for
diagnostics.

In recent years, the advances in wearable technologies [2]
and digital signal processing technologies have enabled the
remote continuous monitoring of ECGs and human physical
activities during daily life. There is an increasing demand for
automatic applications working on wearable ECGs. Different
from the ECG signal collected by the traditional electrocar-
diograph, various noise types that occupy the frequency band
of the ECG signals, such as electromyogram (EMG) inter-
ference and motion artifacts, are simultaneously recorded by
wearable devices. There are also human factors, such as the
user’s improper operation, which will also produce a heavy
interference to the ECGs. Therefore, how to perform accurate
and rapid detection in the presence of so much noise has
become the focus of this research.

There are many methods to detect the characteristic
points of ECG automatically. Digital signal processing algo-
rithms using the wavelet transform and rule-based adaptive
thresholds are often cited as state-of-the-art for ECG detec-
tion [3], [4], [5], reaching high precision and recall for
the P, QRS and T waves. However, these methods require
laborious rule adaptation when extended to morphologies
outside the development dataset; moreover, these algo-
rithms depend on the dataset. Their performance will be
degraded as the dataset changed, and compromise their
generalization.

Deep learning methods often show significant improve-
ments in supervision tasks with respect to classical methods
and can be successfully used to improve and automate heavy
tasks in the field of medicine if sufficient training data
are available [6]. Therefore, some deep learning methods
have been applied to the classification of ECG signals to
obtain detection results. The commonly used method is to
use the encoder-decoder structure, like U-net [7], [8], [9],
[10], [11], for waveform segmentation. Sodman et al. [12]
utilized a novel convolutional neural network (CNN) with
different kernel sizes for automatic P-waves, QRS complexes,
and T-waves annotation on the QT database, which was
comparable in performance to other state-of-the-art methods.
Malali et al. [13] and Nurmaini et al. [14] used bidirectional
long short-term memory (BiLSTM) network to classify ECG
waveforms into three categories (P-waves, QRS complexes,
and T-waves) and achieved an acceptable performance.
Peimankar et al. [15] developed a CNN-2BiLSTM network
for characteristic point detection of P-waves, QRS com-
plexes, T-waves, and No waves (NW). This experiment indi-
cated that combining CNN with LSTM layers achieved better
performance than models with only CNN or LSTM layers.
Xiaohong Liang et al. [16] proposed a standard dilated con-
volution module (SDCM) into the encoder path enabling the
model to extract more useful ECG signal-informative features
and a BiLSTM to obtain numerous temporal features. The
feature sets of the ECG signals at each level in the encoder
path were connected to the decoder part for multi-scale
decoding to mitigate the information loss caused by the
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pooling operation in the encoding process. However, these
methods are applicable to routine ECGs collected at rest
rather than wearable ECGs, which are often heavily affected
by noise interference. And few studies have taken the time
sequence of various waveforms into consideration. There-
fore, using the aforementioned method to detect wearable
ECG signals directly could result in detection errors that
significantly impact the final index calculation. Furthermore,
the method may perform poorly if a signal misses a P-wave
or T-wave.

To solve these problems, we proposed a novel network,
named as ECG_SCRNet, to detect wearable ECG signal
characteristic points, which considers the time sequence of
waveforms and utilizes a location regression architecture.
This method can accurately detect the onsets and offsets of P,
QRS complex, and T-waves. The main contributions of our
methods are as follows:

(1) We propose an ECG signal characteristic points detec-
tion network based on directly predicting the location
of waveforms that can reduce the parameters of the
model.

(2) We consider the time sequence of waveforms to the
detection results, a sequential constraint regression
(SC-Regression) module is proposed to improve the
accuracy of predictions.

(3) The proposed classification head is to predict whether
there is the absence of waveform to assist the detection
of waveform missing signals.

The rest of this paper is organized as follows: the methods
and details of our network are introduced in Section II. The
experimental results and discussion are given in Section III.
Section IV is the discussion part. Finally, the conclusion is
drawn in Section V.

Il. MATERIALS AND METHODS

A. MATERIALS

In this paper, we utilized two datasets. The first is a private
dataset consisting of ECG signals collected by a wearable
ECG device developed by CardioCloud Medical Technology
(Beijing) Co., LTD. Each signal has a duration of 15 seconds
and a sampling frequency is 500Hz. The wearable 12-lead
ECG dataset contains data from 767 users, covering 6 types of
complex ECG patterns, including ST-segment change (STC),
atrial fibrillation (AF), tachycardia, premature atrial con-
traction (PAC), premature ventricular contraction (PVC) and
bundle branch block (BBB). Figure 2 displays two ECGs with
missing waveform signals. The collected data is labeled by
cardiologists from CardioCloud, which contains the position
information of the starting and ending points of the P-wave,
QRS complex and T-wave, as well as the R-wave peak.
The signals are segmented into heartbeats using the R-wave
peaks and are reshaped to the same length. We obtained
a total of 4190 heartbeats, of which 759 are missing the
P-wave and 80 are missing the T-wave. The last heartbeat of
each piece of data is used as the test set, and the remaining
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FIGURE 2. Two example ECG signals of the wearable dataset. Left shows the ECG of a patient with tachycardia without a significant P-wave. Right shows
the ECG of a patient with AF and other arrhythmia symptoms, which P-wave and T-wave, which both P-wave and T-wave are not significant.
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FIGURE 3. Flowchart of the proposed method. The input is 12-lead signal and only one lead is shown. The middle part displays the detailed composition
of the ECG_SCRNet, which consists of a CNN encoder, a classification head and a regression head. Res-block means residual block and SC-Regression is

the sequential constraint regression.

TABLE 1. Number of heartbeats for four waveforms in the wearable ECG
dataset.

Normal P-‘wz'lve T-‘wilve Only Total
missing  missing QRS
Training set 2768 593 50 12 3423
Test set 600 149 13 5 767
Total 3368 742 63 17 4190

heartbeats are used as the training set. The distribution of the
records is shown in Table 1. To address noise interference
in the wearable ECG data, we use various data amplifi-
cation strategies, including random shielding, random lead
shielding, and random lead flipping, to amplify the training
set. Additionally, the data is normalized using the mean and
standard deviation calculated over the entire dataset before
being fed into the network for training.

The other dataset is the Lobachevsky University
Database (LUDB) [17] established by Lobachevsky Uni-
versity, containing 200 pieces of ECG data from different
subjects. The signal duration for each piece of data is
10 seconds, and the sampling frequency is 500Hz. Each lead
of the ECG data in LUDB has markers including P, QRS,
and T waves, and we select the marker on lead II as the label
information.
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For the neural network input, we used 12-lead ECG data,
which were band-pass filtered using a fifth-order bandpass
filter with a frequency range of 0.05-35Hz. This filter was
used to remove baseline drift, power frequency interference,
and other high-frequency noise, which could interfere with
accurate analysis of the ECG data

B. METHODS
The proposed method for detecting characteristic points in
ECG signals is illustrated in Figure 3. Initially, a 12-lead ECG
signal is taken as input and segmented into individual heart-
beats using an R-peak detection algorithm. These heartbeats
are then fed into a neural network that has been designed to
identify the locations of the P, QRS, and T-waves within the
ECG signal, as well as to classify the type of heartbeat.
After obtaining the initial locations of the characteristic
points, the results of the classification are used to modify
these locations as necessary. This is done to account for
any variations in the ECG signal that may be caused by
different types of heartbeats, such as arrhythmias or other
abnormalities.

1) HEARTBEAT SEGMENTATION
In our proposed method for ECG signal analysis, we first
segment the ECG signal into individual heartbeats. To achieve

63489



IEEE Access

Z. Wang et al.: Deep Regression Network With Sequential Constraint for Wearable ECG Characteristic Point Location

One complete
heartbeat

Ri+1

FIGURE 4. Diagrammatic representation of the proposed heartbeat
segmentation strategy.

this, we define what constitutes a complete heartbeat and then
use a segmentation algorithm to identify the start and end
points of each heartbeat.

Unlike other segmentation methods that rely on physio-
logical features, we prefer to use morphological features to
segment the ECG signal. As shown in Figure 4, we directly
extract the signal between two consecutive R-peaks as a
single heartbeat, ensuring that there is no overlap between
adjacent heartbeats. A complete heartbeat is defined as a set
of sample points between two consecutive R-peaks, denoted
as R; and R;;1, where R; is the i-th R-peak. The advantage
of such processing is that it ensures that there is only one
characteristic point of each type within a heartbeat. We use a
R-peaks detection method called HA-UNet, which was pro-
posed by Tan et al. [18]. This method is based on a wearable
ECG signals R-peaks detection network, which takes into
account the characteristic features of individual heartbeats
when detecting R-peaks.

By using a combination of our novel heartbeat segmenta-
tion strategy and the HA-UNet R-peaks detection method,
we are able to accurately and efficiently detect individual
heartbeats from the ECG signal, which is an essential step
in our overall approach to ECG signal analysis.

2) NETWORK ARCHITECTURE

A multi-task learning framework [19] is used to address
two tasks simultaneously, a classification task to determine
whether there is a lack of waveform, and a regression task,
which can directly map an input to locations.

The middle part of Figure 3 gives the architecture of
the ECG_SCRNet. The encoding structure consists of a
1D Resnet backbone, which contains a Conv-modules (a con-
volutional layer, a batch normalization layer, and a ReLU
activation layer), a max pooling layer and four residual
blocks. The architecture of the residual block is also shown
in Figure 3. The classification head is composed of a
Conv-module and a fully connected layer, which classifies
segmentations into four classes: normal, P-wave missing,
T-wave missing and only QRS. For the regression head, after
a Conv-module, we use an average pooling layer to average
the feature maps. Then, a convolutional layer and a fully
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connected layer are used to predict the intervals of each
point. Finally, the proposed sequential constraint regression
(SC-Regression) module is used to obtain the final locations
of every waveform.

The final loss function is defined as following:

Lotai = Leis + A(lee + LLoc) (1)

where L is the loss function for the classification task, Lz
represent the loss for the interval, Ly, is for the location
and A is the weight of two tasks, which is automatically
determined by the size of the parameters for each head [20].

Although there are 780 heartbeats missing P-wave, this
is a relatively small fraction of the total number of normal
heartbeats, and there are even fewer T-waves missing. There-
fore, to account for the imbalanced data, we have chosen to
use Focal loss [21] as the loss function, which is shown as
following:

Leg = —a(1 — p)"log(pr) @

where o equalizes the positive and negative samples, y is
a hyperparameter which is set as two. This will allow us to
place greater emphasis on correctly classifying the minority
class (i.e., the heartbeats with missing P-waves) and reduce
the impact of the majority class (i.e., the normal heartbeats)
on the model’s training. Overall, this should help to improve
the model’s performance in detecting heartbeats with missing
P-waves, despite the imbalanced nature of the data. The loss
function of Ly, and L, is to calculate the mean absolute
error (MAE) between the prediction and truth of the interval
and location.

3) SEQUENTIAL CONSTRAINT
The regression head of our proposed method is responsible
for determining the start and end points of the different wave-
forms in each heartbeat. However, because there is a certain
sequence to the appearance of waveforms within a heartbeat,
directly regressing the locations can lead to errors in the
sequence of points due to the presence of noise in the ECG
signal. For example, the P-onset point may be incorrectly
detected between the T-onset and T-offset points.

To address this issue, we proposed a sequential constraint
regression (SC-Regression) method, which the location can
be calculate as following:

1 1 1
o 1 .
Lioe = Softmax(Lyyze) X ) 3)
: |
o --- 0 1

For the regression task, we first calculate the interval between
two adjacent points Lp,.. A Softmax activation layer is
then applied to ensure that the interval is greater than zero.
We then multiply Lj,. by a matrix in the formula above. This
is achieved by summing the intervals separately to reflect
the position of different waveform points while maintain-
ing the natural time sequence. In other words, the output is
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determined by the sum of interval, ensuring that the result-
ing sequence of points is in an increasing state. Ly, =
[x1,x2,...,x,] is the interval set and the final locations
Lioe = [x1,x1 + x2, ..., > x,]. If the signal is lack of
waveform, for example the P-wave is missing, we define that
the P-wave is fused with the T-wave. The interval between
T-offset and P-onset is zero. Similarly, the interval between
P-onset and P-offset is zero and the location of P-onset and
P-offset is equal to the location of T-offset.

However, if we sum the interval directly, the error of the
lower point would be larger due to the accumulated error.
Therefore, for the activation function, we choose Softmax
activation, which is defined as following:

C
Xlnte_pred =Y Z e “4)
c=1

where z; means the i-th prediction of interval and C is
the number of the interval. After exponential transformation
of interval, it will be greater than zero and the difference
between each interval is increased. Moreover, the sum of all
values is one, avoiding the influence of accumulated error and
making the result more in line with the actual situation.

lll. EXPERIMENTAL RESULT

A. EVALUATION METRICS

In this study, sensitivity (Sen), positive prediction value
(PPV), and F1-score (FI) were used to evaluate the detection
performance of the model for P, QRS, and T-waves. These
metrics are defined as follows:

Sen = ——— x 100% (@)
TP + FN
PPV = —— x 100% 6)
TP + FP
2 x Sen x PPV
Fl=—— x100% @)
Sen + PPV

where TP is true positive, FP indicates false positive, and
FN is false negative. According to the recommendation of
the Association for the Advancement of Medical Instru-
mentation (AAMI) [22], [23], [24], when the heart rate is
70 beats per minute, if the absolute deviation between the
algorithm detection result and the doctor’s annotation is no
more than 150ms, the algorithm detection result is considered
correct. If the predicted value is within 150ms of the true
value the doctor annotated, the result will be marked as a
true positive (TP). Otherwise, the result is marked as a false
positive (FP). If the algorithm fails to detect within the range
of the doctor’s annotation, the result will be marked as a false
negative (FN). We get a better performance when the FP and
TP are closer to zero.

B. EXPERIMENTAL SETUP

The experiments were implemented in Python and the deep
learning framework was Pytorch. The optimizer chosen for
model training was Adam. The batch size was set to 512 and
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TABLE 2. Detection performance of P, QRS, and T characteristic points on
wearable ECG dataset.

TP FN FP Sen(%) PPV(%) FI1(%)
Ponset 600 7 28  99.85 95.54 97.17
Poffset 599 7 29  98.84 95.38 97.08

QRSonset 766 0 1 100 99.87 99.93

QRSoffset 767 0 0 100 100 100
Tonset 752 1 4 99.87 99.47 99.67
Toffset 747 1 9 99.87 99.81 99.34

TABLE 3. Detection performance of P, QRS, and T characteristic points
on LUDB.

TP FN FP Sen(%) PPV (%) FI1(%)
Ponset 1127 31 40 9732 96.57 96.95
Poffset 1123 31 44 9731 96.23 96.77
QRSonset 1422 0 10 100 99.30 99.65
QRSoffset 1432 0 0 100 100 100
Tonset 1417 6 7 99.58 99.51 98.54
Toffset 1413 6 11 99.58 99.23 99.40

the total number of epochs was set to 2000. The initial learn-
ing rate was set to 0.0001, and the learning rate was adjusted
using a cosine annealing strategy.

C. RESULTS

Table 2 displays the performance of the P, QRS, and T-waves
onset and offset on wearable ECG dataset. The total number
of P, QRS, and T-waves are 635, 767 and 757, with the respec-
tive TP for P-onset, P-offset, QRS-onset, QRS-offset, T-onset
and T-offset being 600, 599, 766, 767, 752 and 747. The
average Sen, PPV and F1 of the three waveforms are 97.13%,
99.96%, and 99.51%. The performance obtained for QRS
complex is better, followed by T-wave and P-wave. To bet-
ter verify the effectiveness of the proposed ECG_SCRNet,
we also conduct experiments of the data on the LUDB.
Table 3 displays the performance of the P, QRS, and T-waves
onset and offset on the LUDB. The total number of P, QRS,
and T-waves are 1198, 1432 and 1430, with the respective
TP for P-onset, P-offset, QRS-onset, QRS-offset, T-onset
and T-offset being 1127, 1123, 1422, 1432, 1417 and 1414.
The average Sen, PPV and FI of the three waveforms are
96.86%, 99.83%, and 98.97%. Likewise, our ECG_SCRNet
gets best performance on QRS complex, followed by T-wave
and P-wave.

D. ABLATION STUDY

To validate the effectiveness of our ECG_SCRNet, we con-
ducted an ablation study on the wearable dataset. Figure 5
and Table 4 show the different configurations of experiments
that we performed to verify the efficacy of our method.
Table 4 provides the details of the different configurations
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TABLE 4. The average P, QRS and T-wave F1-score of different configurations on the wearable dataset.

Activation SC- Classification F1 (%)
Sigmoid Softmax Regression Head P QRS T
Conf. A v v 94.92 98.61 95.68
Conf. B v v v 96.37 98.75 96.49
Conf. C 4 v 95.91 99.23 96.02
Conf. D v v v 97.13 99.96 99.51
100 TABLE 5. Detection performance of P, QRS, and T characteristic points on
wearable ECG dataset with a tolerance window interval of 50ms.
99 z
98 = £ z 1 TP FN FP Sen(%) PPV(%) FI (%)
o7 I I I " Sen Ponset 570 7 58  98.79 90.76 94.61
96 PRV Poffset 587 7 41 9882 93.47 96.01
95 Fl QRS onset 764 0 3 100 99.61 99.80
94 QRS offset 764 0 3 100 97.61 99.80
A B ¢ b Tonset 694 1 62  99.86 91.80 95.66
Different Configurations Toffset 699 1 60  99.86 92.06 95.80

FIGURE 5. The detection performance of various configurations on the
wearable dataset.

and the average performance for P, QRS and T-wave. Figure 5
demonstrates the overall average performance.

The result demonstrates that our ECG_SCRNet (Conf. D)
achieves the best average performance. Specifically, when
compared to configurations of A, B and D, the best results
are obtained when we use SC-regression and the Softmax
activation layer. Furthermore, the results obtained with the
classification head are better than those obtained without
classification head, as seen when comparing Conf. C and
Conf. D. It is also noteworthy that the best performance
was achieved for the QRS complex, followed by the T and
P-waves. Thus, our ECG_SCRNet is particularly effective in
accurately locating the points of the QRS complex. Overall,
the ablation study confirms the validity of ECG_SCRNet,
and the results demonstrate that our ECG_SCRNet is more
effective in accurately detecting the QRS complex, as well as
the P and T-waves.

IV. DISCUSSION

In this study, we focus on signals that lacked some waveforms
and consider the time sequence of waveforms to propose
a novel ECG signal characteristic points located network
(ECG_SCRNet) used the sequential constraint regression,
matching a novel heartbeat segmentation strategy. Our pro-
posed method was verified using two datasets. As seen
in Figure 5, the addition of SC-regression and the Softmax
activation layer resulted in improved results. Furthermore,
the simple multi-task learning structure is found to improve
the predictions compared to Conf. C, which do not include
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TABLE 6. Detection performance of P, QRS, and T characteristic points on
LUDB with a tolerance window interval of 50ms.

TP FN FP Sen (%) PPV (%) F1 (%)
P onset 1083 31 84 97.22 92.80 94.96
P offset 1080 31 87 97.21 92.54 94.82
QRS onset 1401 0 31 100 97.83 98.91
QRS offset 1414 0 18 100 98.74 99.37
T onset 1378 6 46 99.57 96.77 98.15
T offset 1391 6 33 99.57 97.68 98.62

a classification head. Table 3 demonstrated a better perfor-
mance when LUDB data was not included in the training set,
indicating that our method has good generalization.

Figure 6 (a)-(d) show the delineation result of different
signals according to the points we detected. In Figure 6(a),
the P-wave is missing in some heartbeats. Figure 6 (b) and
Figure 6 (c) show performance for a noise level signal. While
in Figure 6 (d), there is only QRS complex. The results are
close to the doctor’s annotation position and our proposed
method can cope with data of various complex situations.

However, the tolerance window interval of 150ms is too
loose for actual demand. Therefore, we reduced the tolerance
to 50ms. Table 5 and Table 6 show the performance at the
tolerance window interval of 50ms. Although we use a stricter
tolerance, the result show better performance. The average
Sen, PPV and F1 are 99.56%, 94.21% and 96.95% on the
wearable ECG dataset and 98.93%, 96.06% and 97.47%
on LUDB.
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FIGURE 6. The heartbeat segmentation results of the wearable dataset. The blue part represents P-wave, the red part represents QRS complex and the

green part represents T-wave.

TABLE 7. F1-score (%) of various methods on the wearable ECG dataset.

Methods P onset P offset QRS onset QRS offset T onset T offset
UNet [7] 93.69 94.45 98.89 98.94 96.98 96.40
3-UNet cascade [25] 94.42 95.28 97.56 98,42 97.10 97.71
3CNN_2BiLSTM [15] 92.27 93.56 94.77 96.80 94.40 94.66
ECG_SegNet [16] 95.82 95.76 98.40 98.69 97.83 97.70
ECG_SCRNet (Ours) 97.17 97.08 99.93 100 99.67 99.34
TABLE 8. F1-score (%) of various methods on LUDB.
Methods P onset P offset QRS onset QRS offset T onset T offset
UNet [7] 92.70 98.83 97.86 97.81 97.01 96.15
3-UNet cascade [25] 93.37 93.60 98.82 98.82 97.18 95.46
3CNN_2BiLSTM [15] 91.45 94.44 94.31 94.56 95.40 94.50
ECG_SegNet [16] 94.72 94.76 98.89 98.86 97.91 97.15
ECG_SCRNet (Ours) 96.95 96.76 99.63 99.59 98.54 99.38

To further verify the validity of our method, we also eval-
uated it against other state-of-the-art methods. Table 7 and
Table 8 display the P, QRS and T waveforms detection F/ on
the two datasets. As seen in Table 7 and Table 8, our method
is superior to the other models for the three waveforms.
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Figure 7 and Figure 8 show the average F/ at different tol-
erance windows. Our method also obtains good results under
different tolerance windows.

In summary, we used quantitative analysis to compare our
method to other advanced models and found that our method
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FIGURE 7. The average F1-score (%) of various methods with different
tolerance windows on the wearable ECG dataset. *P < 0.05, **P < 0.01 vs
ours.
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FIGURE 8. The average F1-score (%) of various methods with different
tolerance windows on LUDB. *P < 0.05, **P < 0.01 vs ours.

yielded the best results on both datasets. Currently few wear-
able signal-based methods have been applied to the medical
domain. By using a combination of neural network analysis
and post-processing techniques, the proposed method is able
to accurately and reliably detect the characteristic points of
ECG signals, even in the presence of noise or other signal arti-
facts. This can be a valuable tool for clinicians and researchers
working in the field of cardiology, as it allows them to quickly
and accurately analyze ECG data and diagnose potential
cardiac conditions.

However, the proposed method has three main limita-
tions. First, we only labeled 767 signals chosen from various
forms that we can’t ensure that it contains all kinds of sig-
nals. As we known, deep learning is data-driven. If there
is lack of the related data, the model will show a worse
performance. Second, our method is highly dependent on
the R-peaks detection algorithm. If the R-peaks in an ECG
signal can’t detect well, it will have a great impact on the
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signal segmentation and then affect on the result of other
waveforms. Third, because our method is basing on the time
sequence of the waveforms and there are few signals which
the waveforms would make a cross. This is contrary to our
method that our method can’t perform well.

In future studies, there are three limitations that need
to be addressed. First, we need to work with clinicians to
expand the dataset in order to increase the diversity of ECG
signals. Second, we can incorporate effective data augmen-
tation techniques to further improve the diversity of data or
utilize unlabeled ECG signals to develop semi-supervised
or unsupervised methods. Finally, we need to consider a
more comprehensive strategy to eliminate the dependence
on R-peaks detection and to handle all forms of signals.
By addressing these limitations, we can further improve the
performance and applicability of the proposed method.

V. CONCLUSION

Deep learning techniques have demonstrated improved per-
formance over classical approaches for supervised tasks when
provided with sufficient training data. One of the most chal-
lenging tasks in analyzing ECG waveforms is the accurate
detection of the P, QRS, and T waves. In this paper, a deep
learning approach was proposed that utilized a sequential
constraint regression algorithm to directly predict the location
of these three waveforms. By combining waveform classifi-
cation with onset and offset prediction, the trained model was
able to accurately determine the location of the waves. The
model was then tested on two different test sets to evaluate its
performance. The results showed that the proposed method
performed well on both sets, with the F1 score of 99.51%
and 98.97% on the wearable ECG dataset and the LUDB. The
QRS complex showed the best performance followed by the
P and T waves. These experimental results demonstrate that
the proposed approach is feasible for analyzing all kinds of
ECG signals.
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