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ABSTRACT Humans learn from the occurrence of events at different places and times to predict similar
trajectories of events. We define loosely decoupled time (LDT) phenomena as two or more events that
could occur in different places and across different timelines but share similarities in the nature of the event
and the properties of the location. In this work, we improve the use of recurrent neural networks (RNN),
particularly long short-term memory (LSTM) networks, to enable AI solutions that generate better time
series predictions for LDT. We used similarity measures between the time series based on the time series
properties detected by the LSTM and introduced embeddings representing these properties. The embeddings
represent the properties of the event, which, coupled with the LSTM structure, can be clustered to identify
similar temporally unaligned events. In this study, we explore methods of seeding a multivariate LSTM
from time-invariant data related to the geophysical and demographic phenomena modeled by the LSTM.
We applied these methods to time-series data derived from COVID-19 detected infection and death cases.
We use publicly available socioeconomic data to seed the LSTMmodels, creating embeddings, to determine
whether such seeding improves case predictions. The embeddings produced by these LSTMs are clustered to
identify the best-matching candidates for forecasting evolving time series. Applying this method, we showed
an improvement in the 10-day moving average predictions of disease propagation at the US County level.

INDEX TERMS Algorithm design and analysis, artificial intelligence, numerical algorithms and problems,
statistical methods, time series analysis.

I. INTRODUCTION
In many real-life applications, a dataset consists of instances
with features that are both static and dynamic. For example,
consider patient health data, such as age and gender, which
are relatively static features compared to high-frequency
dynamic heartbeat data collected from electrode sensors con-
nected to the patient. Sequence classification models such as
recurrent neural networks (RNN) [1], long short-term mem-
ory (LSTM) [2], or hidden Markov models (HMM) [3] can
be used to model the dynamic time-variant features of an
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event but are not suitable for addressing static features [4].
In the patient health data example, an LSTM structure can be
used to model the heartbeat time-series data across multiple
patients; however, it is not suitable for processing static and
dynamic data simultaneously [4]. Ensemble methods, such
as those provided by Dietterich in [5] and Bagnall et al. [6]
provide another way to address this issue: predictions made
by temporal models such as dynamic time warping (DTW)
[7], rotation forests, [8] and COTE [9] on dynamic data are
combined with the predictions of a discriminative classifier
on static data by performing distance measures, as presented
in [10]. Tzirakis et al. in [11] develop a methodology accom-
plishing simultaneously: (1) hierarchical clustering of raw
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dynamic data, (2) learning of deep end-to-end representa-
tions, and (3) temporal segments boundaries identification.
They computed the similarity between time-series segments
using an extension of DTW. A global loss function was used
to optimize all three objectives. Although this method results
in representations learned from the clusters detected in this
process, it does not intrinsically tie these representations to
each time series.

In this study, we introduce the concept of a loosely decou-
pled time-series (LDT) phenomenon and improve LSTM
networks to enable artificial intelligence (AI) solutions to
offer better time-series predictions informed by static features
or features that vary at a different frequency than the main
event being modeled. A key feature of LSTMs is that they
maintain a dual-purpose internal state (memory) that can aid
in the learning and forecasting processes [2].We used similar-
ity measures between the time series based on the time series
properties detected by the LSTM and introduced embed-
dings [12] representing these properties. The embeddings
are constructed from features that are either static or change
at a different frequency than the time series of the main
event being modeled. We applied this method to improve
the predictions of COVID-19 infections and deaths. We treat
COVID-19 detected infections and death cases [13] as the
main time-variant dynamic event and used socioeconomic
data at theUS-County level as static features to inform predic-
tions among counties with similar socio-economic structures
but differing time lags in COVID-19 disease propagation
among their populations.

This study develops ideas from disparate sources, such as
COVID-19 forecasting, signature verification, and useful-life
estimation from sensor data. Li et al. [14] demonstrated
improved signature verification by casting signatures as
static representations of dynamic pseudo-processes, using
a dynamic process to generate an attention mechanism for
the static representation. This has obvious ties with the
COVID-19 pandemic as a dynamic process. We chose the
geospatial and demographic characteristics of communities
as our static representation for two reasons: latent handling
of mobility-impacted disease transmission and data augmen-
tation. COVID-19 spread is heavily impacted by population
mobility, and Panagopoulos et al. [15] attempted to capture
directly using graph neural networks, with vertices as cities
and edges as movement between cities, whereas Xiao et al.
[16] used intra-city mobility patterns to train an adversarial
encoder framework to predict next-at-risk communities. Both
groups suffered from a lack of training data, and Panagopou-
los et al. [15] attempted to alleviate this using transfer
learning between graphs generated from different countries.
Wang et al. [17] attempted to use augmented data for training
using an ABM to generate synthetic data based on an SEIR
epidemic model. However, in our experience (unpublished),
the SEIR model is not a good description of COVID-19,
and the efficacy of epidemic models is highly dependent on
their internal social-interaction model and estimated param-
eter values. Therefore, we propose a clustering approach
based on geospatial and demographic attributes to augment

our training data with other US counties that are similar in
latent space and known-pandemic trajectory (matching the
COVID-19 spread based on where each county is in their
respective pandemic trajectory).

Our novel contributions are as follows:
1) Definition and demonstration of loosely decoupled

times using static and trajectory-matched dynamic fea-
tures for improved spatiotemporal prediction.

2) Computationally simple (K-means or K-medoids)
latent-space clustering of static geospatial and demo-
graphic features accounting for mobility patterns and
socioeconomic behaviors.

3) Built-in data augmentation through clustering of data
with trajectory-matched pandemic behavior, effec-
tively increasing the training data by reducing the num-
ber of prediction classes, thus obviating the need for
potentially problematic synthetic data augmentation.

II. LOOSELY DECOUPLED TIMESERIES
We define a loosely decoupled time series (LDT) phe-
nomenon as the relationship between two or more events
that could occur at the same place or at different places but
across different timelines, sharing similarities in the nature of
the event and the properties of the location. We contrast the
LDT with event-coupled [18] and tightly coupled time series
[19]. Event-coupled time series consist of phenomena starting
at the same time, whereas LDT allows for a lag between
event onsets. Tightly coupled time series start at the same
time and are coupled in time throughout the event, such as
the case of audio or speech and the corresponding video of
lip gestures, whereas LDT events can occur at varying time
frequencies, such as the loose coupling of birth rates mea-
sured annually, and unemployment measured monthly. Other
examples of LDT include the time series associated with a
news cycle (hourly) in relation to the time series associated
with the spread of violence (daily or weekly victim counts) or
the spread of disease (daily infection or death counts) being
covered by the news cycle. The LDT can also span two or
more events occurring at different locations.
We represent LDT as:

∼ [x (t, env) , x (a1 ∗ t + b1, env1) ,

× x (a2 ∗ t + b2, env2) , . . .] (1)

where x (t, envi) is a time sequenced event [0, . . . ., T ] condi-
tioned on the environment envi, while ai provide for a varied
frequency time series and bi provide for a time lag between
the two events.

III. OUR APPROACH
A key feature of LSTMs is the maintenance of a dual-purpose
internal state (memory) that aids in learning and forecasting.
This ameliorates the exploding or vanishing gradient problem
experienced by RNNs [2] at the expense of a slightly higher
memory and computational complexity. This internal state
convolves more distant and recent information input, acting
as a compression or embedding mechanism for the time
series.
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We use this internal memory state as an embedded rep-
resentation of the time series after appropriately training an
LSTM model on the subsequences of the time series.

We represent the LSTM model trained on timeseries
x (t, envi), as [2]:

yout j (t) = fout j
(
netout j (t)

)
,

yinj (t) = finj
(
xj (t, envi)

)
where

netout j (t) =

∑
u

wout juy
u (t − 1)

And

net inj (t) =

∑
u

winjuy
u (t − 1)

We also have

netcj (t) =

∑
u

wcjuy
u (t − 1)

Which produces a trained LSTM model represented as:

L(T , envi) (2)

The summation index u, based on [2], can represent input
units, gate units, memory cells, or even conventional hidden
units. These different types of units convey useful information
regarding the current state of the LSTM. These may also be
recurrent self-connections such as wcjcj . At time t , cj’s output
ycj (t) of cj is computed as follows:

ycj (t) = yout j (t) h(scj (t))

The ‘‘internal state’’ or embedding representation scj (t) is:

scj (0) = 0, scj (t) = scj (t − 1)

+ yinj (t) g
(
netcj (t)

)
fort > 0

The differentiable function g ‘‘squashes’’ netcj ; the differen-
tiable function h scales the memory cell outputs computed
from the internal state scj .
We represent the embedding representation of L(T , envi)

as:

sc (T , envi) (3)

FIGURE 1. Architecture of memory cell cj (the box), the j-th memory cell
block, and its gate units inj , and outj . The self-recurrent connection (with
weight 1.0) indicates feedback with a delay of 1 time step. The index k
ranges over hidden units u [2].

We enforce the same cell size u for all LSTMs trained
to ensure the equidimensional representation of the inter-
nal states (3) to facilitate comparison independent of their
length. Our general focus is on using the equidimensional
embedding representations of (3) along with the time invari-
ant LSTM-based prediction: given an evolving timeseries
x (t, enνi), search for and select longer/more evolved time-
series x

(
aj ∗ t + bj, envj

)
that can be associated to produce a

better prediction for the next time step(s) of (2) for x (t, enνi).
To locate the associated time series, we expand the internal

state (3) of an LSTM to include the static properties of envi:

pi(envi) (4)

We combine (3) and (4) to form:

sc (T , envi) , pi(envi)] (5)

We call (5) the embedding representation of the phenomena at
envi. We then adopt a clustering method to cluster the embed-
ding representations of several phenomena to identify LDT
tuples. In this study, two clustering methods were explored.
K-means:

C1,C2, . . .Ck = argmin
∑k

i=1

∑
x∈Si

∥x − Ci∥2 (6)

With k centroid points Ckand minimizing the sum over
each cluster of the sum of the square of the distance between
the point and its centroid, the centroid is not necessarily a
point from the data set.

And K-medoids:

M1,M2, . . .Mk = argmin
∑k

i=1

∑
x∈Si

∥x −Mi∥
2 (7)

which is similar to K-means but uses medoids Mk chosen
from points in the dataset.

Once the LDT clustered tuples are identified, we seed the
main LSTM model based on this static data prior to each
training episode as well as prior to making a forecast. We
refer to this seeding as local static embedding. This seeding
takes the form of a dense embedding layer from the static
data vector to the (initialization of) hidden layer in the LSTM
model. This dense embedding was simultaneously trained
by backpropagation with the LSTM training regimen. The
embedding layer is reused at the estimation time to reseed
the hidden layer of the LSTM at the initial step.

IV. FORECASTING COVID-19
Coronavirus disease (COVID-19) is a disease (SARS-CoV-2)
which spread rapidly worldwide. Various metrics have been
proposed for monitoring the spread and evolution. Although
there is significant variation in the data collected, two main
metrics of interest are publicly available. One is the number
of people ‘‘infected’’ (those that tested positive on a standard-
ized testing platform), and the other is the number of people
who died due to a recorded affiliation with the virus.

However, both metrics were subject to discrepancies.
While some districts only report PCR-positive tests as the
gold standard, others report results from less-reliablemethods
or even antibody tests (antibody tests rarely show positivity
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until the end of an infection and then show positivity for
months or more after viral clearance). Additionally, death
counts often represent both deaths due directly to COVID-19
complications and deaths due to unrelated causes, but with
positive test results (from preventative screening).

Simultaneously, there is a need from the public (and public
health officials) to predict the evolution of these metrics days,
potentially weeks ahead, for resource allocation and policy
formulation. This has prompted numerous efforts to develop
and apply predictive models [20], [21].

The standard models used in public health are the deriva-
tives of the SIR model [22]. These models are based on
the ‘‘evolution’’ of an individual through the stages of a
disease, from Susceptible ‘‘S’’ (has potential to get infected)
to Infected ‘‘I’’ (virus is present) to Recovered ‘‘R’’ (dis-
ease ran its course). Variations considering asymptomatic or
unreported infections as well as death as an outcome were
also used. While well understood, both from a theoretical
and practical (estimation) perspective, these models are nec-
essarily limited by the assumption of compartmentalization
(disease evolving in isolation). Human movement patterns
lead to the diffusion of infections across boundaries. Solving
coupled SIR compartmental models subject to constraints
and diffusion is significantly more difficult and potentially
intractable without deeper (longer history) samples.

Another aspect of compartmental models is their focus
on inference, rather than prediction. The primary focus
of SIR-type models is to estimate disease characteristics
(e.g., transmission rate) rather than prediction. In addition,
predictions are only helpful up to a certain point. Just know-
ing what will happen is of limited usefulness in the absence
of scenario-based alternatives. From a prescriptive (predic-
tive + actionable) around COVID-19, it would be helpful
to build upon similarities and ‘‘local tests’’ between US
counties. By local tests, we mean different restrictions and
implementation or adherence to these restrictions and their
impact on the disease trajectory.

Working with researchers at the Air Force Research
Lab/Autonomous Capabilities Team (ACT3), we applied the
above-described methods of LDT-enhanced LSTMmodeling
to COVID-19 detected infection and death cases [13]. The
time interval under study was from March to October 2020.
During this time, the global events were such that there was
a limited supply of COVID-19 testing resources, hesitation
in applying and adopting non-pharmaceutical interventions
(NPIs), and several US counties adopting lockdown proce-
dures. During the same period, a single dominant variant
of COVID-19 was identified. From this perspective, dis-
ease evolution was not influenced by mixed variants as it
became more common in subsequent months. We limited
the geographic span and resolution of our study to the US
county level. County-level data are more likely to contain a
systematic definition of a COVID-19 case following locally
consistent testing approaches and capabilities, consistent NPI
measures, and consistent lockdown directives (if any were
applied). More importantly, counties in the same state may
experience a lag in the disease spread. Therefore, known

data about the spread of the disease in counties already
affected can inform the future state of counties that are
starting to experience their first cases. Similarly, the effect
of NPIs (e.g., mask/lock-down mandates) observed in the
infection and death time series of some counties can inform
the expected effect from similar NPIs in counties that are
considering such measures. Thus, the value proposition of
modeling county-level data is significant from an operational
and NPI implementation point of view.

A. DESCRIPTION OF DATA
The 2010 census demographic datasets [23] for each US
county were used in the analysis. Table 1 presents the data
fields used in this study.

TABLE 1. 2010 Census demographic [23] data fields used in analysis.

TABLE 2. USDA economic research service [24] data fields used in
analysis.

The economic data for each county were sourced from the
USDA Economic Research Service, [24] and Table 2 lists the
data fields that were used in this analysis.
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In total, 385 socioeconomic features from 3142 US coun-
ties were used in the analysis. These constituted the static
feature set and were assumed to remain constant during the
analysis period.

COVID-19 infection metrics are aggregated into various
entities. Johns Hopkins University [25] is an early and con-
tinuing resource for such data. However, they only collate
what is reported by local health authorities, which are subject
to local delays and constraints in identifying and reporting
disease spread.

For example, it has been observed that the reported counts
exhibit a periodic dip around weekends. This is simply due to
the limitations of scheduled activities for labs running these
tests. Correspondingly, there is a ‘‘bump’’ in counts at the
beginning of the week, usually on Mondays.

The COVID-19 datasets [13], [25] were used to analyze the
daily number of infections and deaths. Table 3 lists the data
fields used in the analysis.

The number of cumulative infections and deaths was nor-
malized against the county population data. Raw data from
[13] were used as is, with the exception of days in which
a drop in cumulative infections or cumulative deaths were
reported, and the last reported value before the drop was used
for all subsequent days until the cumulative values reached
that level again.

TABLE 3. COVID-19 [13], [25] data fields used in the analysis.

B. LSTM TRAINING REGIMEN
Focusing on prediction rather than inference potentially
increases the utility of models from other domains. Time
series analysis is one such domain; however, the structural
constraints on these models are not easily aligned with the
expectations of disease evolution. An ideal model would
‘‘remember’’ trends and changes over varying time horizons
(e.g., the convexity of the infected cases’ trend changed N
days ago, where N could vary with the region under con-
sideration). LSTM models have an established history in
natural language processing, where learning the relationships
between potentially distant words helps predict the next word.
This is predicated on the underlying structure of the lan-
guage from which the samples are drawn (e.g., English), with
long-termmemory keeping track of words earlier in the input.
It is this long-term memory we had in mind when testing
LSTM as a solution for predicting COVID-19 ‘‘trajectories’’.
Given sufficient data, the model should learn to distinguish
the accelerating spread regions of the timeline from more
linear or saturated growth regions.

In our setup, the LSTM layer is followed by a dense layer
with an output that is dependent on the predicted variables.

The variables are infected, and dead counts which are nor-
malized by the population of the county.

LSTM training modules from PyTorch [26] were used, and
ray tune [27] was used to perform hyperparameter tuning
using a grid search. LSTM models were constructed to allow
for a grid search across 64, 128, 256, and 512 hidden memory
cells and across one, two, or three network layers. Several
loss functions were tested for training: mean square error
(MSE), relative mean square error (RMSE), indexed or scaled
versions to account for the changing variability in the inputs
across time, and versions penalizing for non-monotonic out-
put. Input tensors covering a period of 7–30 days were used.
The output was compared to actual values on 1-, 3- and
5-day sliding intervals (day offset). The models with the
highest prediction accuracy (lowest loss vs. desired output)
were successively retained by Ray Tune within the allocated
time/computing resources; these models learned the most
accurate representation for that county and point in time
(PIT). More than six hundred models were trained to extract
county level embeddings over time.

For the purpose of consolidating our results, we consider
two loss functions:

• MSE (abs): absolute mean square error between the
output and expected values

• RMSE (rel): the relative difference between the output
and expected values, with a large penalty imposed for
producing nonmonotonic sequences. A small quantity
(10−8) was added to the denominator to avoid division
by zero.

The expectation was that RMSE-basedmodels wouldmore
closely match the disease trends, especially in the earlier
stages when their population-normalized values are exceed-
ingly small.

The following setup was used for all experiments:
• data for all counties cover the interval from the first
recorded case (for each US county) through 09/18/2020

• there is always a ‘‘buffer’’ of the last 30 days which
are not ‘‘seen’’ by the trained models (test_days = 30);
this means 09/19 through 10/18 is reserved for testing /
evaluation of the model

• the models are trained for a certain time/computation
‘‘budget’’ using Ray Tune’s ASHA Scheduler

• individual counties’ training epochs, consisting of one
pass through all (chunked) historical data.

• Mini-batch training was used for all models (three
batches for individual county models)

C. LSTM HIDDEN STATES AS EMBEDDINGS
For each US county, the LSTM training regimen produces
an optimum characteristic LSTM model for predicting the
number of infections and deaths for 1, 3, or 5 days in advance.
The optimum characteristic LSTM consisted of three layers
with a hidden statemade of 256 cells. The hidden state of each
optimally trained LSTM model, represented as L(T , envi),
with the hidden state represented as sc (T , envi) for County,
‘i’, was used to represent the USCounty. The hidden state was
a vector of 256 dimensions representing COVID-19 embed-
ding for each US county, [sc (T , envi) , pi(envi)].
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FIGURE 2. COVID-19 infection and dead 10-day-moving-average percent
of population predictions contrasted against actual numbers for one US
County. Predictions for 1, 3, and 5-forward looking days are provided on
the left, and corresponding error rates (RMSE) are provided on the right.
The x-axis in all plots represents days. The plots on the right show that,
for this particular county, 90 and 120 days or more need to have passed
from the onset of the disease in that county for the infection and death
prediction error rates respectively to stabilize.

FIGURE 3. RMSE error plots for one US county showing COVID-19
infection predictions for 1-30 days into the future. 5-day forward looking
predictions are +/-3% accurate, and 10-day forward looking prediction
errors are around +/-10% accurate.

The US County embeddings were clustered using the two
clustering methods in (6) and (7) with k = 3 clusters at 30,
60, and 90 days in time. The choice of these cluster reflects
the practical decision-making time horizons that were being
applied during the COVID pandemic and allow decision
makers ample time to make informed decisions based on
how the disease spread in similar counties. Clusters identified
counties with similarity based on a shorter history, matched
other counties with a cluster, and then analyzed the evo-
lution of the groups’ timeline to inform the new county’s
evolution.

V. ANALYSIS OF RESULTS
The results presented in this section focus on analyzing 17
US counties based on the state of Ohio, with over six hun-
dred embeddings based on various points in time (PIT) of
the trained LSTM models for every county. The following
notation is used in this section to represent the data analyzed:

• Data are a vector of observed values over time and can
be obtained with or without socioeconomic data.

• The clustering method is either (6) or (7), with (7)
represented with the label ‘‘k-means’’ and (7) as
‘‘k-medoids’’ in the plots.

• Plots were taken at a point-in-time (PIT) reflected in
the label of a plot and for a predefined set of clusters
identified as cl:n, where n is the number of clusters in
the plot.

• Clustering involves all hidden layer states (‘‘all’’) or only
the last one (‘‘last’’).

Figure 4 provides an example of k-means clustering into
three clusters of 17 trained LSTM models with 60 days of
training data using actual COVID-19 infection counts, rela-
tive to the total county population.

FIGURE 4. Example plot for 17 counties in OH clustered using k-means
and the actual COVID-19 infections out of total population count.
Socio-economic data was not factored in the clustering. Clustering was
done using the hidden neural network layers (state) of an LSTM model
trained with 60 days of data.

We analyzed the alignment (concordance) of the two clus-
tering methods (6) and (7) using two metrics:

1) Accuracy based on a confusion matrix
a) Calculated as the percent of the diagonal values

present in overall confusion matrix
b) Dependent on the cluster order (based on a spe-

cific permutation of clusters)
c) Has values ranging from 0 to 1, with one being

more accurate
d) Represented as ‘‘Acc’’ in plots

2) Adjusted Rand Index
a) Considers the random chance ‘‘alignment’’ of

clustering methods
b) Independent of cluster order
c) Has values ranging from -1 to 1, with one being

more accurate.
d) Represented as ‘‘ARI’’ in plots
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The following figures show the results of the analysis.

FIGURE 5. K-means with 3 clusters used to analyze PIT=60 with no
socio-economic data. Top left shows clusters based on LSTM embeddings
using all layers. Top right shows clusters based on actual values only. The
bottom center shows the confusion matrix and ARI between the top two
graphs.

FIGURE 6. K-means with 3 clusters used to analyze PIT=60 with no
socio-economic data. Top left shows clusters based on actual values only.
Top right shows clusters based on LSTM embeddings using the last layer
only. The bottom center shows the confusion matrix and ARI between the
top two graphs.

From Figure 5, Figure 6, Figure 7, and Figure 8 it can
be concluded that including socio-economic factors increases
the consistency (overlap) between actual, observation-based,
and embedding-based clustering. It is also noticeable that
K-means (6) has an advantage over K-medoids and that
using the last hidden layer of the LSTM as the embedding
vector yields better results than using all layers. The opti-
mum clustering approach for COVID-19 data is to include
socio-economic data and use the last layer of the LSTM as
the embedding in a k-means clustering algorithm.

We then analyzed the change in clustering over time.
We define a ‘‘cluster stability’’ metric as follows (using
Figure 9 as the example):

FIGURE 7. K-means with 3 clusters used to analyze PIT=60 with
socio-economic data. Top left shows clusters based on LSTM embeddings
using all layers. Top right shows clusters based on actual values only. The
bottom center shows the confusion matrix and ARI between the top two
graphs.

FIGURE 8. K-means with 3 clusters used to analyze PIT=60 with
socio-economic data. Top left shows clusters based on actual values only.
Top right shows clusters based on LSTM embeddings using the last layer
only. The bottom center shows the confusion matrix and ARI between the
top two graphs.

• Cluster 0 (green dots) had initially ten members
◦ Of these, 3 shifted to cluster 1 and 3 shifted to

cluster 2
• Cluster 1 (orange dots) had initially 4 members

◦ Of these, 2 shifted to cluster 0 and 1 shifted to
cluster 2

• Cluster 2 (blue dots) had initially 3 members
◦ Of these, 1 shifted to cluster 0 and 1 shifted to

cluster 1
• The overall cluster stability metric is defined as the max-
imum accuracy (for optimal cluster reordering, yielding
the maximum diagonal).

◦ In this case: (4+1+1)/17 = 35.3%
Table 4 shows the cluster stability calculations (last two

columns) across two types of embeddings: without socioeco-
nomic data and with socioeconomic data. The two columns
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FIGURE 9. Using K-means and 3 clusters for the 17 counties in OH with
no socio-economic data, this plot shows how the 17 counties changed
cluster assignment between PIT=60 and PIT=90.

TABLE 4. Cluster stability over time (SE: Socio-Economic).

reflect the calculations performed using LSTM embeddings
derived from the last layer or all layers of the neural network.

Figure 10 plots the cluster stability metrics over a
wide range of PIT variations and compares the effect of
socio-economic data on the stability of the clusters. Adding

FIGURE 10. Cluster Stability plotted over time in comparison with PIT=60
for the cases of (top) without socio-economic data and (bottom) with
socio-economic data.

the socio-economic data to the LSTM embeddings stabilizes
the cluster formation over time.

VI. CONCLUSION
The work presented here demonstrates improved LSTM fore-
casting through embeddings derived from a loosely decou-
pled time series. We applied this methodology to COVID-19
infections and deaths at the US county level. Our socioeco-
nomic embedding approach demonstrates enhanced 10-day
moving average predictions compared to traditional LSTM
modeling, especially in conjunction with K-means clustering
of the final layer embeddings. Additionally, we demon-
strate stability in the clustering of LDTs when combined
with socioeconomic data, providing increased consistency in
predictions.

With this approach, US counties that lag behind in catching
the virus benefit from counties similar in socioeconomic
demographics, but with an earlier start to their disease prop-
agation, improving the predictive outcome.
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