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ABSTRACT Accurate and efficient detection for target crops is crucial to develop intelligent agriculture.
A great deal of studies have been devoted to improving the accuracy and efficiency of detection algorithms,
but the increasing requirement of computing power makes them particularly difficult to implement on
embedded devices. Although some methods have been proposed to accelerate inference by lightening the
weights of the algorithms after training, the huge computing power requirements of the algorithms are still
a problem. In this paper, an improved lightweight parameters network with lightweight designed backbone
and neck by grouped convolution is proposed, which also integrates convolutional (Conv) layers and Batch
Normalization (BN) layers to accelerate inference. The experiments in this paper utilize the Strawberry
Flower Detection dataset, Tomato dataset, Wind Turbine Detection dataset, and VOC2007 dataset to verify
performances of the proposed network. And the results show that the computational cost, the number of
parameters, memory footprint and inference time of the improved model are all reduced, while the mean
Average Precision(mAP) is increased comparing with the baseline algorithm. Furthermore, the detection
performances of the proposed algorithm implemented on Jetson Nano platform indicate it is suitable to be
deployed in practical scenarios, especially for embedded platforms with limited computing power.

INDEX TERMS Lightweight, grouped convolution, real-time detection, embedded platforms.

I. INTRODUCTION

Although computer vision technology has been applied
everywhere in people’s life, to decode image information as
fast and accurately as person do is still a tricky problem [1].
Particularly, object detection is the most important and chal-
lenging part, which aims to classify and localize objects in
images or videos [2], [3]. Fast and accurate object detec-
tion is essential for the smooth advancement of downstream
tasks, such as using robots to pollinate strawberry flowers.
Achieving the rapid and accurate detection of strawberry
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flowers is indispensable for yield estimation and development
of pollination robots [4], [5].

From the VJ Det(Viola-Jones Face Detector) based manual
features to the YOLO(You Only Look Once) series based
deep learning, object detection continues to develop rapidly
and deeply. And, detection algorithms with higher accu-
racy are constantly proposed by research institutions and
universities [6]. However, the computing power demand is
huge for both traditional algorithms and deep learning-based
algorithms, which means that dedicated large computing
devices are needed. And that is extremely unfriendly to
UAVs (Unmanned Aerial Vehicles) or mobile robots with
restricted load [7]. The computing devices equipped with
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mobile devices are so lacking in computing power that cannot
match the requiring of high-precision detection algorithms.
In addition, overload computing shortens the lifetime of
mobile devices significantly. Therefore, algorithms with high
accuracy and low arithmetic power requirements are indis-
pensable for mobile devices.

Although the problem of computing power demand in the
object detection domain is still not completely solved, a large
amount of outstanding works have made good progress.
The field of traditional object detection based on manual
features, from VJ Det to DPM (Deformable Parts Model),
has seen an obvious improvement in detection speed and
accuracy [8]. With the CNN (Convolutional Neural Network)
making a splash in the field of computer vision, a lot of works
have started to apply it to improve the efficiency of object
detection. From RCNN to YOLO, the detection speed and
accuracy have made a qualitative leap compared to traditional
algorithms [9].

Despite the good progress made by a large amount of
excellent works, the current field of object detection still has
the following problems:

1) Some works only focused on improving the detection
accuracy of the algorithm but ignored the algorithm’s
computing power requirement, which resulted in the
algorithm not being successfully applied to embedded
devices.

2) Some works ignored the algorithm’s huge parameter
that is the root cause of the huge computing power
requirement. They only used pruning, quantization or
other methods to lightweight the weight after training,
which would decrease the detection accuracy.

In order to solve the above problems, our works aim to
reduce the huge number of parameters brought by the bloated
backbone of general object detection networks. A lightweight
backbone with the VGG (Visual Geometry Group) paradigm
is designed, which is simple enough to make the network
lightweight and efficient [10]. In addition, to increase the sen-
sitivity of the algorithm, an improved PAN (Path Aggregation
Network) architecture is deployed as the neck of the detection
network, which used skip-layer connections to transfer the
strong localization information from the shallow layer to deep
layer [11]. Both the backbone and neck use grouped convo-
lution for calculation, which further reduced the parameters
to accelerate the speed of training and inference [12]. After
the network training with the above methods, the Conv layers
and BN layers are further integrated to reduce the memory
footprint of intermediate variables during the computation
to accelerate the inference. The network is implemented on
embedded device to verify the feasibility, and the experimen-
tal results demonstrate that the work of this paper have both
highly accurate and efficient on embedded devices.

The contributions of our work are summarized as follows:

1) Under the premise of accuracy, a lightweight back-
bone with low parameters based on group convolution
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is designed, which ensures the running speed of the
algorithm.

2) To improve the sensitivity of the algorithm to the object
position information, the neck of the network based on
PAN structures is improved through group convolution
and skip-layer connection.

3) Conv layers and BN layers are integrated to reduce
memory footprint and accelerate inference.

4) The algorithm is deployed on an embedded device and
compared with state-of-the-art methods to verify the
feasibility and practicability of our work.

Il. RELATED WORK

Due to the characteristics of contactless and noninvasive,
computer vision is widely used for crop detection consider-
ing the advantage of protecting delicate plants, particularly
fruits and flowers. In this section, a brief review of existing
researches on crop detection based on traditional methods and
deep learning methods is presented.

A. TRADITIONAL METHODS

Li et al. [13] used computer vision and support vector
machine (SVM) to simultaneously segment the fruits and
branches, and then acquired a recognition rate of 92.4% for
citrus fruits. Kurtulmus et al. [14] detected immature peach
fruits in natural environment using statistical classifiers and
neural network, then 84.6%, 77.9% and 71.2% of the actual
fruits were successfully detected using three different image
scanning methods. Bulanon et al. [15] achieved an accuracy
of 84.3% while monitor flowers using 20 hyperspectral aerial
images which are sensitive to light. McCarthy et al. [16] iden-
tified the maize flowering status based on color segmentation
and shape analysis using the images captured by infield
low-cost fixed cameras. Zhou et al. [17] used four cameras
to capture strawberry flowers illuminated with UVA light.
According to the fluorescence of strawberry flower, they
accomplished the flower detection from the captured images
with an accuracy of 90% through the procedures of thresh-
old segmentation, morphological operations and object size
analysis. Nowadays, computer vision has become an indis-
pensable technology in flower detection. However, due to the
poor robustness resulting in a weak adaption of natural envi-
ronments, the traditional computer vision technology is hard
to provide effective information for downstream automated
equipment, such as pollination robot and flower thinning
robot.

B. DEEP LEARNING METHODS

With the development of deep learning and its application in
computer vision, the accuracy of flower detection has begun
to be improved rapidly. Different region-based convolutional
neural network (R-CNN), including the R-CNN, Fast R-CNN
and Faster R-CNN, were used to detect strawberry flowers
in outdoor field in the work of Lin et al. [18]. After trained
by 400 strawberry flower images and tested by another
100 images, the networks acquired the detection accuracies
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FIGURE 1. The architecture of improved backbone network.

of 63.4%, 76.7% and 86.1%, respectively for R-CNN, Fast
R-CNN and Faster R-CNN. With the goal of detecting flow-
ers and optimizing fruit production, Dias et al. [19], [20]
proposed a CNN-based model which is robust to clutter
and changes of illumination by combining both color and
morphological information. Palacios et al. [21] developed a
non-invasive method for grapevine flower counting under
field conditions using a mobile sensing platform at a speed of
5 km/h to automatically capture RGB images. Tian et al. [22]
proposed a Mask Scoring R-CNN with a U-Net backbone
(MASU R-CNN) model to detect and segment apple flowers
in different growth stages: bud, semi-open and fully open,
resulting in the precision, recall and Fi-score are 96.43%,
95.37% and 95.90%, respectively. Lietal. [23] detected
kiwi fruit flowers using the original YOLO v4 algorithm,
and achieved a mean average precision (mAP) of 97.61%.
In order to detect apple flowers accurately, Wu et al. [24]
proposed a channel pruning-based YOLO v4 deep learning
algorithm, which has an inference time of 0.046 second and
a mAP of 97.31% after trained by apple flowers images
collected manually in natural environments. The detection
accuracy of flowers can be improved greatly through the
methods of computer vision based on deep learning. How-
ever, the deep learning algorithms require huge computing
power, resulting in a low calculation speed and dissocia-
tion from the real-time requirement when deployed in actual
scene, especially for the automated pollination robot in pre-
cision agriculture [25].

In summary, most works did not consider algorithms
implemented on embedded devices, which made it difficult to
apply the algorithm in practical scenarios. Based on the men-
tioned above, an improved lightweight parameters network is
proposed to implement on embedded devices.
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lll. METHODOLOGY

In this section, an improved lightweight parameters network
for strawberry flower detection is proposed. The state-of-the-
art YOLO series are chosen as the baseline to compare the
progress of our work in this paper.

A. STEP 1: BACKBONE NETWORK LIGHTWEIGHT DESIGN
The usage of CSP structure [26] in the backbone network
of YOLO v4(baseline) can greatly reduce the quantity of
computation caused by the repetition of gradient information.
And this not only enhances the learning ability of CNN net-
work, but also eliminates the computational bottleneck and
accelerates the inference speed [26]. The backbone network
in baseline enhances the ability of object detection availably.
However, the computing power required by baseline is still
huge, which makes it difficult to be deployed on platforms
with limited computing power.

In order to obtain a high performance of the algorithm, the
Inception Network with multi-branch structure was proposed
by Google firstly in 2015. It may significantly deepen the
network and enable different convolution kernels to obtain
different receptive fields, resulting in a better prediction
accuracy of the algorithm. Subsequently, CSPDarknet53 also
consists of multi-branch structures which can ensure a higher
accuracy and a faster inference speed than that of Darknet53.
Nevertheless, due to the preservation of the intermediate
computing results in multi-branch structures, the memory
footprint will increase significantly until the multi-channel
fusion occurs. As a result, the backbone network based on
CSPDarknet53 is unfavorable to be deployed on the platforms
with limited computing power.

In view of the reasons mentioned above, the backbone
network of the improved lightweight parameters network is
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FIGURE 2. Schematic diagrams of standard convolution and grouped
convolution.

lightweight designed to reduce the parameters in this paper,
with the aim to obtain a more efficient object detection model.
The lightweight design is mainly referred to the classic clas-
sification networks of VGG and re-parameterization VGG
(Rep-VGG) [10]. The architecture of the backbone network
is shown as Fig. 1.

The main improved strategies of the backbone network are
detailed as below.

1) The topology of VGG is so concise and easy-to-use
to be widely applied in industry and academia. Therefore,
the main part of the backbone network in this paper is also
designed based on VGG-style, in which the output of previous
layer is simply input into the next layer without a large
number of cross-layer branches. This topology could reduce
the memory footprint and ensure the simplicity and efficiency
of the network [27].

2) A convolution network with stride of 2 is used as
the HeadConv. Through the subtraction of excess redundant
information, it can provide different scales of feature maps for
the multi-scale detection tasks of the downstream networks.
It ensures the sensitivity of the algorithm to the objects with
different sizes.

3) In order to increase the receptive field of the network and
ensure the downstream networks to have a perfect detection
accuracy, a 55 convolution branch is added in the BodyConv
on the basis of Rep-VGG network.

To reduce the quantity of computation, the standard con-
volution, as shown in Fig. 2(a), is replaced by grouped
convolution in this paper [12], [28]. The comparison of them
is shown as Fig. 2.

As shown in Figure 2(b), the input feature map is divided
into g groups according to the number of channels to per-
form the convolution calculation in the grouped convolution
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network, followed by the Concat operation. And the grouped
convolution kernels are learned sparsely on the channels
in a block-diagonal structure style. As a result, the con-
volution kernels with higher correlation are learned more
structured, while the lower ones are no longer parameterized.
The numbers of parameters and quantity of computation of
the standard convolution and grouped convolution are shown
in (1)-(2), respectively.

Standard_params = k% x C; x Cy M
Standard_FLOPs = k%> x C; x C2 x W x H
Grouped_params = k% x % X % X g ®
Grouped_FLOPs = k2 x % X % xWxHxg

where, k represents the size of the convolution kernel, C; and
C; respectively represent the number of channels of the input
feature map and output feature map, W and H respectively
represent the width and height of the feature map, while g
represents the number of groups.

Comparing with standard convolution, the grouped convo-
lution not only reduce the number of parameters and quantity
of computation, but also make the convolution kernels learn
more accurately and efficiently in the deep networks with
less overfitting. From this perspective, the performance of the
network with abundant groups will be more appropriate in a
lightweight network. However, the large number of groups
may lead to a significant increasement of the memory access
cost (MAC) and a slow inference speed of the network.
In order to ensure the detection accuracy of the network,
the grouped convolution method is only deployed in the
multi-branch layer part, namely, BodyConv.

B. STEP 2: IMPROVED THE ARCHITECTURE OF PAN AS
NECK

Learning the different scale features of objects is priority for
object detection algorithms, because that the objects usually
have different sizes in the images. The FPN (Feature Pyramid
Network) with the top-down fusion strategy is used as the
neck of YOLO v3 to obtain the feature map with the seman-
tic information in the deep network layers and the texture
information in the shallow network layers [29]. Furthermore,
on the basis of FPN, the neck network of baseline is improved
through the addition of PAN which has a bottom-up fusion
strategy [11]. It makes the neck to be a two-way fusion
network, and enhances the representation capability of the
object detection algorithm.

For mobile platforms with limited computing power, it is
important to have algorithms with low computing power
requirements. The massive standard convolution operations
of PAN may lead to a poor efficiency. Then, grouped con-
volutions are used to substitute them in the neck network
apart from the sampling layer. This strategy may greatly
decrease the number of parameters and calculation amount of
the network. Additionally, the original PAN network focuses
on the fusion of different scales but neglects the information
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transformation from the shallow layer to the deep layer in
the chain link [30]. In order to ensure the deep layers to
acquire the spatial information existed in the shallow layers,
thereupon, the shallow layers and the deep layers in the same
chain link are skip-layer connected for three different scales
links. The comparison of the original PAN network and the
improved PAN network is shown in Fig. 3.

C. STEP 3: INTEGRATION OF CONV LAYERS AND BN
LAYERS

During the training stage of DNN, there is a notoriously phe-
nomenon named internal covariate shift, which can greatly
slow down the learning rate. Internal covariate shift refers to
the fact that the distribution of each layer’s inputs will change
along with the variation of previous layers’ parameters. And
Awais et al. [31] solved this problem to accelerate the train-
ing of DNN by the method of Batch Normalization (BN),
as shown in (3)-(5).

X = yﬂ_,_ﬂ — LXH_(IB_L) 3)
Volie oZ+e€ Vol+e
_! X; “4)
w=— > Xi
2 l L 2
ot = E Xi — ) (5)

where, X; represents the feature map which is the output of
the BN layer, X; represents the i feature map of the batch
acquired by convolution calculation of a certain layer and
1 <i<n;uand o2 represent the mean and variance of the
batch, respectively; y and B represent the scaling factor and
translation factor, respectively; while € represents a constant
that is used to ensure a non-vanishing divisor.

As the 1, 02, y and B are fixed during the inference stage
of the algorithm, we integrated the Conv layers and BN layers
in the inference stage, in order to reduce the internal covariate
shift and thus further improve the inference speed. And the
integration method is shown in (6)-(9).

Xi=wX;+b 6)
Xi=mwX;+b)+n @)
m:y/\/02+6 (8)

n:ﬁ—yu/Vaz—i-e )

where, w represents the weight of the convolution kernel, b
represents the bias, Xj; represents the feature map which is
the output of the previous layer in the network.

After the improvement by the strategies mentioned in
Step 1-Step 3, the improved lightweight parameters net-
work is acquired and its framework could be illustrated as
Fig. 4. Compared with YOLOV4, our work has the following
differences:

1) Our work employs a simple VGG-style network as
the backbone, rather than the usage of CPSDarknet53
backbone in YOLOv4. Considering the decrease of
memory consumption by avoiding the heavy use of skip
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FIGURE 3. Schematic diagrams of original PAN and improved PAN (red
dotted lines represent skip-layer connections). Where, SPP stands for
Spatial Pyramid Pooling; CBL stands for the sequential stack of a
Convolutional layer, a Batch Normalization layer, and a LeakyRelLU
activation function.

connections, our work is more suitable to be deployed
on embedded devices.

2) YOLOv4 uses the PAN structure as its neck, while
our work utilizes an Improved PAN. The Improved
PAN is acquired by adding a small number of skip
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FIGURE 4. The framework of improved lightweight parameters network.

connections on the same branch of the PAN structure.
And then, spatial information can effectively propagate
from shallow layers to deeper ones. This approach is
particularly effective in enhancing the performance of
object detection algorithms on embedded devices.

3) The training and inference processes of YOLOv4
use the same network, while our work integrates the
convolutional and BN layers of the network in the
inference process to improve computational efficiency
and reduce memory footprint.

IV. EXPERIMENTS AND DISCUSSION
A. MATERIALS
1) DATASET GENERATION
The subjects used in this research include three varieties of
strawberry flowers: Mengxiang, Redface and Ssanta. The
images used in this study are collected in a strawberry plan-
tation located in Jiulongpo District, Chongqing, China, using
a simulated view from a mobile robot or UAVs. The images
are photographed by a Xiaomi MI8 mobile phone (Xiaomi
Technologies Co., Ltd, Beijing, China) with a resolution of
3024 pixels (horizontal) x 3024 pixels (vertical). Then, a total
of 2424 images with detection objects are obtained from
2:00 pm to 5:30 pm in April 2022. And all images are
collected in the natural environment of strawberry plantation,
including natural illumination condition, natural growth ori-
entation, natural shielding of leaves against illumination and
flowers overlap.

Subsequently, Labellmg is used to manually label the
strawberry flowers in these 2424 images, and the pistils of
each flower are ensured to be located in the center of the
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TABLE 1. Strawberry Flower Dataset.

Datasets Varieties Number Total

Mengxiang 650

Training set Redface 644 1962
Ssanta 668
Mengxiang 78

Validation set Redface 70 219
Ssanta 71
Mengxiang 80

Test set Redface 78 243
Ssanta 85

TABLE 2. Parameters of the simulation platform.

Hardware Parameters
Mainboard ASUS WSX299 * 1
CPU Intel 19-10940X * 1
RAM KingstonDDR4 16GB * 4
GPU GEFORCE GTX2080 Ti 11GB * 1
Hard disk Kingston 500G * 4

bounding box when labeling. Then, the label files are stored
as x.xml format. 81.00% (1962 images) of the prepared data
set are used as training data for the training of the improved
lightweight parameters network, while 9.00% (219 images)
and 10.00% (243 images) are respectively used to verify and
test the improved lightweight parameters network. The setup
of dataset is shown as Table 1.

2) SIMULATION PLATFORM

In order to verify the performance of the improved
lightweight parameters network on the strawberry flower
detection, we compare it with the baseline, as well as the other
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TABLE 3. Performances comparison of baseline and the improved lightweight parameters network.

Performances Baseline Our Work
Step 1 Step 2 Step 3
FLOPs 29.88 GMac 16.53 GMac (]44.68%) 6.91 GMac (]76.87%) 6.83 GMac (|77.14%)
Params 63.94 MB 44.52 MB (]30.37%) 15.17 MB (176.27%) 15.12 MB (]76.35%)
Memory 1.12GB 1.00 GB (1 10.87%) 0.89 GB ({20.63%) 0.57 GB (48.71%)
Inference time 12.44 ms 8.06 ms (]35.20%) 8.34 ms (]32.96%) 7.62 ms (]38.75%)

TABLE 4. The comparison of Grad-CAM heatmaps between original PAN and improved PAN.

Head 1

Head 3

Baseline with original PAN

Our work with improved PAN

Note: the red dotted box and white box represent the mistake and correct features, respectively.

TABLE 5. Training parameter settings.

Parameters Value
Input image size 416%416
Maximum learning rate 0.01
Minimum learning rate 0.0001
Learning rate adjustment strategy =~ Cosine Annealing LR
Weight initialization method Normal distribution
Batch_size 8
Epoch 300

Note: the size of the input image is resized from 3024*3024 to 416*416.

object detection networks. The parameters of the simulation
platform used for training and testing are shown in Table 2.

B. LIGHTWEIGHT BENEFITS PRELIMINARY ASSESSMENT
The benefits of lightweighting are pre-evaluated on the sim-
ulation platform (as shown in Table 2), and the evaluation
performances include the FLOPs, number of parameters,
memory footprint, as well as inference time. In step with
the process of improvement, the pre-evaluation results of
the improved lightweight parameters network are shown in
Table 3.

It can be found from Table 3 that the FLOPs, number
of parameters, memory footprint and inference time of the
improved lightweight parameters network are reduced by
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77.14%, 76.35%, 48.71% and 38.75% after the three steps,
respectively, which indicated that the proposed methods are
effective. And it is noteworthy that the FLOPs and number
of parameters decrease rapidly in Step 1 and Step 2, rather
than Step 3. These decreases can be mainly attributed to the
utilization of grouped convolution method in the two steps.
Meanwhile, the memory footprint is also decreased rapidly
in all steps, and the amounts of decrease are 10.87%, 9.76%
and 28.08% comparing with the previous step. This could be
mainly attributed to the grouped convolution method utilized
both in Step 1, Step 2, and the integration of Conv layers and
BN layers in Step 3. However, the decrease amount of mem-
ory footprint in Step 2 (9.76%) is lower than that of Step 1
(10.87%). In Step 1, the backbone network is lightweight
design based on the concise VGG-style topology, which can
decrease a large amount of memory footprint by reducing
the preservation of intermediate computing results in multi-
branch structures. Conversely, the complexity of the network
is increased in Step 2 of neck architecture modification. Last
but not least, the inference times are reduced by 35.20%,
-2.24% and 5.79% comparing with the previous step. Based
on the same reasons as the decrease of memory footprint,
the inference time is greatly reduced in Step 1. Neverthe-
less, the inference time in Step 2 is slightly increased by
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TABLE 6. Model training loss descent diagrams.

Baseline

Our Work

Step 1

Step 2

Train-
loss

Val-loss

TABLE 7. Experimental results of proposed network for strawberry flower detection.

Models precision (%) recall (%) F1 score mPA (%) inference time (ms)
Baseline 97.45% 95.02% 0.96 97.77% 12.44
Step 1 97.43% 94.31% 0.96 98.00% 8.06
Our Work Step 2 97.79% 94.31% 0.96 98.13% 8.34
Step 3 97.79% 94.31% 0.96 98.13% 7.62

2.24% comparing with Step 1, caused by the skip-layers
connection.

Neck is capable of generating feature maps with multi-
scale information, which is crucial for improving the accu-
racy of object detection. Therefore, in addition to the direct
numerical comparison mentioned above, our work also visu-
alize Neck to compare the algorithm’s attention to objects on
feature maps of different scales. The heatmap of feature local-
ization generated by Grad-CAM method is used to assess the
effect of the improved PAN network [32]. The Grad-CAM
heatmap provides a visualization method in a form of model
gradients to highlight what is the DNN model focus on. The
heatmaps of the outputs of different scales in baseline and
our work are worked out by Grad-CAM method, as shown in
Table 4.

It can be seen that the improved PAN in our work has
a better ability to focus on the detection object than the
original PAN. For the Head 1 of the baseline, the original
PAN and improved PAN both mistakenly pay some attention
to the background rather than the object features (the mistake
feature is marked by red dotted box), but the correct object
feature that the improved PAN focus on is more complete than
that of original PAN (the correct feature is marked by white
box). For the Head 2, the original PAN and improved PAN are
able to pay attention to the object features, but there are more
mistakes occurred in the original PAN that the backgrounds
are identified as detection objects. For the Head 3, the original
PAN and improved PAN are almost completely focused on
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the target features, but the original PAN still mistakenly pay
a little attention to the background.

C. PROPOSED NETWORK FOR STRAWBERRY FLOWER
DETECTION
1) TRAINING OF THE PROPOSED NETWORK
Subsequent work is the training of network using the images
in the dataset. The training parameters are set as Table 5.
Because that only the integration of Conv layers and BN
layers method is utilized in Step 3, while the modification
of topological structure is uninvolved. Then, the weights of
the improved lightweight parameters network after Step 3 are
derived from the previous step, so there is no need to retrain.
It means that the networks involved in Step 2 and Step 3 had
the same training results. Therefore, the parameters of train-
ing process of baseline and parameters of the first two steps
of the improved lightweight network are given in Table 6.
It can be seen that the results of the three models tend to
be flat in the later training stage, which means a convergent
training.

2) EXPERIMENTAL RESULTS OF STRAWBERRY FLOWER
DETECTION

Five criteria including precision, recall, F; score, mAP and
inference time are used to evaluate the performances of the
algorithm for strawberry flower detection in this paper. The
criteria mentioned above are used to evaluate the strategies of
the improved lightweight parameters network stepwise.
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TABLE 8. Experimental results for open source dataset.

Dataset precision (%) recall (%) F1 score mPA (%)

Baseline 87.93% 53.24% 0.66 73.90%

Tomato
Our Work 84.58% 58.19% 0.69 75.57%

. . . Baseline 90.36% 78.79% 0.84 85.44%

Wind Turbine Detection
Our Work 89.84% 82.78% 0.86 86.16%
Baseline 76.46% 40.15% 0.51 53.30%

VOC2007
Our Work 75.12% 43.46% 0.54 54.49%

(a) VOC2007 dataset

(c) Tomato dataset

FIGURE 5. The actual detection results on different dataset.

The parameters of simulation platform are detailed in
Table 2. And the weighs of the networks used to test the per-
formances are respectively assigned as the ones that showed
the best property on the validation set, while the weights of
Step 3 are derived from the previous step. The experimental
results of the improved lightweight parameters network tested
on the test set are shown in Table 7. As shown in Table 7,
the inference time of the improved lightweight parameters
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(d) Wind Turbine Detection dataset

network in this paper is greatly reduced comparing with the
baseline, and other evaluation criteria are roughly equivalent.
This means that the improved lightweight parameters net-
work is stable and suitable to be deployed in actual scenarios,
especially for the mobile platforms with limited computing
power.

To verify the generality of proposed network, we have
compared mAP on open source datasets, including Tomato
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TABLE 9. Comparison of the proposed method with previous studies.

Models precision (%) recall (%) I} score mPA4 (%) inference time (ms)

Faster R-CNN 77.78 97.15 0.86 96.94 82.34

SSD 95.82 97.86 0.97 98.34 11.46

YOLOX-s 97.84 96.80 0.97 98.05 5.85

EfficientDet 97.82 95.73 0.97 97.46 24.06

Our Work 97.79 94.31 0.96 98.13 7.62

TABLE 10. Hardware parameters of Jetson Nano.

Hardware name Parameters

GPU NVIDIA Maxwell architecture with 128 NVIDIA CUDA® cores

CPU Quad-core ARM Cortex-A57 MPCore processor

Memory 4 GB 64-bit LPDDR4

Storage 128 GB

TABLE 11. Inference speed comparison of the algorithms tested on Jetson Nano.

Model Faster R-CNN SSD YOLOX-s EfficientDet Baseline Our work

1628 ms (after Step 1)

Inference time 57336 ms 2081 ms 909 ms 1284 ms 2091 ms 1181 ms (after Step 2)
926 ms (after Step 3)

TABLE 12. The complexity of the algorithms.

Algorithms Memory FLOPs Params

EfficientDet 615.56 MB 2.12 GMac 3.83MB

Faster RCNN 5.19GB 454.29 GMac 28.27 MB

YOLOX-s 249.39 MB 5.63 GMac 8.94 MB

SSD 888.32 MB 57.92 GMac 23.75 MB

Our Work 588.18 MB 6.83 GMac 15.12 MB

dataset, Wind Turbine Detection dataset and VOC2007
dataset. As shown in Table 8, our work outperforms baseline
in mAP, Recall and F-score.

The actual detection results of our work on different
datasets are shown in Figure 5.

D. COMPARISON OF THE PROPOSED NETWORK WITH
PREVIOUS STUDIES

With the rapid development of CNN and its usage in the
field of computer vision, numerous excellent object detection
algorithms based on CNN were proposed by scholars. Then,
four object detection algorithms with excellent performance
in recent years, namely, Faster R- CNN [33], [34], SSD [35],
YOLOX-s [36], [37] and EfficientDet [38], are selected to
compare with our work. And the data of training set generated
in Section IV-A1 are used to train the networks, while the
weights of each network are respectively set as the ones that
have the best property on the validation set. The precision,
recall, ' score, mAP and inference time of the five object
detection algorithms are shown in Table 9, respectively.

It can be seen that the SSD algorithm acquires the highest
mAP of 98.34%, while the YOLOX-s algorithm acquires the
minimum inference time of 5.85 ms. Our work is 0.21% lower
than SSD algorithm in the mAP, while 1.77 ms greater than
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YOLOX-s algorithm in inference time. In other words, our
work in this paper could not obtain the best scores on all crite-
ria, especially for both the mAP and inference time. However,
the overall performance of our work is better than that of
the others, considering the high mAP and short inference
time. Compared with other networks, our work is suitable for
strawberry flower detection in natural environment.

E. DISCUSSION

Followed by the experiments based on the platform with
high computing power, the performance of the improved
lightweight parameters network is further discussed on
the platform with limited computing power. Therefore, the
improved lightweight parameters network, baseline and also
the other algorithms in previous studies, are transferred to
Jetson Nano for the purpose of inference time comparison.
And the hardware parameters of Jetson Nano are shown in
Table 10, while the results of inference speed tested on Jetson
Nano are shown in Table 11. Remarkably, the inference time
of our work is only 0.44 times that of the baseline, demon-
strating the effectiveness of our approach on low computing
power platforms. It also can be seen that the inference time of
our work is lower than Faster R-CNN, SSD and EfficientDet,
but slightly higher than YOLOX-s.
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The mAP of our work is higher than that of the YOLOX-s
algorithm. However, the YOLOX-s algorithm has a faster
inference speed than that of our work, not only for the
platform with high computing power but also the embed-
ded devices. In order to explore the impact factors of the
inference speed, we choose memory footprint, FLOPs and
number of parameters as indicators to analyze the complexity
of algorithm which could provide a reference for the farther
research of lightweight. And the comparing results of com-
plexity are shown in Table 12.

As shown in Table 12, the comparion results of complex-
ity are consistent with the inference speed tested on Jetson
Nano. Our work has an intermediate complexity among the
five algorithms, visualized as the three indicators. This may
indirectly indicate that not only the accuracy but also the com-
plexity should be taken into consideration in the lightweight
design of a network. The trade-off between accuracy and
complexity is essential to ensure the comprehensive perfor-
mance of the network when run on platforms with limited
computing power. In general, our work in this paper acquires
an extremely high accuracy as well as a fast inference speed,
not only for high computing power platforms but also the
lightweight devices with limited computing power. Thus, that
proves our work could support yield estimation for strawberry
flower pollination robots or UAVs.

V. CONCLUSION

Accurate and efficient detection of strawberry flowers is very
important for yield estimation and the development of a
pollination robot. Hereby, the improved lightweight param-
eters network is proposed in this paper. After the training
and testing of the network on the strawberry flower dataset,
we compared it with the baseline as well as the other algo-
rithms in previous studies. Then the conclusions are carried
out as below.

1) The improved lightweight parameters network includes
backbone network lightweight design, neck architecture
modification and also the integration of Conv layers and BN
layers. As the results, the number of parameters, quantity
of computation, memory footprint andinference time of the
improved lightweight parameters network are reduced vastly
while comparing with the baseline, respectively. The results
indicate that the improved lightweight parameters network
is suitable for the mobile pollination robots which had a
high-speed requirement of strawberry flowers detection but
with limited computing power.

2) The improved lightweight parameters network not
only has a faster inference speed than YOLOv4, but also
has a higher mAP than YOLOv4. Moreover, the improved
lightweight parameters network also has a better overall
performance than the other algorithms in previous studies.
It shows that the improved lightweight parameters network
in this paper makes the algorithm more accurate than the
baseline, thus, could provide technical supports for the
development of pollination robots and yield estimation of
strawberry in natural environment.
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DATA AVAILABILITY STATEMENT
Wind Turbine Detection dataset could be found at:
https://www.kaggle.com/datasets/saurabhshahane/wind-
turbine-obj-detection
VOC2007 dataset could be found at:
http://host.robots.ox.ac.uk/pascal/VNOC/voc2007/
The Tomato dataset can be found at:
https://www.kaggle.com/datasets/andrewmvd/tomato-
detection
The dataset of strawberry flowers can be found at:
https://drive.google.com/drive/folders/laT6ur3cLPp0O
xDOurlH6ex_mrFYkIAtm8?usp=sharing.
Code is available at:
https://github.com/huansu/An-Improved-Lightweight-
Parameters-Network.git

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

REFERENCES

[1] K. V. Sriram and R. H. Havaldar, “Analytical review and study on object
detection techniques in the image,” Int. J. Model., Simul., Sci. Comput.,
vol. 12, no. 5, Oct. 2021, Art. no. 2150031.

[2] X. Wu, D. Sahoo, and S. C. H. Hoi, “Recent advances in deep learning for
object detection,” Neurocomputing, vol. 396, pp. 39—-64, Jul. 2020.

[3] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with deep

learning: A review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,no. 11,

pp. 3212-3232, Nov. 2019.

Z.Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years:

A survey,” Proc. IEEE, vol. 111, no. 3, pp. 257-276, Mar. 2023.

C. Zheng, A. Abd-Elrahman, and V. Whitaker, “Remote sensing and

machine learning in crop phenotyping and management, with an emphasis

on applications in strawberry farming,”” Remote Sens., vol. 13,no. 3, p. 531,

Feb. 2021.

S. Zhao, J. Liu, and S. Wu, “Multiple disease detection method for

greenhouse-cultivated strawberry based on multiscale feature fusion

faster R_CNN,” Comput. Electron. Agricult., vol. 199, Aug. 2022,

Art. no. 107176.

J. Deng, Z. Shi, and C. Zhuo, “Energy-efficient real-time UAV object

detection on embedded platforms,” IEEE Trans. Comput.-Aided Design

Integr: Circuits Syst., vol. 39, no. 10, pp. 3123-3127, Oct. 2020.

[8] P. FE. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627-1645,
Sep. 2010.

[9] W. Zhigiang and L. Jun, “A review of object detection based on convolu-
tional neural network,” in Proc. 36th Chin. Control Conf. (CCC), Dalian,
China, Jul. 2017, pp. 11104-11109.

[10] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “RepVGG:
Making VGG-style ConvNets great again,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Nashville, TN, USA, Jun. 2021,
pp. 13728-13737.

[11] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for
instance segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 8759-8768.

[12] Y. Liao, S. Lu, Z. Yang, and W. Liu, “Depthwise grouped convolution for
object detection,” Mach. Vis. Appl., vol. 32, no. 6, pp. 1-13, Sep. 2021.

[13] Q.Li,J. R. Cai, B. Liu, L. Deng, and Y. J. Zhang, “Identification of fruit
and branch in natural scenes for citrus harvesting robot using machine
vision and support vector machine,” Int. J. Agricult. Biol. Eng., vol. 7,
no. 2, pp. 115-121, Nov. 2014.

[14] F. Kurtulmus, W. S. Lee, and A. Vardar, “Immature peach detection in
colour images acquired in natural illumination conditions using statistical
classifiers and neural network,” Precis. Agricult., vol. 15, no. 1, pp. 57-79,
Feb. 2014.

[15] R.Horton, E. Cano, D. Bulanon, and E. Fallahi, ‘“Peach flower monitoring
using aerial multispectral imaging,” J. Imag., vol. 3, no. 1, p. 2, Jan. 2017.

[4

=

[5

—

[6

—

17

—

63771



IEEE Access

B. Zhou et al.: Improved Lightweight Parameters Network for Strawberry Flowers Detection

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. McCarthy and S. Raine, “Automated variety trial plot growth and
flowering detection for maize and soybean using machine vision,” Com-
put Electron Agricult., vol. 194, Mar. 2022, Art. no. 106727, doi:
10.1016/j.compag.2022.106727.

C. L. Zhou, W. S. Lee, and R. Lin, “Strawberry flower detection using
fluorescence imaging,” in Proc. ASABE Annu. Int. Meeting, St. Joseph,
MI, USA, Jul. 2020, pp. 13-15.

P. Lin, W. S. Lee, Y. M. Chen, N. Peres, and C. Fraisse, “A deep-level
region-based visual representation architecture for detecting strawberry
flowers in an outdoor field,” Precis. Agricult., vol. 21, no. 2, pp. 387-402,
Apr. 2020.

P. A. Dias, A. Tabb, and H. Medeiros, “Apple flower detection using deep
convolutional networks,” Comput. Ind., vol. 99, pp. 17-28, Aug. 2018.

P. A. Dias, A. Tabb, and H. Medeiros, ‘“Multispecies fruit flower detection
using a refined semantic segmentation network,” IEEE Robot. Autom.
Lett., vol. 3, no. 4, pp. 3003-3010, Oct. 2018.

F. Palacios, G. Bueno, J. Salido, M. P. Diago, I. Herndndez, and
J. Tardaguila, “Automated grapevine flower detection and quantification
method based on computer vision and deep learning from on-the-go imag-
ing using a mobile sensing platform under field conditions,” Comput.
Electron. Agricult., vol. 178, Nov. 2020, Art. no. 105796.

Y. Tian, G. Yang, Z. Wang, E. Li, and Z. Liang, “Instance segmentation
of apple flowers using the improved mask R-CNN model,” Biosyst. Eng.,
vol. 193, pp. 264-278, May 2020.

G. Li, R. Suo, G. Zhao, C. Gao, L. Fu, F. Shi, J. Dhupia, R. Li, and
Y. Cui, “Real-time detection of kiwifruit flower and bud simultaneously
in orchard using YOLOvV4 for robotic pollination,” Comput. Electron.
Agricult., vol. 193, Feb. 2022, Art. no. 106641.

D. Wu, S. Lv, M. Jiang, and H. Song, “Using channel pruning-based
YOLO v4 deep learning algorithm for the real-time and accurate detection
of apple flowers in natural environments,” Comput. Electron. Agricult.,
vol. 178, Nov. 2020, Art. no. 105742.

Y. Zhang, J. Yu, Y. Chen, W. Yang, W. Zhang, and Y. He, “Real-time
strawberry detection using deep neural networks on embedded system
(RTSD-Net): An edge Al application,” Comput. Electron. Agricult.,
vol. 192, Jan. 2022, Art. no. 106586.

C. Wang, H. M. Liao, Y. Wu, P. Chen, J. Hsieh, and I. Yeh, “CSPNet:
A new backbone that can enhance learning capability of CNN,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Seattle, WA, USA, Jun. 2020, pp. 1571-1580.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA,
Jun. 2018, pp. 6848-6856.

T. Liu, S. Wang, Y. Liu, W. Quan, and L. Zhang, “A lightweight neural
network framework using linear grouped convolution for human activ-
ity recognition on mobile devices,” J. Supercomput., vol. 78, no. 5,
pp. 6696-6716, Oct. 2021.

T. Lin, P. Dolldr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 936-944.

G. Li, M. Zhang, J. Li, E. Lv, and G. Tong, “Efficient densely connected
convolutional neural networks,” Pattern Recognit., vol. 109, Jan. 2021,
Art. no. 107610.

M. Awais, M. T. B. Igbal, and S. Bae, “Revisiting internal covariate shift
for batch normalization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 11, pp. 5082-5092, Nov. 2021.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Venice, Italy, Oct. 2017, pp. 618-626.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,”” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

Y. Mu, R. Feng, R. Ni, J. Li, T. Luo, T. Liu, X. Li, H. Gong, Y. Guo, Y. Sun,
Y. Bao, S. Li, Y. Wang, and T. Hu, “A faster R-CNN-based model for
the identification of weed seedling,” Agronomy, vol. 12, no. 11, p. 2867,
Nov. 2022.

H.Lu, C.Li, W. Chen, and Z. Jiang, ‘A single shot multibox detector based
on welding operation method for biometrics recognition in smart cities,”
Pattern Recognit. Lett., vol. 140, pp. 295-302, Dec. 2020.

63772

[36] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
series in 2021,” 2021, arXiv:2107.08430.

[37]1 Y. Zhang, W. Zhang, J. Yu, L. He, J. Chen, and Y. He, “Complete and
accurate holly fruits counting using YOLOX object detection,” Comput.
Electron. Agricult., vol. 198, Jul. 2022, Art. no. 107062.

[38] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient
object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Seattle, WA, USA, Jun. 2020, pp. 10778-10787.

BAO ZHOU received the bachelor’s degree in
robotics engineering from the Chongqing Univer-
sity of Technology, Chongging, China. His current
research interests include object detection, digital
image processing, and agricultural robot.

XUEYING LIN is currently with the Department
of Mechanical Engineering, Chongqing Univer-
sity of Technology, Chongqing, China. Her current
research interests include digital image process-
ing, object detection, and machine learning.

JIE ZHOU was born in 1986. He received
the M.S. degree from Wuhan Textile Univer-
sity, in 2012, and the Ph.D. degree from the
Huazhong University of Science and Technology,
in 2018. He is currently with the Department of
Mechanical Engineering, Chongqing University
of Technology, Chongqing, China, where he is
also an Associate Professor with the Department
of Mechanical Engineering. His research interests
include robotics and computer vision. His current
research interests include object detection and machine learning.

YUJIN WANG was born in 1986. He received
the M.S. degree from Wuhan Textile Univer-
sity, in 2012, and the Ph.D. degree from the
Huazhong University of Science and Technology,
in 2018. He is currently an Associate Professor
with the Department of Mechanical Engineering,
Chongqing University of Technology, China. His
research interests include robotics and computer
vision.

FANGCHAO HU received the B.S. and M.S.
degrees in control science and engineering and
the Ph.D. degree in computer science from the
Chongqing University of Posts and Telecommu-
nications, in 2011, 2014, and 2019, respectively.
He is currently a Lecturer with the Department of
Mechanical Engineering, Chongqing University of
) Technology, China. His research interests include

. computer vision on autonomous vehicle, vision
%4 ZE odometry, 3D driving environment reconstruction,
simultaneous localization, and mapping. He was funded by the China
Scholarship Council as a co-training Ph.D. student to study with Purdue
University, West Lafayette, IN, USA, from 2016 to 2017.

VOLUME 11, 2023


http://dx.doi.org/10.1016/j.compag.2022.106727

