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ABSTRACT The susceptibility of GNSS signals has led to the development of advanced aiding systems in
which information obtained from external sensors is fused with the inertial navigation solution to maintain
navigation continuity in GNSS-denied environments. In terrain-aided navigation, the aim is to solve the
horizontal position ambiguity of the platform with the help of pre-installed digital terrain elevation maps and
estimated terrain height information obtained by the platform’s barometer and distance measuring sensor
readings. In this paper, we propose a novel multi-hypothesis terrain-aided navigation framework where
horizontal position measurements are generated along with their covariance matrices from the estimated
terrain heights. These measurements are fused with appropriate navigation hypotheses in a closed-loop
configuration where augmented navigation error state estimates are fed into the navigation solution of the
corresponding hypothesis. The number of hypotheses and their covariances change adaptively based on the
terrain under the flight path preventing deviation from the true position for multi-modal or non-informative
regions. The simulation results show that, unlike conventional TANmethods, the proposed method is able to
yield accurate positioning estimations even when low-end IMUs are used. Furthermore, the proposedmethod
is found to be effective in the presence of substantial initial errors in position, velocity, and heading.

INDEX TERMS Inertial navigation, terrain referenced positioning, terrain aided navigation.

I. INTRODUCTION
Inertial navigation systems (INS) have been around since the
40s. These systems contain an Inertial Measurement Unit
(IMU) composed of an accelerometer and gyroscope triad to
sense specific force and rotation with respect to the inertial
frame. However, due to its integrating nature, systematic and
stochastic errors in the IMUmeasurements cause degradation
of position, velocity, and attitude (PVA). For this reason,
high precision IMUs are usually employed in INS in critical
platforms to ensure accurate PVA solutions [1]. Although
these high-grade INS yield reasonable PVA accuracy, they
are costly and large. To maintain an accurate PVA solution
with affordable INS or for more prolonged durations, the
Global Navigation Satellite System’s (GNSS) low bandwidth
and high accuracy position solution are integrated with INS
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output in almost every platform. However, GNSS signals are
susceptible to jamming and spoofing and may be blocked
or corrupted by obstructions [2]. Thus, information obtained
from other sensors is fused with INS to limit the errors during
GNSS outages. An aircraft is equipped with ranging sensors
(radar or laser altimeter) to measure the distance underneath
the aircraft (ground clearance distance) and a barometer
to measure the height above the mean sea level (altitude).
Terrain-aided navigation (TAN) is a type of navigation where
the information obtained by the sensors mentioned previ-
ously, and Digital Terrain Elevation Data (DTED) are used
to estimate the platform’s position. In TAN, the terrain height
profile beneath the aircraft path is calculated by subtracting
ground clearance distance from the altitude reading. Then,
the aircraft position is estimated using DTED and collected
terrain height profile. There are two primary approaches in
TAN literature: batch and recursive. A well-known batch
TAN method is the terrain contour matching (TERCOM)
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algorithm [3], [4]. TERCOM estimates the current position
by comparing the collected terrain height profile with the
probable terrain heights evaluated from DTED at the hor-
izontally shifted versions of the INS position output. The
position shift that yields maximum similarity between the
observed terrain height profile and calculated terrain height
profile is regarded as a position error that is fed into the INS
as a position fix. Sandia Inertial Terrain Aided Navigation
(SITAN) [5] is themost famous approach among the recursive
methods. In SITAN, terrain height error is predicted using
gradients of the DTED map around the predicted navigation
position. Then the difference between the measured terrain
height error and this predicted terrain height error is used as
an innovation in the Kalman filter correction step. There are
several studies inspired by the TERCOM and SITAN archi-
tectures. In [6], TERCOM is utilized along with a particle
filter to estimate the initial position under high uncertainty.
Sonmez and Bingol demonstrate the effectiveness of TER-
COM in land vehicles [7]. In [8], a probabilistic data associa-
tion filter is employed to convert TERCOMcorrelation scores
to probability values. Peng proposes a two-stage matching
algorithm involving coarse terrain-based matching followed
by contour-based finematching [9]. There are some studies in
which TERCOM and SITAN solutions are fused to increase
robustness [10], [11], [12], [13].

There are also numerous non-linear estimation-based
methods in the TAN literature. Enns and Morrell proposed a
maximum a posteriori (MAP) basedmethod [14]. Bergman et
al. address the TAN problem in a bayesian frameworkwhere a
point mass filter is utilized [15], [16]. Apparently, the particle
filter (PF) approach to the TAN problem is first mentioned
in [17]. Turan and Kutay test the performance of two different
PF resampling methods in TAN [18]. Rao-Blackwellized
implementations of PF, in which the linear and non-linear
parts of the state vector are separated, have been extensively
utilized in recent studies related to Terrain-Aided Navigation
for underwater vehicles [19], [20], [21]. Rupeng et al. pro-
poses a terrain aided positioning (TAP) confidence interval
model for PF to mitigate the initial TAN positioning error
[22]. In [23], estimation performances of PF and Unscented
Kalman Filter (UKF) are compared. Ignoring the PVA error
dynamics in INS, the studies mentioned so far employ a
fairly simple process model to represent the dynamic of the
platform state in which some IMU error sources, particu-
larly accelerometer and gyroscope biases effects, aremodeled
as process noise. Such modeling simplification disregards
the realistic error growth contributed by various IMU error
sources in PVA states, which probably leads to a model
mismatch in real-time applications, especially when low
to mid-end IMUs are used [24]. Nordlund and Gustafsson
propose a marginalized particle filter-based method where
the linearized INS error propagation model is utilized in
PF-based TAN for the first time [25]. Although PFs are
widely used in non-linear estimation problems, as particles
can represent any distribution, they also possess some issues.
First, PF algorithms become computationally demanding as

the number of states increases [26]. Second, Particle Fil-
ter solutions may diverge when the posterior distribution is
multi-modal, which can frequently arise in Terrain-Aided
Navigation problems due to topographical symmetries. These
symmetries are characterized by shapes and structures in
the region that exhibit similar heights, making it challeng-
ing to distinguish between different possible locations. This
divergence issue in the TAN problem has been investigated
in some studies. Palmier et al. introduced the Interacting
Weighted Ensemble Kalman Filter (IWEnKF), which reduces
the probability of divergence [27]. Likewise, Teixeira et al.
proposed some ad-hoc methods to address the divergence
issue in PFs for underwater TAN problems [28]. However,
these approaches utilize a relatively simplistic motion model
to represent the vehicle’s dynamics, and do not account for
numerous IMU error sources. In this study, we propose a
novel TAN method in which we generate multiple horizontal
position measurements and their covariance matrices which
are then governed in a multi-hypothesis structure. The pro-
posed structure accomplishes rapid convergence while also
maintaining robustness against divergence as the platform
flies over flat or multi-modal areas. We test the effectiveness
of our method in a challenging simulation setup where initial
PVA errors are significant. We also use low-end IMU specs
during the synthetic data generation. The rest of the paper
is organized as follows. The problem formulation, used nota-
tion, andmotivation are provided in Section II.We discuss the
mathematical details of the proposed method in Section III.
In Section IV, we present the simulation results. The con-
clusion and future works are presented in Section V. In the
Appendix, we emphasize some basic concepts related to INS.

II. NOTATION AND MOTIVATION
Beforewe explain the proposed TANmethod in greater detail,
we introduce the notation we use in this work. The notation
related to the inertial navigation is as follows. The geodetic
position vector p ≜ [l L h]T is composed of latitude(l),
longitude(L), and altitude(h). The vector vN ≜ [vn ve vd ]T

represents the velocity vector of the platform resolved in
the North-East-Down (NED) frame. The attitude of the body
with respect to NED frame is expressed by the Euler angle
vector ψ ≜

[
ϵr ϵp ϵy

]T which is composed of roll(ϵr ),
pitch(ϵp), and yaw (or heading)(ϵy) angles in radians. The
gyroscope and accelerometer output of the IMU at time t
are denoted by ωBIB(t) and f BIB(t), respectively. In inertial
navigation, the PVA error dynamics equation is derived by
perturbating the mechanization equations around the nominal
PVA solution. The obtained error dynamics equation is in
the linear form, enabling it to be used as process model in
the Kalman filter. Thus, in INS-related fusion problems, the
errors in PVA are set as states to be estimated dynamically
rather than the actual PVA values [1], [29], [30]. In this
work, we use the augmented error state model [31] where
IMU-related error parameters are included in the state vector.
So, the augmented state vector to be estimated is composed
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of position error δp ≜ [δl δL δh]T , velocity error δvN ≜
[δvn δve δvd ]T , attitude error δψ ≜

[
δϵr δϵp δϵy

]T gyro-
scope scale factor error δωSF, misalignment error δωMA,
bias repeatability error δωBR, bias instability error δωBI and,
accelerometer counterparts of the same errors: δf SF, δfMA,
δf BR, δf BI. Each of these IMU errors is 3×1 vectors (except
for misalignment error that is 6 × 1 vector) whose elements
indicate the corresponding error on the body X,Y, and Z
axes, respectively. Manufacturers often share the standard
deviation of these IMU error terms, or these statistics can
be estimated via various techniques such as Allan-variance
[24], [32], [33]. We briefly mention the inertial navigation
mechanization equations, error dynamics equations, and IMU
error parameters in the Appendix. We define the (augmented)
error state as given in (1)

δX ≜

[
δXPVA
δX IMU

]
39×1

(1)

where;

δXPVA ≜
[
δψT δvT δpT

]T
9×1 (2)

δX IMU ≜
[
δXT

GYRO δXT
ACCEL

]T
30×1

(3)

where;

δXGYRO ≜
[
δωTSF δωTMA δωTBR δωTBI

]T
15×1

(4)

δXACCEL ≜
[
δf TSF δf TMA δf TBR δf TBI

]T
15×1

(5)

The conditional error state vector and it’s covariance
matrix are defined as given in (6) and (7)

δ̂X(ti|tj) ≜ E[δX(ti)|δzt0:tj ] (6)

P(ti|tj) ≜E
(
[δ̂X(ti|tj)−δX(ti)][δ̂X(ti|tj)−δX(ti)]T |δzt0:tj

)
(7)

In the above equations, δzt0:tj denotes the set of observed
position errors from time t0 up to tj. The cases of ti = tj
and ti > tj correspond to estimated and predicted states
and state covariance matrices, respectively. For the sake of
brevity, we use the superscripts + and − to indicate estimated
and predicted states or covariance matrices for the rest of the
paper. The dynamics of the true error state can be represented
in the linear state-space form as given in (8)

˙δX(t) = F(t)δX + G(t)w(t) (8)

where F(t)39×39 is the state transition matrix, w(t)12×1 is
a random input vector whose elements are standard normal
random variables representing the white noise terms such
as velocity and random walk specifications of the IMU and
G(t)39×12 is the noise gain matrix. We discuss the details
related to F(t),G(t), and w(t) in the Appendix. Similarly, the
measurement equation can be represented as follows:

δz(t) = HδX(t)+ v(t) (9)

where H3×39 is the measurement matrix and v(t)3×1 is
the Gaussian white noise vector representing the uncer-
tainty in the measured position error. The equations (8)
and (9) are linear, and noise terms w(t), v(t) are mod-
eled as zero-mean Gaussian independent of each other(
E[w(tk )v(tj)] = 0 ∀(ti, tj)

)
with the covariance matrices

Q(t) and R(t), respectively. Thus, utilizing the Kalman fil-
ter to recursively estimate δ̂X and its covariance matrix P
is a standard routine in INS-related fusion problems. For
example, in loosely-coupled INS-GNSS integration, δz(t)
is constructed by subtracting the lever-arm compensated
geodetic position output of the GNSS receiver from the
INS geodetic position [34]. Observing the position error
makes all of the δXPVA state components, along with some
part of the δXGYRO, and δXACCEL observable as the plat-
form maneuvers [35], [36]. However, in TAN, terrain height
measurement beneath the platform does not give direct infor-
mation about the platform’s horizontal position (latitude,
longitude). Correlation-based approaches like TERCOM
resolves this horizontal position ambiguity by comparing the
collected terrain height profile with DTED. But, correlation-
based approaches assume that the position errors during
terrain height acquisition remain fixed. Deploying tactical
or sub-tactical grade IMU or having a velocity error at the
beginning of the acquisition mode causes the accumulation of
cross-track errors at the end of the mode, which degrades the
accuracy of the position error estimation of correlation-based
methods [37]. Linearized Kalman filter-based approaches
like SITAN resolve the horizontal position ambiguity by
deploying terrain slope information around the position esti-
mate in the measurement model. However, this lineariza-
tion process is highly sensitive to terrain shape and leads to
incorrect estimates when the initial position uncertainty is
significant [10]. The primary motivation of our study is to
develop a TANmethod that is robust to substantial initial PVA
errors and yields reasonable performance even when low-end
IMUs are used.

III. MULTI-HYPOTHESIS STRUCTURE IN TAN
Hypotheses constitute the core part of the proposed method.
The main components of the method are demonstrated in
Fig. 1 where a loop that starts and ends in hypothesis set
propagation corresponds to a single cycle of the algorithm.
Between the terrain aid cycles, hypotheses are propagated
using IMU and barometer measurements. During the ter-
rain aid cycles, multiple horizontal measurements and their
covariance matrices are generated from the statistics of the
clustered probable locations obtained from hypotheses. These
probable locations are unique for each hypothesis and cor-
respond to the locations within a certain percentage of the
hypothesis horizontal uncertainty region that have similar
heights obtained from DTED and measured terrain height
using altimeter sensor readings. Once the horizontal mea-
surements are generated, they are associated and fused with
appropriate hypotheses. Similar hypotheses are merged, and
unlikely hypotheses are pruned to limit the computational
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FIGURE 1. Flowchart of the proposed TAN algorithm.

burden.We also propose additional covariance manipulations
to prevent divergence for long TAN durations. In the follow-
ing part of the paper, we discuss the details of each flowchart
component in greater detail.

A. THE DEFINITION OF HYPOTHESIS AND
MULTI-HYPOTHESIS
A hypothesis can be considered as an independent INS sys-
tem with its own navigation properties, error state, and error
state covariance matrix. Individual Kalman filters that run
parallel estimate the error state of each hypothesis at every
terrain aid cycle if they are assigned a suitable measurement.
We denote ξ symbol to represent a hypothesis and βξi (t) to
imply the β feature of the hypothesis ξi at time t . β can
take any PVA property, error state or error state covariance
mentioned in Section-II. Thus, β can take any symbol in the
set

{
p̂, v̂, ψ̂, ˆδX,P

}
If there is a subscript of β, that means

only the elements indicated by the subscript is implied. For
example, p̂ξi (t) corresponds to 3× 1 geodetic position vector
that is [l L h]T of the hypothesis ξi at time t whereas p̂ξi

l,L(t)
represents the 2 × 1 vector containing only the horizontal
components of the geodetic position vector that is [l L]T .
Similarly, ˆδX

ξi (t) represents the whole 39 × 1 error state
of the hypothesis ξi at time t whereas ˆδX

ξi
vN,vE (t) represents

2 × 1 error state vector containing only the north and east
velocity errors of the hypothesis ξi at time t . On the other
hand, a multi-hypothesis, denoted by 4(t), corresponds to a
collection of hypotheses at time t , such as {ξ1, ξ2, . . . , ξn}
where ξi for i = 1, 2, . . . , n represents individual hypotheses
at time t .

B. HYPOTHESIS SET PROPAGATION
Let’s assume that ground clearance distance measurements
(obtained by a distance measuring device such as radar/laser
altimeter) are fused with INS at times tRa(k) for k ∈

{1, 2, . . . ,K } where tRa(k) denotes kth terrain aid cycle time.
Let 1tIMU and TIMU denote the time difference between two
successive IMU measurements and the set of times when
IMU measurements are received, respectively. The hypoth-
esis propagation step occurs during the time frames TPr (k)
for k ∈ {1, 2, . . . , ,K } where TPr (k), as defined in (10),

Algorithm 1 Hypothesis Set Propagation

Input: 4+
(
tRa(k−1)

)
,
{
ωB
IB (t) , f B (t) , hB (t) | t ∈ TPr (k)

}
Output: 4−

(
tRa(k)

)
1: 4−

(
tRa(k)

)
= ∅

2: for each ξ ∈ 4+
(
tRa(k−1)

)
do

3: for each t ∈ TPr (k) do
4: [ω̄B

IB, f̄
B
] = correctIMU (ωBIB(t), f

B (t) , ˆδX
ξ

IMU)

5: X̂
ξ

PVA = updateAttitude(X̂
ξ

PVA, ω̄B
IB)

6: X̂
ξ

PVA = updateVelocity(X̂
ξ

PVA, f̄
B
)

7: X̂
ξ

PVA = updatePosition(X̂
ξ

PVA)

8: X̂
ξ

PVA = stabilizeVerticalChannel(X̂
ξ

PVA, hB(t))

9: ˆδX
ξ
= 8 (t) ˆδX

ξ

10: Pξ
= 8 (t)Pξ8 (t)T + Qd (t)

11: end for
12: append ξ into 4−

(
tRa(k)

)
13: end for

corresponds to the set of IMU times between two terrain aid
cycles at time tRa(k−1) and tRa(k).

TPr (k) ≜
{
t| tRa(k−1) < t ≤ tRa(k), t ∈ TIMU

}
(10)

The term hypothesis set propagation refers to updat-
ing all properties of hypotheses between two terrain aid
cycles. To perform this propagation, PVA, error state,
and error covariance property of each hypothesis in the
set 4+

(
tRa(k−1)

)
are propagated using the set of IMU

and barometer measurements from time tRa(k−1) to tRa(k),
that is

{
ωBIB (t) , f B (t) , hB (t) | t ∈ TPr (k)

}
. The obtained

hypotheses at the end of the cycle form the predicted hypothe-
sis set4−

(
tRa(k)

)
. The hypothesis set propagation follows the

procedure given in Algorithm 1. In this algorithm, X̂
ξ

PVA is the

PVA vector consisting of attitude (ψ̂
ξ
), velocity (v̂ξ ), position

(p̂ξ ) vectors of the hypothesis ξ . ˆδX
ξ
and Pξ are the error

state and the error state covariance matrix of the hypothesis
ξ , respectively. In line 4, the raw IMU measurements are
corrected using each hypothesis’s estimated IMU error states
from the previous terrain aid cycle. In lines 5, 6, and 7, the
attitude, velocity, and position of the individual hypotheses
are updated using discrete INSmechanization equations [38],
[39]. In line 8, a baro-inertial vertical channel filter is per-
formed [29]. We do not delve into the mechanization equa-
tions here to avoid veering off the main topic. In lines 9 and
10, Kalman filter error state and error state covariance matrix
propagation are performed, where 8(t) andQd (t) are the dis-
crete state transition and process noise covariance matrices.
These matrices are obtained by discretizing their continuous
counterparts, F(t) and Q(t), using Van Loan’s method [40].

C. MEASUREMENT GENERATION
Themeasurement generation step takes place at the beginning
of every terrain aid cycle. The purpose of this step is to gener-
ate horizontal measurements, along with their corresponding
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covariance matrices within the uncertainty regions of avail-
able hypotheses, using the collected altimeter measurements
and DTED map. Let hTer (pl,L), hBar (p), and hRa(p) denote
the true terrain height, measured barometric altitude, and the
measured ground clearance distance at the geodetic position
p = [l L h]T . Then, we can express the true terrain height of
any arbitrary 2D horizontal location pl,L as given in (11).

hTer (pl,L) = (hBar (p)−1Bar )− (hRa(p)−1Ra) (11)

where 1Bar and 1Ra are the pressure altimeter and radar(or
laser) altimeter errors. Similarly, the relation between true
terrain height and the calculated terrain height via DTEDmap
at pl,L can be established as given in (12).

hTer (pl,L) = H(pl,L)−1Dted (12)

where H(pl,L) is the DTED referenced terrain height calcu-
lated by the bilinear interpolation method using four adja-
cent grid heights of the horizontal position pl,L and 1Dted
corresponds to the DTED error at the point pl,L . Assuming
the error terms in (11) and (12) are independent zero-mean
Gaussians with the variances σ 2

Bar , σ
2
Ra, σ

2
Dted , then, the error

e, that is defined as the difference between the estimated ter-
rain height using altimeter outputs and the calculated terrain
height via DTED at the position pl,L can be expressed as
follows.

e ≜ ĥTer (pl,L)−H(pl,L)

= {hBar (p)− hRa(p)} −H(pl,L)

= 1Bar −1Ra −1Dted (13)

Based on the statistical assumptions about the errors above, e
would also be zero-mean Gaussian with variance σ 2

vert where

σ 2
vert = σ 2

Bar + σ 2
Ra + σ 2

Dted (14)

We use the distribution of e to assign a score to the points
within the region which corresponds a pre-determined per-
cent of the horizontal position uncertainty of a hypothesis.
We define a scoring function fsc

(
p̄l,L; σvert , ĥTer (p(t))

)
to

assign a score to an arbitrary position p̄l,L . The score of
the position is equivalent to the likelihood of calculating the
terrain height H(p̄l,L) from DTED given that ĥTer (p(t)) is
observed. This likelihood can be evaluated as given in (15)
where ĥTer (p(t)) is abbreviated as ĥTer (t) for brevity indicat-
ing the estimated terrain height at time t when the platform is
located at position p.

fsc
(
p̄l,L; σvert , ĥTer (t)

)
≜ L

(
H(p̄l,L)|ĥTer (t)

)
= N

(
H(p̄l,L)− ĥTer (t); 0, σ

2
vert

)
= exp

−0.5
(
H(p̄l,L)− ĥTer (t)

)2
σ 2
vert


(15)

1) GRIDDING
In this part of the algorithm, our purpose is to generate
approximately equally spaced 2D points that are located
within pc percent probability region of a hypothesis ξ . In (16),
Oξ (dg) corresponds to the set of points where the angular
separation distance equals to dg in both the north and east
direction.

Oξ (dg) ≜

{
p̂ξ
l,L −

[
i
j

]
dg

∣∣∣∣ i, j ∈ Z
}

(16)

where Z is the set of integers, and p̂ξ
l,L is the estimated

horizontal coordinate of hypothesis ξ . We define a gridding
function G on a hypothesis set as given in (17).

G(ξ ; pc, dg) ≜
{
x
∣∣(x− p̂ξ

l,L)
T (Pξ

l,L)
−1(x− p̂ξ

l,L) < χ2
pc ,

x ∈ Oξ (dg)
}

(17)

where pc denotes the coverage probability and χ2
pc is the two

degrees of freedom chi-square inverse cumulative distribution
function evaluated at pc.
Utilizing the horizontal position covariance matrix, Pξ

l,L ,
G(ξ ; pc, dg), abbreviated as G(ξ ), generates equally spaced
2D points inside the area which pc percent of the horizontal
uncertainty region of the hypothesis ξ covers. We employ
the function in (15) to score the points in G(ξ ; pc, dg). Then,
we create a new set of points, ϒξ

1 (τs) ⊆ G(ξ ), whose scores
are greater than the threshold τs. Thus, any point x ∈ ϒ

ξ
1 (τs)

at time t satisfies the following property.

fsc
(
x; σvert , ĥTer (t)

)
> τs (18)

Furthermore, we assign ϒ
ξ
0 (τs) = G(ξ ) \ϒ

ξ
1 (τs) to represent

the set of points inG(ξ ) whose scores are lower than τs. To be
more precise, we illustrateϒ

ξ
1 (τs), andϒ

ξ
0 (τs), abbreviated as

ϒ
ξ
1 and ϒ

ξ
0 , on the same plot in Fig. 2. In this example, the

threshold τs is set to 0.01. As a result, ϒξ
1 contains elements

from G(ξ ), where the terrain height, calculated using DTED,
falls within the range of ĥTer−3σvert to ĥTer+3σvert . In Fig. 2.
the blue mark at the center of the circle indicates p̂ξ

l,L that
is the latitude and longitude of the hypothesis ξ . The area
enclosed by the blue dashed circle corresponds to the 99%
uncertainty region in the horizontal position of ξ , where the
errors in latitude and longitude are not correlated and have
equal variances, resulting in a nearly circular shaped region.
The red-colored points form ϒ

ξ
1 . These points are indicated

as Probable platform positions since the difference between
the calculated terrain heights of these points and themeasured
terrain height ĥTer lie in the 3σvert interval of e in (13). Thus,
it is reasonable to think that the true position lies in the region
formed by red-colored dots. But, on the contrary, the elements
of ϒ

ξ
0 , the black-colored points, are regarded as improbable

positions since the deviation between the calculated terrain
height of these points and the measured terrain height ĥTer
are outside the 3σvert interval of e in (13).
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FIGURE 2. Demonstration of ϒξ1 and ϒξ0 .

2) CLUSTERING
The cardinality ofϒξ

1 gets larger as the position uncertainty of
the hypothesis ξ increases. In addition to that, there could be
many hypotheses due to terrain height similarities. Thus, con-
structing a fusion method that processes the elements of ϒ

ξ
1

separately may become computationally intractable. To over-
come this issue, wemodelϒξ

1 as a Gaussian mixture (GM) by
dividing it into smaller measurement sets and extracting each
set’s first and second central moment information. We utilize
the well-known k-means clustering algorithm [41] to estab-
lish GM structure. In (19), Aξ corresponds to the approximate
area of the 99% horizontal position error uncertainty region
of ξ in the horizontal geodetic coordinates.

Aξ ≜ π
(
1.5(σ ξ

n + σ ξ
e )
)2

(19)

where σ
ξ
n and σ

ξ
e are the square roots of the diagonal terms of

Pξ
l,L corresponding to the standard deviations of the latitude

and longitude errors of the hypothesis ξ . Let rc and nc denote,
respectively, the minimum cluster radius in meters and the
minimum number of members of a cluster. We set the number
of clusters of the hypothesis ξ as given in (20).

K ξ
= max

(⌊
min

(
|ϒ

ξ
1 |A

ξ

|G(ξ )|
/
π (3rc)2

r2e
,
|ϒ

ξ
1 |

nc

)⌋
, 1

)
(20)

where | · | returns the cardinality of a set and re ≈ 6.4e6 is
the mean radius of the world curvature at latitude π/4. The
explanation of the formulation in (20) is as follows. First,
max(·) function on the right-hand side ensures that K ξ would
be at least one. The first entry of themin(·) function represents
the ratio of the area covered by the elements of ϒ

ξ
1 to the area

of a circle with the radius 3rc meters scaled by r2e . The second
entry in min(·) function represents the number of clusters if
each cluster has nc members. The ⌊·⌋ operator returns the
greatest integer below the output of min(·) function. The
purpose of the formulation in (20) is to establish a relationship
between the number of clusters, spatial size and cardinality of
the set ϒ

ξ
1 . The clustering step produces K ξ number of sets

FIGURE 3. Demonstration of measurement set along with their
uncertainty ellipses.

θi ⊆ ϒ
ξ
1 where i ∈ {1, 2, . . . ,K ξ

}. At this point, we create
K ξ measurements whose values and covariance matrices are
obtained by (21) and (22);

zξi =

∑|θi|
k=1 θi(k)sθi(k)∑|θi|

k=1 sθi(k)
(21)

Rξ
i =

1
|θi| − 1

|θi|∑
k=1

[θi(k)− z
ξ
i ][θi(k)− z

ξ
i ]
T (22)

where θi(k) and sθi(k) are kth member’s 2D position and kth

member’s score of the measurement set θi. Continuing the
example depicted in Fig.2, six measurements are generated
from the set ϒ

ξ
1 . In Fig.3, cluster centers correspond to the

measurements zξ s, and the enclosing ellipses represent the
99% uncertainty regions derived from the covariance matri-
ces Rξ s.

D. HYPOTHESIS SET CORRECTION
Hypothesis set correction is performed just after measure-
ment generation step. Let 0(tRa(k)) denote the set of tuples
consisting of measurements and measurement covariances
that are generated from all hypotheses at the time tRa(k) as
the following

0(tRa(k)) =
{
(zξi ,R

ξ
i )|i ∈ {1, .,K

ξ
}, for all ξ ∈ 4−(tRa(k))

}
(23)

Once the set 0(tRa(k)) is generated, a new hypothe-
sis set, 4+(tRa(k)), is formed by fusing the hypotheses in
4−(tRa(k)) with the appropriate members of 0(tRa(k)). Dur-
ing this process, the cardinality of the hypothesis set may
change

(
|4−(tRa(k))| ̸= |4+(tRa(k))|

)
. The measurement-to-

hypothesis association rule is provided in (24). The rationale
for using this association rule is to prevent the exponential
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Algorithm 2 Hypothesis Set Correction
Input: �(tRa(k))
Output: 4+

(
tRa(k)

)
1: 4+

(
tRa(k)

)
= ∅

2: for for each (ξ, γ ) ∈ �(tR(k)) do
3: δz = p̂ξ

l,L − z
γ

4: Kgain = PξHT (HPξHT
+ Rγ )−1

5: ˆδX
ξ+

= ˆδX
ξ
+ Kgain(δz− H ˆδX

ξ
)

6: Pξ+
= (I − KgainH )Pξ

7: p̂ξ+

l,L = p̂ξ
l,L −

ˆδX
ξ+

l,L

8: v̂ξ
+

N ,E = v̂ξN ,E −
ˆδX

ξ+

vN ,vE

9: Ĉξ+

NB =

(
I3×3 − S( ˆδX

ξ+

r,p,y)
)−1

Ĉξ
NB

10: f̂
ξ+

bias = f̂
ξ

bias +
ˆδX

ξ+

fBR +
ˆδX

ξ+

fBI

11: ω̂
ξ+

bias = ω̂
ξ
bias +

ˆδX
ξ+

ωBR
+ ˆδX

ξ+

ωBI

12: ˆM−1
ξ+

acc =

(
I3×3 − DS( ˆδX

ξ+

aSF ,
ˆδX

ξ+

aMA
)
)
ˆM−1

ξ+

acc

13: ˆM−1
ξ+

gyr =

(
I3×3 − DS( ˆδX

ξ+

gSF ,
ˆδX

ξ+

gMA
)
)
ˆM−1

ξ+

gyr

14: set ˆδX
ξ+

= 0
15: append ξ+ into 4+(tRa(k))
16: end for

increase in the number of newly generated hypotheses.

ℓ(ξ, γ ) =


1 (zγ − p̂ξ

l,L)
T (Pξ

l,L)
−1(zγ − p̂ξ

l,L) < χ2
0.99,

ξ ∈ 4−, γ ∈ 0

0 otherwise

(24)

Let �(tRa(k)) denote the set of tuples consisting of hypothesis
ξ ∈ 4−, associated measurement γ ∈ 0 as given in (25)

�(tRa(k))

=
{
(ξ, γ )|ξ ∈ 4−(tRa(k)), γ ∈ 0(tRa(k)), ℓ(ξ, γ ) = 1

}
(25)

Once the association set �(tRa(k)) is formed, the closed-loop
integration is performed for each ξ , γ pair in the set�(tRa(k)).
This integration procedure is given in Algorithm 2.
In Algorithm 2, ξ+ indicates the corrected hypothesis.

In line 9, Ĉξ
NB is the direction cosine matrix representation of

the attitude of the hypothesis ξ . DS(·) forms a matrix where
scale factor error estimates are located on diagonal indices
and misalignment error estimates are located on off-diagonal

indices as shown in (42), and
(
M̂−1

)ξ

is the inverse of (42)
for the hypothesis ξ .

E. HYPOTHESIS PRUNING AND MERGING
The growing number of hypotheses is the primary computa-
tional burden of our method. Thus, eliminating the improba-
ble hypotheses andmerging similar hypotheses at each terrain

FIGURE 4. Two-dimensional illustration of merging, showing the gridding
regions of hypotheses before and after the merge with a CS threshold
of 2.

aid cycle is necessary to ensure the algorithm’s feasibility for
real-time applications. In the merging process, which occurs
immediately following the hypothesis set correction step,
we utilize Cauchy-Schwarz (CS) divergence [42] to calculate
dissimilarity scores between hypotheses. let D[i, j] and tm
denote, respectively, the CS divergence between hypotheses i
and j and merging threshold. We select CS divergence due to
its symmetric and non-negativity properties (D[i, j] = D[j, i]
and D[i, j] ≥ 0 for all i,j). The hypotheses i and j is merged if
D[i, j] < tm where D[i, j] is calculated as follows.

D[i, j] =
1
4
log

∣∣∣∣6i

2

∣∣∣∣+ 1
2
µT
i 6−1i µi +

1
4
log

∣∣∣∣6j

2

∣∣∣∣
+

1
2
µT
j 6−1j µj +

1
2
log

∣∣∣6−1j +6−1i

∣∣∣
−

1
2

(
6−1i µi +6−1j µj

)T
· (6−1i +6−1j )−1

·

(
6−1i µi +6−1j µj

)
(26)

In (26), | · | is the determinant operator, 6 is the covariance
matrix of the PVA part of the hypothesis, and µ is the PVA
value of the hypothesis. If two or more hypotheses are to
be merged, the mean and covariance of the merged hypoth-
esis are obtained using Salmond’s mixture merging structure
[43]. The mean and covariance of the merged hypothesis as
stated in (27), (28) are calculated for all navigation properties
assuming that the weights of the hypotheses, wk , equals to 1

N
for all k .

µmerged =

N∑
k=1

wkµk (27)

Pmerged =
N∑
k=1

wk
[
Pk + (µk − µmerged )(µk − µmerged )

T
]

(28)

In Fig. 4, we compare the initial set of hypotheses, con-
sisting of six individual hypotheses, with the reduced set
of hypotheses achieved through the merging process. The

62764 VOLUME 11, 2023
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FIGURE 5. The demonstration of hypothesis merging/pruning.

pairs of hypotheses whose divergence is less than two being
merged. The merging process is illustrated by showing the
initial set of hypotheses on the left, and the merged set of
hypotheses on the right. Hypotheses 4 and 5 are merged to
form hypothesis 2, while hypotheses 1, 2, 3, and 6 are merged
to form hypothesis 1.

In the pruning process, which occurs at the onset of
the hypothesis correction step, we assign a binary variable
αξ (tRa(k)) ∈ {0(discarded), 1(kept)} that denotes the status
of the hypothesis ξ . We set the value of the αξ (tRa(k)) as given
in (29).

αξ (tRa(k)) =

{
0 if |ϒξ

1 | = 0 and, |4−(tRa(k))| > 1
1 otherwise

(29)

The first condition in (29) implies that ξ is discarded if all
of its member locations obtained via gridding are improbable
and there is at least one more hypothesis in 4−(tR(k)) other
than ξ . Fig. 5 demonstrates a hypothesis pruning/merging
example that takes place within three successive terrain aid
cycles. The black lines separate hypothesis sets belonging
to different time instances. For example, seven emerging
hypotheses are located in different positions when the first
hypothesis set correction occurs at time tRa(1). These hypothe-
ses are propagated until the second hypothesis set correction
time tRa(2). Just after the tRa(2), hypotheses densify around two
locations. The following hypothesis set correction at tRa(3)
resolves the two-position ambiguity, resulting in hypotheses
to locate around the true platform position.

F. AD-HOC MEASURES TO PREVENT DIVERGENCE
Contrary to GNSS measurements that are independent of
the INS solution, in our method, the generated position
measurements are directly related to hypotheses. So, if the
true platform position is outside the gridding area of all
hypotheses, these hypotheses converge to the wrong place
and eventually die. According to our observations, this sit-
uation occurs due to the following reasons. First, horizontal
position error covariances of hypotheses converge to steady

FIGURE 6. The effect of covariance expansion.

state values after a few correction steps. At that point, grid-
ding regions of hypotheses slowly drift away from the true
position in areas where terrain heights change gradually.
Second, the error covariance propagation step stated in Algo-
rithm 1 line 10 yields realistic error accumulation under small
error assumptions [1]. Therefore, if the initial velocity and
attitude errors are significant, their effect on the position error
growth through the propagation equation does not reflect
the actual error growth, which may cause the true position
to reside outside all the hypotheses’ gridding boundaries.
To alleviate the divergence issue arising from these factors,
we have suggested two ad-hoc methods: covariance freezing
and covariance expansion. In covariance freezing, we manip-
ulate the horizontal position error and horizontal velocity
error covariances under certain circumstances. The position
error covariance is manipulated such that the area of gridding
region on the local level frame remain above the area of
a circle with the radius rlow for every hypothesis ξ , while
preserving the direction of the principal axes. Likewise, hori-
zontal velocity error variances are set to v2low if the drms value
obtained from horizontal velocity error covariance is lower
than the vlow parameter. In covariance expansion, we augment
the position error covariances of all alive hypotheses by mul-
tiplying their eigenvalues with a scale factor scof in instances
where no valid measurement can be obtained within the grid-
ding regions of all alive hypotheses. In Algorithm-3 and 4,
we share the details of our ad-hoc divergence prevention
measures. In these algorithms, σ ξ

n and σ
ξ
e are the square roots

of the diagonal terms of horizontal position error covariance
matrix Pξ

l,L. e
ξ
1 and eξ2 are the eigenvalues of Pξ

l,L and U ξ

and V ξ are the left and right singular matrices of Pξ
l,L. The

value eξmax equals max(eξ1, e
ξ
2) and scof, rlow parameters are

respectively uncertainty scale coefficient and approximate
minimum position coverage radius in meters.

Fig. 6 demonstrates a case in which the true position of
the platform is lost due to flying over a nearly flat region,
and is regained after the covariance expansion procedure is
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Algorithm 3 Covariance Freezing
Input: 4+(tRa(k)), rlow, vlow
Output: 4+(tRa(k))
1: for all ξ ∈ 4+(tRa(k)) do

2: if
(
1.5(σ ξ

n + σ
ξ
e )re

)2
< r2low then

3: κ =
r2low(

1.5(σ ξ
n+σ

ξ
e )re

)2
4: Pξ

l,L← U ξ

[
κeξ1 0
0 κeξ2

]
V ξT

5: end if
6: if

(√
Pξ
VN
+ Pξ

VE

)
< vlow then

7: Pξ
VN,VE

←

[
v2low 0
0 v2low

]
8: end if
9: end for

10: return 4+(tRa(k))

Algorithm 4 Covariance Expansion
Input: 4−(tRa(k)), scof
Output: 4−(tRa(k))

while αξ (tRa(k)) = 0 for all ξ ∈ 4−(tRa(k)) do

2: Pξ
l,L← scof

[
eξmax 0
0 eξmax

]
end while

4: return 4−(tRa(k))

performed. In this case, the platform moves from the top
right corner to the bottom left corner. The true position of the
platform is represented by the purple-colored + symbol, while
the red dots and ellipses denote the probable measurements
obtained through the gridding process and hypothesis grid-
ding regions, respectively. As the platformmoves towards the
position indicated by the bold green ellipse, measurements
are obtained from the blue hypotheses even though it is
drifting away from the true position. This phenomenon occurs
because the terrain height under the platform is virtually
identical to those present within the gridding region of the
hypotheses. However, the estimated terrain height obtained
by altimeter sensors deviates significantly from the calculated
terrain heights within the gridding region of the hypothesis
when the true position reaches the green-colored circle. As a
consequence, no horizontal measurement is generated, and
the track is lost unless supplementary measures are imple-
mented. At that point, executing the covariance expansion
algorithm increases the position error covariances of the
viable hypotheses, thereby allowing for the generation of
horizontal measurements as the true position falls within the
expanded gridding region of the hypothesis. The covariance
expansion can also lead to the formation of false hypotheses,
as depicted in Fig. 6. However, these hypotheses disappear
after a few correction cycles for this particular topography.

FIGURE 7. The bird’s eye view of flight path.

G. HYBRID NAVIGATION OUTPUT
So far, we have focused on the generation and management
of the multiple hypothesis sets. However, a single navigation
PVA output and its covariance matrix are needed. The single
PVA and its error covariance are calculated using (27) and
(28) considering all alive hypotheses.

IV. SIMULATION RESULTS
To test our TAN method, first, we generate a flight trajectory
as illustrated in Fig.7, and its corresponding errorless IMU
data. Then, using (40) and (41), we obtain distorted IMU
measurements. The total flight duration is 36 minutes, and
the trajectory profile consists of straight-level flights followed
by 1.5 G coordinated turns. The aircraft flies with a constant
250 m/s speed, and the side-slip, angle of attack angles are
ignored in the data generation. We use level-1 DTED whose
limits are 17◦11′19′′ − 18◦58′27′′ for latitude, 98◦32′55′′ −
99◦41′40′′ for longitude.

In our simulation setup, we use mems-grade IMU error
specifications to distort true IMU data. To test the pro-
posed filter consistency, we utilized the offline Monte Carlo
test [44], in which the normalized estimation error squared
(NEES) value is evaluated for only the horizontal position
states at each terrain aid cycle. We set the Monte Carlo
number as 100. The standard deviation values of gyroscope
error specifications are as follows: 7◦/hr bias repeatability
error, 400 ppm scale factor error, 0.5 mrad misalignment
error, 0.3◦/hr bias instability error, 0.15◦/

√
hr angle random

walk error. Similarly, the standard deviation values for the
accelerometer error specifications are detailed as follows:
2 mg bias repeatability error, 200 ppm scale factor error,
0.5 mrad misalignment error, 0.04 mg bias instability error,
0.03 m/s/

√
hr velocity random walk error. The overall error

in the measured terrain height is assumed to be zero-mean
Gaussian with a standard deviation of 15 meters. Standard
deviation values of the initial position, velocity, and heading
errors are 2km in both north and east directions, 10 m/s in
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FIGURE 8. Horizontal position NEES for 100 Monte Carlo simulation.

both north and east directions, and 200 mrad heading angle.
The terrain aid cycle frequency is set to 0.5 Hz. The algorithm
parameters, determined empirically, are specified as follows:
τs = 0.01, rc = rlow = 100 meters, nc = 40, scof = 3,
and the hypothesis merging distance threshold is established
at 1.8. We set the dg parameter, which is unique for each
hypothesis, as dξ

g = 0.06(σ ξ
n + σ

ξ
e )r−1e . The suitability of

both TERCOM and SITAN is compromised in this scenario
due to the substantial errors assumed in initial velocity and
position. In Fig. 8, the NEES test statistic result is given. The
dashed line illustrates the 95% confidence limit upper bound.

As the Fig. 8 demonstrates, apart from a few time indices,
our filter is consistent as the calculated NEES is lower than
95% confidence bound, meaning that horizontal position
errors are consistent with filter position covariance outputs.
Considering all Monte Carlo runs, the mean of absolute nor-
thing and easting errors are lower than rc parameter, which
is 100 meters. Fig. 9 and Fig.10 show a comparison of the
estimated horizontal velocity and heading angle with their
respective true values. The error in the estimated east velocity
decreases in the initial minutes of the flight. In contrast, the
heading error remains relatively constant at approximately
120 mrad during straight flight and reduces to 15 mrad as
the platform banks to maneuver. In Fig.11, the graph of the
average number of hypotheses (ANH) of allMonte Carlo runs
is depicted in two subplots. The plot on the top shows the
ANH in the first 25 seconds, where ANH quickly rises to
roughly 20 during the first few terrain aid cycles and then
decreases due to the hypotheses pruning andmerging process.
The plot on the bottom indicates the ANH after the first
minute, where ANH generally stays around one and slightly
increases at some parts of the flight due to measurement
ambiguities caused by topographical symmetries or flatness.
This also indicates that the proposed method regulates the
number of hypotheses without losing the true position during
temporary ambiguities caused by topographical symmetries
or flatness.

FIGURE 9. Single-run true velocity versus estimated velocity.

FIGURE 10. Single-run true heading versus estimated heading.

FIGURE 11. Average number of hypotheses in the first minute(top) and
rest of the flight(bottom).

V. CONCLUSION AND FUTURE WORK
In this study, we proposed a novel multi-hypothesis based
TAN method. We highlight the contributions of our study as
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follows. In contrast to traditional TANmethods, the proposed
multi-hypothesis approach demonstrates robustness to sub-
stantial initial errors in position, velocity, and heading. The
number of hypotheses increases when the platform hov-
ers over non-informative or repetitive terrain shapes and
decreases when this ambiguous position situation is cleared.
Thus, with the proper parameter selection, navigation con-
tinuity is maintained. Second, we employed an augmented
error state that encapsulates both PVA errors and various IMU
errors. This comprehensive state modeling reflects realistic
position error growth in hypotheses resulting in converged
position estimations even when low-end IMU measurements
are used in simulations. The utilization of lower limit parame-
ters for position and velocity error covariance, which we have
implemented to prevent divergence, has the drawback that
errors fluctuate around these parameters once the hypotheses
have converged to the true position. We found that these
covariance limit parameters can be decreased for more accu-
rate radar/laser altimeters and terrains with distinctive fea-
tures. In future studies, we will put effort into making these
parameters adaptive to terrain profiles and the error model of
distance-measuring altimeters. In the simulations, we made
some assumptions for modeling simplifications. First, regard-
less of the aircraft’s attitude, we assume that the distance
measuring instrument is nadir pointing and measures the
noise-corrupted vertical distance between terrain and aircraft.
Additionally, we ignored any data latency issues and vertical
channel dynamics, which play a critical role in real-time
systems. In future work, we plan to extend our TAN method
to account for these considerations.

APPENDIX A
BASICS OF INERTIAL NAVIGATION MATHEMATICS
A. REFERENCE FRAMES
A reference frame consists of a center point and three orthog-
onal right-handed axis sets. Throughout this paper, we utilize
the NED navigation frame as the selected local level frame
whose origin is the latitude, longitude, and altitude of the
navigating platform’s center, and its X, Y, and Z axes are
aligned with the north, east, and local vertical, respectively.
The other frame of reference we use is the body frame,
whose origin is located at the center of the platform, and
its X, Y, and Z axes are aligned with the platform roll,
pitch, and yaw axes, respectively. In this study, we assume
that body and geodetic frame origins are coincident. The
IMU accelerometer f BIB(t) and gyroscope ωBIB(t) outputs at
time t are resolved in the body frame. The term attitude
refers to the angular description between two frames. The
direction cosine matrix (DCM) is the most used represen-
tation demonstrating the angular relationship between two
frames.

In (30), CNB is the DCM matrix that changes the resolu-
tion of a vector from body frame to navigation frame (e.g.
VN
= CNBVB). The functions c(.) and s(.) are cosine and

sine functions, r, p, and y are the roll, pitch, and yaw angles

between two frames.

CNB =

 c(y) −s(y) 0s(y) c(y) 0
0 0 1

 ·
 c(p) 0 s(p)

1 1 0
−s(p) 0 c(p)


·

 1 0 0
0 c(r) −s(r)
0 s(r) c(r)

 (30)

B. CONTINUOUS-TIME MECHANIZATION EQUATIONS
The rate of change of latitude, longitude, and altitude with
respect to time are given respectively in (31-33) as stated
in [1].

l̇ =
vn

(Rn + h)
(31)

L̇ =
ve

(Re + h)cos(l)
(32)

ḣ = −vd (33)

In the equations above, vn, ve, and vd are north, east, and
down velocities. Rn and Re are meridian and traverse radius
of curvature which are calculated as follows:

Rn =
R(1− e2)

(1− e2sin2(l))3/2
(34)

Re =
R

(1− e2sin2(l))1/2
(35)

where R is the semi-major axis length and e is the major
eccentricity of the ellipsoid. The rate of change of velocity
expressed in the navigation frame is given in (36)

v̇N = CNBf B −
[
2ωNIE + ω

N
EN

]
× vN + gN (36)

where f B is the specific force vector sensed by the accelerom-
eter triad, gN is the plumb-bob gravity vector, ωNIE and ωNEN
are respectively the rotation of the earth frame with respect
to the inertial frame and rotation of the navigation frame with
respect to the earth frame. These rotations can be calculated
as follows:

ωNIE = [�earthcos(l), 0, −�earthsin(l)]T (37)

ωNEN =

[
ve

Re + h
, −

vn
Rn + h

,−
vetan(l)
Re + h

]T
(38)

Lastly, the attitude dynamics equation is given in (39)

ĊNB = CNBS(ωBIB)− S(ω
N
IN)CNB (39)

where S(·) converts the argument vector into the skew-
symmetric matrix and ωNIN = ω

N
IE + ω

N
EN.

C. IMU ERROR MODELLING
In equations (40) and (41), mathematical expressions of the
measured accelerometer (f̃

B
) and gyroscope (ω̃B) values are

given as stated in [29].

f̃
B
= (I +Ma)f B + δf BR + δf BI + δf VRW (40)

ω̃B = (I +Mg)ωB + δωBR + δωBI + δωARW (41)
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In the above equations, the left-hand sides are themeasured
quantities. I is the 3 × 3 identity matrix, the lower script
BR, BI indicate bias repeatability error (◦/

√
hr for gyro,

mg/
√
Hz for accelerometer, respectively), and bias instability

error (◦/hr for gyro, mg for accelerometer, respectively) for
the corresponding quantity,Ma andMg are the 3×3 matrices
consisting of misalignments errors (off-diagonal) and scale
factor (diagonal) errors as shown in (42).

Ma =

 δfSFx δfMAxy δfMAxz
δfMAyx δfSFy δfMAyz
δfMAzx δfMAzy δfSFz

 (42)

δf VRW and δωARW are random walk errors on velocity and
angle, respectively. Repeatability, scale factor, and misalign-
ment errors are considered as random constants. Therefore,
their values are randomly selected based on their σ values for
each Monte Carlo run and remain fixed. The implementation
details of stochastic errors are not discussed here, but more
information can be found in [24].

D. INS ERROR DYNAMICS
Error state propagation equation for the augmented state
defined in (1) is given in (43). The explicit expression of the
upper left 9 × 9 chunk is not discussed here, but it can be
found in [1], [29], and [34].

˙δX =


Fψψ3×3 F

ψv
3×3 F

ψp
3×3 Fψg3×15 0

Fvψ3×3 F
vv
3×3 F

vp
3×3 0 Fva3×15

Fpψ3×3 F
pv
3×3 F

pp
3×3 0 0

0 0 0 Fgg15×15 0
0 0 0 0 Faa15×15


39×39

δX

+ G39×12
[
nTg nTa bTg bTa

]T
12×1

(43)

The rest of the sub-matrices in (43) are given in (44) and
(45) and their derivations can be found in [31].

Fψg3×15 =
[
−CNBd(ωBIB) −CNBYg −CNB −CNB

]
(44)

Fva3×15 =
[
CNBd(f BIB) CNBYa CNB CNB

]
(45)

where;

Yg =

−ωB
IBy

ωB
IBz

0 0 0 0
0 0 ωB

IBx
−ωB

IBz
0 0

0 0 0 0 −ωB
IBx

ωB
IBy

 (46)

Ya is the specific force counterpart of Yg, where ωBIB is
replaced by f BIB. F

gg
15×15 is a zero matrix except Fgg[13, 13] =

Fgg[14, 14] = Fgg[15, 15] = − 1
Tg
. Similarly, Faa[13, 13] =

Faa[14, 14] = Faa[15, 15] = − 1
Ta

where Tg and Ta are
correlation time of bias instability of accelerometer and gyro-
scope. G is the noise gain matrix whose elements are zero
except for G[1 : 3, 1 : 3] = −CNB, G[4 : 6, 4 : 6] = CNB,
G[22 : 24, 7 : 9] = I , G[36 : 39, 10 : 12] = I . ng and
na are Gaussian white noise processes with the PSD N 2

g for
gyroscope, N 2

a for accelerometer. ba and bg represent the bias
instability terms which are usually modeled as a first-order

Gauss-Markov process [24], [29]. To calculate the error state
propagation in a computer, (43) is needed to be discretized.
We employ Van-Loan’s method [40] to obtain discrete coun-
terparts of F(t) and Q(t) as the following equations.

A =
[
−F GWGT

0 FT

]
1t (47)

B = eA =
[

. . . 8−1Qd
0 8T

]
(48)
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