
Received 16 May 2023, accepted 15 June 2023, date of publication 22 June 2023, date of current version 28 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3288813

Building a Digital Twin Network of
SDN Using Knowledge Graphs
DEEPU RAJ RAMACHANDRAN POTTI 1, TAHIR AHMED SHAIK1, ANISH HIRWE 2,
PRAVEEN TAMMANA 1, AND KOTARO KATAOKA 1
1Indian Institute of Technology Hyderabad, Hyderabad 502285, India
2Indian Institute of Technology Palakkad, Palakkad 678557, India

Corresponding author: Deepu Raj Ramachandran Potti (cs21mtech12003@iith.ac.in)

ABSTRACT In SDN-based networks, contextual understanding of network behaviour and safe execution of
operational decisions are important as part of the networkmanagement process. Digital TwinNetwork (DTN)
is a promising concept which creates a virtual twin of a live SDN-based network to monitor the network from
different angles with various granularities and enables it to verify an operational change without disturbing
the live one. However, modelling the arbitrary decisions by an SDN Controller to form a DTN and managing
the contextual information in a DTN are challenging tasks in various aspects. This paper proposes a data
representation based DTN architecture integrating Knowledge Graph (KG) for data modelling and storage
and Template as the context description approach. The combination of KG and Template can make the
DTN management scalable with the flexibility of defining the contextual information with the relationships
between network entities. It also enables efficient querying of the data storage and provides the reusability
of functions and data storage for the DTN applications development. The proposed DTN architecture was
implemented using an ONOS-based SDN Controller and Neo4j-based KG with built-in DTN applications
for practical use. The PoC implementation exhibited short query response time and high query throughput
in reading from and updating a KG, though the initial creation of a KG incurs a considerable delay which
increases with its size.

INDEX TERMS Digital twin, digital twin networks, knowledge graphs, software defined networks (SDN),
templates.

I. INTRODUCTION
Digital Twin Network (DTN) is a digital representation of a
live network environment such as mobile access networks,
data center networks, a campus enterprise network, etc. [1].
The primary goal of DTN is to provide a unified Digital
Twin platform using context-rich and efficient data modelling
standards to enable various use cases [2] such as safe vali-
dation of network configurations, user intent-based network
automation and behavioural analysis [3], network optimisa-
tion [4], and data collection for analytical purposes [5] such
as enhancing network efficiency (e.g., minimise or maximise
link utilisation), and minimise operational costs of scaling up
an existing network.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tiago Cruz .

Even though the concept of a Digital Twin [6] seems to be
established and understandable, its architecture has not been
standardised for networking [1]. Some studies have attempted
to define Digital Twins for specific networking environments
such as Data Center Networks (DCN) [7], [8] and Indus-
trial Internet of Things [9]. The existing works focus on the
emulation/simulation of a live network as a tool for specific
DTN-related tasks (network optimisation, topology discov-
ery/management, etc.) [10], [11], [12]. DTN can be built
on top of emulated network with Virtual Machines (VM) or
containers where each VM or container represents a physical
object entity. Emulating or simulating a large scale network
to build a DTN can introduce high CapEx and OpEx (e.g.,
$100 per hour for emulating just one data center). Therefore,
data representation [3], [7], [8] has also been explored as a
mode of constructing a DTN. However, these works focus on
producing a virtual twin of a live network from the network’s

63092
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-3713-4718
https://orcid.org/0000-0003-2982-7020
https://orcid.org/0000-0002-8057-7699
https://orcid.org/0000-0003-0545-3415
https://orcid.org/0000-0001-9278-6503


D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

configuration. Therefore, such a virtual twin is static and
does not reflect the dynamic changes that happen in the live
network, such as traffic trends, topology change owing to
physical layer trouble, etc.

The concept of DTN can be leveraged for a Software-
Defined Network (SDN) [13], managing different physical
and logical entities in a network, including switches, device
configurations, access control lists, etc., that are modelled
into a virtual representation along with their actual charac-
teristics. The concept and role of DTN differ from those
of SDN in several aspects. SDN is a network architecture
to deploy and operate a network, which can be physical,
virtual or a mix of both. In SDN, a behavioural change in
the network is executed by the SDN Controller instructing
the SDN switches about what to do to incoming packets.
On the other hand, a DTN is a virtual twin of a live network
that can be SDN-based, non-SDN based, or a hybrid of both.
A DTN primarily works as the scalable and common pool of
network state for an SDN-based network among various use
cases. Consequently, the DTN enables the scalable platform
for 1) contextually understanding the network behaviour,
2) verifying planned changes to the live network before its
actual execution, and 3) enabling Intent Based Networking
(IBN) [14], [15] by acting as the interface between the net-
work administrator and the physical object. These platform
objectives are difficult to scale because they depend on the
combination of many SDN Controller services or indepen-
dent applications those unlikely shares the network state
effectively.

For example, consider the following use case of causality
analysis: ‘‘Explain the reason for end-to-end layer 3 unreach-
ability, say the failure of ping, between 2 hosts in an
SDN-based network.’’ Several applications must be devel-
oped on the SDN Controllers in this use case. Typically they
include 1) the mapping between the IP address and MAC
address as well as switch port and MAC address, 2) checking
the physical end-to-end forwarding path between the ingress
and egress switches, 3) checking the flow rule consistency
among the SDN switches on the forwarding path, and 4) pro-
ducing the response after summarising the results obtained
by each application. These applications may independently
communicate with the SDN Controller to repetitively obtain
the network topology using the SDN Controller services.
Accordingly, if evenmore high-level applications need access
to the common information, such access can reduce the scal-
ability of SDN Controller operation. By having the DTN of
the SDN-based network, inefficient data retrieval against the
SDN Controller can be drastically reduced, and the causality
analysis can be scalable. Similarly, network change verifi-
cation and IBN scale well with DTN. Also, any change in
the DTN may or may not directly affect its live network,
depending on the intention to use the DTN. At the same time,
the behaviour of the SDN-based network, as a physical object,
can immediately appear in the DTN.

There are several challenges when building a DTN [16],
[17]. This paper addresses the challenges of 1) dynamically

reflecting the live network to its virtual twin, 2) extracting
the contextual insight from the raw data acquired from the
live network, and 3) accurately modelling the arbitrary SDN
behaviour in a live network into the virtual twin. Especially
in an SDN-based network, the SDN Controller or a controller
application software can arbitrarily and dynamically deter-
mine the network behaviour beyond standardised routing
protocols, for example, per-flow forwarding path selection.
In addition to knowing the services and features enabled in
the SDN-based network, handling flow rule information is
important to reflect its actual and detailed behaviour to the
DTN.

This paper models the DTN of an SDN-based network
as the representation of network state using a data structure
called Knowledge Graph (KG) [18]. The physical objects,
such as networking devices and their configurations, poli-
cies, events, etc., are represented as nodes in a KG, and
the edges between the KG nodes represent the relationship
in the KG (e.g. Host isConnected Switch). This kind of
representation eliminates the need for designing database
tables and writing long, complex SQL queries that are needed
for relational databases, and helps in querying the required
information from the KG easily and fast. The proposed DTN
addresses the problem of the static nature of the existing
solutions by focusing on the dynamic construction and upda-
tion of the digital twin by taking advantage of the real-time
and global visibility of the network through OpenFlow
messages.

The proposed DTN design also integrates templates [19],
which are used to develop the DTN applications. A template
is a user-friendly format for representing information about
physical objects (e.g., switches, hosts, ports, links, etc.). This
paper enabled the use of the Template, which allows the
user to define the relationships between the objects and feed
the corresponding data to the KG. In our research context,
templates contain information about the network, which is
used for developing theDTN applications. Templates can also
work as the repositories of both queries to a KG and function
to process their responses.

In summary, we make the following main contributions:

• Integrating KG to scale the data modelling of DTN
handling the large data sets of network state,

• Integrating the concept of Template to achieve the flex-
ibility of describing how a KG should be developed and
accessed according to the requirements of a use case
application,

• Producing insights about the performance of DTN when
KG is used as its storage, and

• Publishing the Proof of Concept implementation of
the proposed DTN architecture as open-source soft-
ware [20].

The novelty of the proposed DTN resides in the integration
of KG for DTN construction.

The rest of the paper is organized as follows. Section II
is about the related works of DTN. Section III describes

VOLUME 11, 2023 63093



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

TABLE 1. Comparison among the Existing and Proposed DTN Solutions.

the concept on which the paper is based, and Section IV
reinforces the concept with the System Design. Section V
provides the implementation overview of the proposed
design. Section VI explains the evaluation result of the pro-
posed design. Section VII discusses the limitations and future
directions of the proposed DTN. Finally, Section VIII gives
the conclusion of the proposed solution.

II. RELATED WORKS
A. DIGITAL TWIN USE CASES
The use cases of Digital Twin [2] are broad including
the domains of healthcare, industry, smart cities, IoT, IoV,
etc. [6], [21], [22], [23], [24], [25], [26]. Digital Twin for
networking has also been explored in some existing work
even though such examples are limited. Table 1 summarizes
the features and characteristics of the existing solutions and
the proposed one.

B. EMULATION BASED DTN
CrystalNet [10] emulates a production network to validate
the network configuration and to identify software bugs,
misconfiguration, and human errors. VMs and containers
emulate routers and switches by running the firmware of the
physical network devices and reproduce the control plane
accurately. Though the VMs and containers are available
from most major device vendors, it is computationally inten-
sive and expensive to emulate a large scale network as a
DTN. Moreover, vendor support for emulating proprietary
devicesmay not necessarily be available. Given the feasibility
of the emulation based approach, data representation based

approach is more feasible especially to construct a DTN for
a large network.

C. DATA REPRESENTATION BASED DTN
NetGraph [8] is defined for the DCN environment. The Net-
Graph provides certain functional blocks such as modelling
and intelligent management of configuration and network
state data, automatic configuration and translation of device
and network models into configuration files, inventory search
or retrieval across the whole network, and network validation.
In NetGraph, a compatible configuration template must be
provided to integrate a new devicemodel from a different ven-
dor into a DTN, which can constrain the adaptation process
of the DTN to a new networking scenario.

Robotron [7] is a network management system for a large
scale network, including Points of Presence, Backbone and
Data Centers. The system translates high-level user intents
into Entity-Relationship (ER) data models for low-level val-
idation and safe deployment to a production network such
as a Data Center Network. Its applicability to other types of
networks and other use cases has not been studied broadly.
Due to the use of ER data modelling and a relational database,
the ad-hoc addition of a new database schema to a DTN is
difficult, and the performance of handling time series data
may be suboptimal.

MALT [3] provides the topology modelling suitable and
abstracted in multiple layers for broad use cases in network
management, including device profiles such as routers and
line cards, WAN capacity planning, and topology design for
a DCN that can be SDN or non-SDN based. MALT also
uses ER data modelling, which leads to drawbacks similar
to Robotron.

63094 VOLUME 11, 2023



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

D. KNOWLEDGE GRAPH AS A DTN STORAGE
Various applications [27], [28], [29] employed Knowledge
Graph for their storage purposes owing to its capability of
retaining context. DEPO [30] used KG to model the infor-
mation regarding Software-Defined Infrastructure, including
network devices, services, compute nodes for hosting virtual-
ized entities, etc., to enable the automated policy verification
before its physical deployment. Our proposed solution also
uses Knowledge Graph to model SDN’s broad data whose
contexts and their efficient processing are important to enable
the basic features and use cases of DTN.

III. DTN FOR SDN
A. SDN AS A PHYSICAL OBJECT
1) PHYSICAL INFRASTRUCTURE
The proposed DTN is defined on the SDN infrastructure,
which consists of an SDN Controller, REST services offered
by the SDN Controller, and the data plane. The SDN involves
broad properties to be considered for its data-driven repre-
sentation originating from switches, hosts, links, flow rules,
etc. The main component of SDN is the controller that is
responsible for themanagement and centralized control of the
networking entities.

In this paper, DTN is developed on the foundations of
an SDN-based network and its various services provided by
the SDN Controller for managing inventory of hosts, links,
handling packet-in, querying flow rules and statistics, com-
puting paths in the network, providing a stream of diagnostic
information, etc. DTN builds the virtual twin based on the raw
data extraction and collection from SDNControllers using its
different services.

2) SDN SERVICES
Fig. 1 illustrates the various SDN services [31] for modelling
the data for DTN construction.

Topology Service provides topological information,
including inter-switch connectivity, end devices, link status,
port status, etc. Network Statistics are used to build statistical
data models based on port statistics, flow table statistics, load
statistics of the links, etc. Flow Rule information is very
important because it reflects decisions made by the SDN
Controller software. The proposed DTN architecture takes
Flow Rules as input to form the virtual twin. Access to the
raw data provided by these services is available betweenDTN
Manager and SDN Controller through the REST APIs.

B. DATA DRIVEN DTN AS A VIRTUAL TWIN
1) OVERVIEW
This paper pursues a data-driven approach to construct a
virtual twin of an SDN-based network. Our architecture is
designed to achieve the following features:

1) The data modelling of the contextual representation
among the physical objects in the SDN-based network.

2) The fine granularity and the intuitiveness of describing
and extracting the contextual representation.

FIGURE 1. DTN consuming SDN Services.

3) The scalability and performance to tolerate the frequent
update of the virtual twin on the basis of the dynamic
nature of the SDN-based network in the real-world
deployment.

2) EMPLOYING KNOWLEDGE GRAPH AND TEMPLATE
Knowledge Graph is the key choice for the main storage of
contextual information for the virtual twin creation and main-
tenance in the proposed architecture. KG is useful to draw
inferences about a fact or an event in the network that can be
represented as numerous relationships between the nodes in
the graph. Such functions enable the causality analysis of an
incident, even though it could happen due to multiple factors,
as well as the pre-validation of a planned reconfiguration in
the network. Efficiency and response time are very important
when querying a database to extract contextual information.
Knowledge Graph using a cypher query is better in both
aspects than a relational database using SQL that may need
to join multiple queries across multiple tables to respond
with the target information especially when the amount of
information kept in the storage is very large.

The proposed approach extracts the curated set of con-
textual information out of the network state collected from
an SDN Controller. A KG stores the information so that the
collected data from the SDN Controller is synaptically linked
and forms the virtual twin representing the original network.

The concept of Template makes the context definition
and extraction affordable for the network administrator. The
template is extended to mention a relationship of physical
objects, and such a relationship makes the data feed to KGs
intuitive for a network administrator, who is supposed to be
benefited from the DTN. The following subsections provide
the details of the interplay of KG, Template, SDN Controller,
and the DTN Manager, which integrates these components.

VOLUME 11, 2023 63095



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

3) WORKFLOW
As shown in Fig. 2, the workflow process of the DTN opera-
tion can be briefly described by the following three steps.

1) An application template is deployed to DTN Manager.
The application template defines the scope of entities,
mechanisms, and policy functions, whose details are
explained in §IV-A1.

2) DTN Manager processes the application templates and
builds the virtual twin using KG based on the data
collected from the SDN Controller.

3) The DTN application executes a query to the virtual
twin and returns the response as the result of taking
intended action to DTN.

We look more at the internal operations and components of
the DTN system that enable these workflows in §IV-B.

FIGURE 2. DTN Workflow.

IV. SYSTEM DESIGN
This section describes the proposed DTN architecture, the
system design, and the data modelling process. The architec-
ture of DTN is illustrated in Fig. 3.

FIGURE 3. DTN System Diagram.

The DTN architecture builds a KG based on the templates
defined by the network administrator. The core part of the

DTN framework is the DTN Manager. The input to the DTN
Manager is a template which describes the intentions of each
application, and the output is the response against the appli-
cation queries, which are executed to KG through the DTN
Manager. Typically, a template developer is either a network
administrator or a domain expert who is not a programmer.
An application developer is a programmer who understands
the templates defined by the network administrator or the
domain expert and writes the application based on the
templates.

A. DTN APPLICATIONS
1) DEFINING A TEMPLATE FOR AN APPLICATION
A template works as a human editable interface between
the network administrator and the DTN manager so that
the network administrator can describe how the DTN appli-
cation (for e.g., end-to-end / host level reachability check
in the network) can be projected to the corresponding data
representation produced by the proposed DTN architecture.
AnApplication contains an intent logic to be performed using
the data retrieved from KG. An intent logic is a combination
of relevant parameters for a DTN use case application and
the corresponding algorithm to process them. However, such
an intent logic must describe entities, properties, and rela-
tions among them to be kept in the corresponding KG. The
proposed system uses the concept of a Template, which is a
skeleton specification standard for describing the intention of
the application behaviour and its execution process.

An intent logic is defined in the form of one or more
sets of policies in the template. Except for the fundamental
parameters used in the DTN Manager, which are about the
network topology, most intent logic will likely be set in a
template but outside the DTN Manager.

A template is described using YAML [32] format that con-
tains three sections consisting of the variables, mechanisms,
and policies. An example template for one of the built-in
applications of the proposed DTN, Physical Reachability
Check, is shown in Listing 1.

a: VARIABLES
The variables contain entities and relationships. Entities
define networking objects such as switch, host, flow table,
flow rule, etc. Each entity is specified along with its unique
set of properties; for example, a host entity has macAddress,
and a switch entity has dpid, firmware, and protocol.

A relation is defined through mapping a pair of entities
and also contains certain unique properties. An important
consideration is that the template should be generic to support
different types of SDN Controllers, which have different
syntaxes to respond. The generalization and inclusiveness of
template description will allow the same template to sup-
port multiple SDN Controllers. The balance of generalization
and inclusiveness is important so that the template will not
become too detailed and large in order to avoid constructing
unnecessarily large KG.

63096 VOLUME 11, 2023



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

Listing 1. Example Template of Physical Reachability Check Application

variables:
entities:

Switch:
- dpid
- firmware
- protocol

Host:
- macAddress

ForwardingDevice:

Object:

relationships:
- map:

- Switch
- Switch
- isConnected

- map:
- Host
- Switch
- isConnected
Properties:

- port
- map:

- Switch
- ForwardingDevice
- isA

- map:
- ForwardingDevice
- Object
- isA

mechanisms:
script: ’topology’

policies:
- policy:

name: ’CheckReachabilityInTopology’
deploy : ’getTopoReachability’

- policy:
name: ’

CountSwitchHopsInPhysicalShortestPath’
deploy : ’getHopCounts’

In the template example, the relationships define the
relationship between entities, for example, ‘‘isConnected’’
between Switch entities, ‘‘isConnected’’ between Switch and
Host entities, and ‘‘isA’’ between Switch and Forwarding
Device, and ‘‘isA’’ between Forwarding Device and Object.
The two switches and hosts form the entities for the simple
topology shown in Fig. 4. The properties of the entities and
relationships are also specified in the template. The switch
entity has the properties dpid, firmware, and protocol, while
the Host entity has the propertymacAddress. The relationship
‘‘isConnected’’ between Switch and Host entities has a single
property: port. The links between the Switches and Hosts in
Fig. 4 form the relationship. The entities form the nodes in the
KG, and the relationships between the entities are represented
as edges between them.

b: POLICIES
The policies define the unique or specific set of intent-based
tasks that an application executes. A template can contain
multiple policies. Each policy works as a function 1) to
construct a Knowledge Graph, and 2) to extract the contextual
information from theKG through querying it. The response to
a query can be directly used as a response from the application
or be parsed further to produce a more complex answer in the
application. However, each of the contexts itself (‘‘A is B’’,
‘‘C hasD’’, etc.) must be defined in the template respectively.
Also, each policy can have a set of subtasks when the policy
can not be executed as a single task. There has to be at least
one policy defined in the template for an application to query
the data from the KG. A subtask can also trigger a query to a
KG.

c: MECHANISMS
The mechanism defines the set of all subtasks to execute var-
ious intent logics for an application. The mechanism allows
templates, policies, and KGs to be reusable for other appli-
cations and avoid developing the same task using the same
data.

The example template has a certain policy ‘‘CheckReacha-
bilityInTopology’’, having a subtask ‘‘getTopoReachability()’’
for getting the end-end reachability from the KG based on
the topological details. On the other hand, another policy,
‘‘CountSwitchHopsInPhysicalShortestPath’’ has the subtask
‘‘getHopCounts()’’ that gets the end-end hop counts for the
reachable end devices. The set of subtasks ‘‘getTopoReacha-
bility()’’ and ‘‘getHopCounts()’’ implement the intent logic
of the application. We discuss the implementation of the
Physical Reachability Check application in the next sections.

The mapping of templates and applications can vary and
be dynamic. A single application can use multiple tem-
plates for defining its use cases; in another scenario, multiple
applications can also use and share a common template.
The flexibility of the combination of applications, templates
and KGs can be leveraged for developing more complex
applications.

2) BUILT-IN APPLICATIONS
This work presents three basic built-in applications that run
on the proposed DTN to show examples of end-to-end use
and working of the proposed DTN architecture.

a: TOPOLOGY DUMP APPLICATION
This application gets themapping information concerning the
connected ports between a host and a switch and between
switches in the network topology. The application contains
two different policies. First, the ‘‘DumpHostToSwitchMap’’
policy retrieves information about the specific ports connect-
ing hosts and switches in the network. For the topology shown
in Fig. 4, this policy returns the ports to which the two Hosts
are connected to each of the two Switches, which in this

VOLUME 11, 2023 63097



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

FIGURE 4. Simple topology with two switches and hosts.

case is port number 1. The second policy, ‘‘DumpSwitch-
ToSwitchMap’’, gets the information about the switches with
the port information for the pair of connected switches in the
network. For the pair Switch1 and Switch2, it returns port
number 2.

b: PHYSICAL REACHABILITY CHECK APPLICATION
The Physical Reachability Check application provides the use
case of identifying physical reachability from the topological
aspect of the network and also retrieves the hop counts for
a given pair of hosts if there exists a path between the pair
of hosts. The KG built for the Topology Dump application is
shared with this application. This application has two policies
defined; the ‘‘CheckReachabilityInTopology’’ policy checks
for the host-to-host path reachability based on the shortest
path first approach for each pair of source and destination
hosts in the network and returns the binary response as reach-
able or not reachable. This policy returns the response as
reachable for both the Hosts, i.e., Host1 and Host2 for the
topology in Fig. 4. The second policy, ‘‘CountSwitchHopsIn-
PhysicalShortestPath’’, gets the hop count between the hosts
in the network. For the topology in Fig. 4, this policy returns
the hop count as 1 between Host1 and Host2.

c: FLOW RULE REACHABILITY CHECK APPLICATION
This application uses the flow rule information defined in
the switches to check for the reachability between all the
pairs of hosts in the network and returns the hop count
between the hosts only if they are reachable based on the
flow rules. A source host is reachable to a certain destination
host in terms of flow rules only if the intermediary switches
have flow rules that allow the packets from the source host
to flow to the destination host. The policy ‘‘CheckReach-
abilityByFlowRule’’ defines the logic of a flow rule-based
reachability check. If both the switches in Fig. 4 have the
flow rule instruction installed to forward the packet com-
ing from the two hosts, this policy will give a response as
reachable for both hosts. The application has another policy
‘‘CountSwitchHopsInForwardingPath’’, which retrieves the
hop count between the reachable pair of hosts in the network
based on the flow rules. This policy returns the hop count

as 1 between Host1 and Host2 if none of the two switches
has a flow rule instruction written in it to block the packets
coming from the two hosts.

B. DTN MANAGER
The DTNManager is an ensemble of several components that
provides the data definition, collection, and data management
functionalities. The DTN Manager takes a template and the
OpenFlow related data as inputs. An essential component
of the DTN Manager is the use of a Knowledge Graph as
the DTN storage. A KG stores the entities, relationships,
and properties defined in a template as well as OpenFlow
related data collected from an SDN Controller. The network
topology is immediately reflected to the Knowledge Graph as
long as the DTN Manager is active, and the other OpenFlow
information is collected according to a template on demand.
The output of the DTN Manager is a query response from a
Knowledge Graph to a query issued by the applications.

1) TEMPLATE PARSER
The input templates to the DTNManager for building the KG
are parsed by the Template Parser. Once the template is parsed
into the form of a key-value store by the Template Parser, such
information is passed to the KG Data Modeller, Mechanism
Executor, and Policy Deployer.

2) KG INITIALISER AND KG CONNECTOR
KG Initialiser executes the sanity check of the KG of the DTN
Manager, including the KG availability and the connection
establishment. KG Connector executes create, read, update
and delete (CRUD) operations to the KG. KG Connector
handles all the queries to KG from the other modules of DTN
Manager and routes back the response from the KG to the
respective modules.

3) POLICY DEPLOYER AND MECHANISM EXECUTOR
The policies and mechanisms defined in the template are
passed to the KG Connector by the Policy Deployer and the
Mechanism Executor modules for updating the KG. Policy
Deployer receives the information of a task and a subtask
described as a policy in a template. Policy Deployer adds the
incoming information to the knowledge graph. The Mecha-
nism Executor maintains the mapping between the template
and the policies defined. A template can be arbitrarily updated
by the network administrator by adding, updating, or deleting
a policy. TheMechanismExecutor always keeps the list of the
latest available policies for the corresponding template. The
combination of Policy Deployer and Mechanism Executor
helps to make the life cycle management of a policy to be
flexible against on-demand changes so that a single policy
can be continuously updated and used rather than create a new
template for a similar application.

4) KG DATA MODELLER
The KG Data Modeller refers to the variable section in the
key-value store input from the Template Parser and collects

63098 VOLUME 11, 2023



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

the data from the SDN Controller using various REST APIs.
The template can describe any predefined parameter, includ-
ing topology, links, devices, flow rules, port status, services,
and other metrics representing the facts, live network config-
urations, and state-level information. Expecting that different
types of SDN Controllers can have different syntaxes to
respond to the REST query, the unification of input data to the
KGConnector is also important so that multiple types of SDN
Controllers can be represented in the KG using a common
template.

After receiving the queried information from the SDN
Controller, the KGDataModeller creates and updates the KG
to construct the DTN using input data. KG operations by KG
Data Modeller continue until the KG is completely built.

C. KNOWLEDGE GRAPHS
A KG is a large network representing various entities, the
relations between them, and their properties in the form of
a graph data structure representing real-time semantics. The
information in a KG is represented in the format such as
(entityA relationship entityB), where the entities form the
nodes in KG and the relationship is represented by an anno-
tated edge between the entity nodes (the term node refers to a
vertex in the KG unless otherwise stated). Entities can contain
multiple relationships between them represented by the mul-
tiple annotated edges in the KG. Each node and edge can also
hold properties specific to the entities and the relationships.

Running the user queries/intents and getting the desired
results from the raw data collected requires a data modelling
standard. TheDTN uses KG to represent the raw data. KG has
the ability to map entities and existing relations and provide
scalability for searching and context representation. Using
a relational database instead of KG would have limited the
capabilities of scalable search and context representation we
wanted for the DTN [33], [34], [35]. Querying a relational
database for various use cases using joins and nested queries
would be cumbersome and time-consuming compared to
querying a KG based on the relationships and properties
modelled in it.

1) DATA MODELLING USING KNOWLEDGE GRAPHS
Consider a switch containing a flow table that contains certain
flow rules. The switch, flow table, and flow rule represent
the real-time entities that exist in an SDN network. This
information can be represented in a KG as

Switch A <hasComponent> FlowTable \
<hasComponent> FlowRule

where the <hasComponent> defines the kind of relation-
ship existing among them. A visualisation of such a KG is
shown in the following Fig. 5.
Consider another example where there are hosts connected

to switches in a network. The host and switch represent the
real-time entities. This kind of information in a KG can be
represented as

FIGURE 5. A Knowledge Graph for Switch, Flow Table and Flow Rule.

Host <isConnected> Switch

where the <isConnected> represents the relationship
between the host and switch entities, as shown in Fig. 6.

FIGURE 6. Host and Switch Knowledge Graph.

This kind of information modelling gives the KG the
ability for better context representation and meaningfulness.
An important consideration here is that DTN maintains
the KG’s current network state by constantly updating the
KG after a fixed time interval. Alternatively, the DTN
can also use timestamp annotations of the entities and
relations in the KG models to retain the current network
state.

2) QUERYING THE KG
Querying is an important process for the DTN system for its
interaction with the KG and running of the deployed appli-
cations after collecting raw data and building the KG-based
virtual representation of the entire data. We can classify the
queries of the DTN system into two types: DTN manager
queries and application or intent queries. The DTN uses the
standard Neo4j [36] query mechanism of ‘‘CYPHER’’ [37].
The CYPHER query language defined by Neo4j provides
a rich set of clauses and constructs for various querying
capabilities.

a: DTN MANAGER QUERIES
These are the queries used by the DTN Manager for creating
and deleting entities and relationships periodically through-
out its runtime to completely build the KG for an application
based on the input template. These queries are issued to
the KG by the KG Connector module through the internal
interface. The two crucial cypher query clauses include the
‘‘CREATE’’ and ‘‘DELETE’’ for performing the specific
operations. Consider an example of creating a particular
‘‘Switch’’ entity with ‘‘dpid’’ as ‘‘1’’. This is represented in
the cypher as

CREATE (n:Switch{dpid:"1"})

This query creates a switch entity node with the specified
‘‘dpid’’ property where ‘‘n’’ is a temporary variable to store
the reference to the created node.

VOLUME 11, 2023 63099



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

b: APPLICATION/INTENT QUERIES
Applications run the policy for performing the user intents
based on data retrieved from the KG. An application issues
a read-only cypher query to the corresponding KG through
the external interface. The MATCH and RETURN clauses
are essential and the most frequently used to search for the
specified entity and return it through the subgraph matching
process. The subgraph matching process is the problem of
finding all subgraphs of the target graph that are isomorphic
to the given query graph. In essence, the application queries
are read-only and can not modify the KG.

Consider the following example of a query to a KG which
consists of a set of entities such as hosts, which are connected
to switch entities through a relationship ‘‘isConnected’’ as
shown in Fig. 6. An example query following the syntax of
the Neo4j cypher standard to fetch a particular Host with mac
address ‘‘00:00:0A:BB:28:FC’’ connected to a Switch with
dpid ‘‘1’’ is represented as follows.

MATCH \
(h:Host{macAddress:"00:00:0A:BB:28:FC"})\
-[r:isConnected]->(s:Switch{dpid:"1"}) \
RETURN h,s

The above query returns the following response.

The temporary variables ‘‘h’’ and ‘‘s’’ are references to the
‘‘Host’’ and ‘‘Switch’’ nodes, respectively. Also, note that
the ‘‘macAddress’’ and ‘‘dpid’’ are examples of the proper-
ties specific to the particular entities ‘‘Host’’ and ‘‘Switch’’
respectively.

Consider another example to fetch the properties of a spe-
cific switch entity.

MATCH(s: Switch{dpid:"1"}) \
RETURN properties(s)

The above query returns all the stored and specified properties
in the template for the specific ‘‘Switch’’ entity referenced by
the temporary variable ‘‘s’’.

For the example KG in Fig. 6, the query returns the prop-
erties dpid (with value 1) and firmware (with value Open
vSwitch) associated with the Switch node.

The application developers specify such queries based on
a template and a policy to be sent to the KG according to the
application developers’ intent.

V. IMPLEMENTATION
A. TOOLS AND SPECIFICATIONS
The implementation of DTN uses tools which form its basic
components for its functioning as summarized in Table 2. The

TABLE 2. Tools & Specifications.

complete DTN system consists of approximately 2000 lines
of code [20].

B. KG BUILDING PHASE
KG construction approaches: The DTN Manager builds
the KG based on the entities and relationships described in
the template of an application. There is a trade-off in terms
of memory consumption and response time between building
a dedicated KG for an individual application and building
a common KG to cover multiple applications. Building an
exclusive (application-specific) KG is beneficial if the KG is
small enough with fewer nodes and relationships. However,
each application will not function until its KG is built.

Another approach is to build a single KG that can be shared
by multiple applications and works as a superset of KGs
if those were built by each of the applications individually.
In such a case, the cost of building multiple KGs can be
reduced, especially when most parts of KGs are common
among the applications. However, constructing and using a
common KG may involve more memory consumption and
longer response time if the KG becomes large. In this paper,
the Topology Dump and Physical Reachability Check appli-
cations (§IV-A2) share a common KG and is illustrated in
Fig. 7a. The FlowRule Reachability Check application builds
a separate KG needing a totally different KG from the other
applications and is represented in Fig. 7b.

If a common KG can effectively aggregate the overlapping
nodes and relationships, the efficiency of the KG handling
can be even better. However, this paper does not aggregate
multiple KGs because such an attempt needs an appropriate
aggregation algorithm, which is beyond the scope of this
research.

Each KG has nodes that define the entities, the policies,
and its mechanism that contain the logic to construct, execute
a query and process the response to extract the desired infor-
mation. An important point worth noting here is that each
application has its specific KG requirement, and the size of
the KG can vary accordingly based on the number of entities
and their relations specified in the template and the network
topology.

C. IMPLEMENTATION OF DTN APPLICATIONS
Applications run the required cypher queries on the KG built
for their desired intent and process the response for parsing
its outputs. For example, the Topology Dump application
defines two policies, ‘DumpHostToSwitchMap’ policy uses
the function ‘getHostMappings()’, which uses the MATCH
queries to retrieve the information between all connected

63100 VOLUME 11, 2023



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

TABLE 3. Number of variables, mechanisms, and policies in the template and number of nodes in KG for the 3 topologies.

FIGURE 7. Knowledge Graphs for different applications.

host and switch nodes from the KG based on the sub-
graph matching. The process is repeated for all the pairs

of connected hosts and switches in the topology. The sec-
ond policy, ‘DumpSwitchToSwitchMap’, uses the function
‘getSwitchMappings()’ to perform aMATCH query to search
on all the connected switch nodes in the KG and retrieve
the port information from the query response. The other
applications are implemented similarly.

VI. EVALUATION
The proposed DTN architecture was evaluated mainly by
measuring the time duration for building a KG and querying
a KG by executing different DTN applications in different
network topologies.

As summarised in Table 3, the combinations of an appli-
cation and a network topology introduce different numbers
of variables, mechanisms, and policies in the corresponding
template as well as different sizes of KG. This evaluation
used the DTN applications that were described in the previous
sections: Topology Dump, Physical Reachability Check, and
Flow Rule Reachability Check. The three network topologies
were used: Linear topology with 3 switches, Abilene [38]
network with 11 switches, and Geant [39] network with
31 switches where 1 host is attached to each switch. Note
that Topology Dump and Physical Reachability Check share
the same template and the KG. The evaluation was performed
on a workstation with 32 GB RAM capacity, Intel Xeon(R)
W-2133 3.6 GHz, 12 core CPUs, and 2 threads per core.

A. KG BUILD TIME
The time taken to build a KG was measured against the
varying size of KG in terms of the number of nodes due to the
combination of application and network topology. The total
build time is measured as the time elapsed between reading a
template at DTNManager and completing the construction of
the corresponding KG inclusive of the communication delay
with the SDN Controller through REST APIs.

Fig. 8a and 8b show the average KG build time of five
attempts using the two applications: Physical Reachability
Check and Flow Rule Reachability Check. In both applica-
tions, the KG build time becomes longer as the size of the KG
increases. The KG build time ranged in the scale of seconds
and minutes in this experiment. These results indicate that
ad-hoc construction of a KG may not be realistic, and the
reuse of an existing KG can reduce the delay to deploy a new
DTN application if available. Also, note that the KG build
times for Topology Dump and Physical Reachability Check
were identical due to the shared KG.

While building the complete KG is a one-time process and
takes time, the time taken for adding a new node or updating

VOLUME 11, 2023 63101



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

FIGURE 8. Average KG build time vs Number of nodes in KG.

an existing node in the KG is very short. In our evaluation
setup, the average time to add a new node was 18 ms with
little deviation for all the KGs in all three topologies.

B. QUERY RESPONSE TIME OF DTN MANAGER AND
APPLICATION QUERIES
The query response time is defined as the time taken for the
response of a cypher query to the corresponding KG to be
returned. Fig. 9 compares the query response time for the
DTNManager queries and the application queries against dif-
ferent applications involving the different numbers of nodes
in a KG.

The query response time for application queries is shorter
compared to the DTN Manager queries because application
queries involve only MATCH read operation, while the DTN
Manager queries involve CREATE and UPDATE operations
which are basically the read and write operations in the
KG. From Fig. 9a and Fig. 9b, it is observed that the query
response time is almost the same since the two graphs cor-
respond to the two applications that share the same KG.
In Fig. 9c, the average query response time for the application
queries is 5 ms for approximately 21 thousand nodes in the
KG. This implies that the execution of an application in a
given size of KG is realistic for practical use.

C. IMPACT OF QUERY DEPTH
In this evaluation item measures the impact of Query Depth
on the query response time. Query Depth is defined as the
number of nodes involved in a single cypher query. For
example, the following cypher query

MATCH (h2:Host{mac:’8E:23:04:6F:48:2F’}) \
-[r2:isConnected]->(s2:Switch) \
return s2,properties(r2)

contains Host and Switch as nodes in the KG. This query is
used to find the switch to which the host with MAC address
‘‘8E:23:04:6F:48:2F’’ is connected and has a query depth of
2 since 2 nodes are mentioned in this query. Consider another
cypher query as follows

MATCH (s1:Switch{id:’00000000002’})- \
[hc:hasComponent*]->(f:FlowTable)- \
[:hasComponent]->(f1:FlowRule)- \
[:hasComponent]->(m1:Match)- \
[:hasComponent]->(e1:EthAddress) \
where e1.dst=’8E:23:04:6F:48:2F’ \
and e1.src=’6A:05:72:74:85:42’ \
return f1,m1,e1

This query is used to check whether there is a matching
flow rule in the switch with id ’00000000002’ for the given
pair of source and destination MAC addresses. The nodes
involved in this query are Switch, FlowTable, FlowRule,
Match and EthAddress. Hence the query depth of this cypher
query is 5.

The query response time is measured against the query
depth for the three applications executed in the three topolo-
gies. Fig. 10 depicts that the query response time increases as
the query depth or the number of nodes in the KG increases.
Fig. 10c exhibits that the query response time is approxi-
mately 11 ms when the number of nodes in KG is around
21 thousand, and the query depth is 5.

D. APPLICATION EXECUTION TIME
In this evaluation metric, we measured the time taken to
completely execute an application against the total number
of queries executed for an application. The application exe-
cution time is the time duration to execute an application
involving a certain number of queries executed to a corre-
sponding KG after the DTN Manager completely builds its
KG.

The application execution time is the total sum of the time
that the policies took to get executed for each application.
In Topology Dump, 2 policies, DumpHostToSwitchMap and
DumpSwitchToSwitchMap policies are executed. Similarly,
CheckReachabilityInTopology and CountSwitchHopsInPhys-
icalShortestPath policies are executed in Physical Reach-
ability Check, and CheckReachabilityByFlowRule and
CountSwitchHopsInForwardingPath policies are executed in
Flow Rule Reachability Check respectively.

Fig. 11 shows that the application execution time increases
as the total number of queries executed per application
increases. The three different applications exhibit different
average execution times, which depend on how each appli-
cation works even though the same KG may be shared.
In Fig. 11c, the average application execution time for Flow
Rule Reachability Check in Geant topology is 141.425 sec-
onds, which involves approximately 31 thousand query
executions, including the ones with a query depth of 5. Also,
even after the necessary responses are returned, they have to
be processed to return the application response by checking
whether the two entities in the network have a consistent
forwarding path in between.

E. ANALYSIS OF QUERY THROUGHPUT OF DTN MANAGER
AND APPLICATION QUERIES FOR EVEN LARGER
NETWORKS
The query throughput is defined as the number of queries
executed against a KG in a certain length of time. A script,
which simulates a large network, is executed to measure the
query throughput for very large KGs instead of emulating the
live network using mininet because of resource limitations.
The script is implemented for the Flow Rule Reachability
Check application in a k-fat tree topology for simulating a
simple data center network. The script takes the value of

63102 VOLUME 11, 2023



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

FIGURE 9. Average query response time vs Number of nodes in KG.

FIGURE 10. Average query response time w.r.t Query Depth.

FIGURE 11. Application execution time vs Total number of query executions.

‘‘k’’ as input to generate the number of nodes in the KG
on the scale of one thousand, ten thousand, and hundred
thousand. In a k-fat tree topology, for a given value of k,
there are (k/2)2 core switches, (k2/2) edge switches, (k2/2)
aggregation switches, and (k3/4) servers. The script records
the number of queries issued per second during its execution.
This experiment measures 1) the throughput of the DTN
Manager queries (CREATE and MATCH queries) and 2) the
query throughput of application queries (MATCH queries).

Fig. 12a shows the average throughput, and Fig. 12b
shows the average response time of the DTN Manager and
Application queries for the nodes in KG with the scale of
one thousand, ten thousand, and hundred thousand for the

different values of k=4, 6, and 8 respectively of the k-fat tree
topology.

In Fig. 12a, the throughput of the DTN Manager queries
is less than that of the application queries since the DTN
Manager query involves write operation as well, whereas
application queries are read-only. Also, the average through-
puts of both DTN Manager queries and application queries
decrease with the increase in the number of nodes in the
corresponding KG since query response time is largely pro-
portional to the number of nodes in KG. However, as seen
in both Fig. 12a and Fig. 12b, neither the query throughput
nor the response time degrades drastically even when the
size of the KG increases to a different scale order. This fact

VOLUME 11, 2023 63103



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

FIGURE 12. Average query throughput and average query response time
w.r.t number of nodes in KG.

emphasizes that KG is good as a storage for the virtual twin
of a large network.

F. KEY TAKEAWAYS
Response time in various angles is important to measure the
performance and scalability of the DTN architecture. The
experiment was conducted using the PoC implementation
with the built-in applications of the proposed DTN architec-
ture. To summarize the results, the query response time to a
KG is largely proportional to the size of the KG and the query
depth. Hence, the size of the KG and query depth should be
considered when a KG is constructed to maintain the query
response time to be reasonably short.

In addition, reading or adding an entity to a KG can be
done with a reasonably short response time compared with
the construction of a KG. Considering the importance of
reflecting the dynamic changes in the live network to its
virtual twin, using KG for the DTN purpose is realistic and
scalable, given the result of the query throughput experiment.

VII. DISCUSSION ON LIMITATIONS AND FUTURE SCOPES
A. KG BUILD TIME AND SCALABILITY
TheKGbuild time increases as the network size increases and
can affect the setup process of aDTN for a very large network.
Currently, the proposed architecture uses Neo4j, which is pro-
prietary software, as the implementation of KG. Therefore,
optimizing the KG build time in the current implementation
can be unrealistic. On the other hand, partitioning a large
network topology into smaller ones may help to constrain the
size of a network to reduce theKGbuild time or parallelise the
KG construction processes. However, the way to partition a
network can be computationally complex for minimising the
total time and resource consumption of such a KG construc-
tion approach. Also, the maintenance of multiple KGs can
introduce additional operational overhead as well as issues of
data security and consistency.

1) ENABLING BROADER DATA SOURCES AND PROTOCOLS
The current design of DTN uses the data collected from
the ONOS-based SDN Controller via the REST API. If a
high-resolution virtual twin is desired, much broader data
should be collected from the live network and support-
ing broader types of SDN Controllers is important. Also,

KG Data Modeller can be extended to support more data
sources and information exchange protocols such as SNMP,
Netconf, etc.

2) SECURITY AND PRIVACY
A DTN inherits the logic, parameter, network topology, etc.,
that the SDN Controller of a live network maintains. While
the security of the SDN Controller has already been dis-
cussed [40], [41], [42], the preparedness of security of the
DTN architecture needs more detailed discussions. Expect-
ing any input from an SDN Controller may be malicious,
an anomaly of input data from the SDN Controller should
be detected instead of unconditionally incorporating such
data to the DTN storage. In addition, the DTN architecture
can naturally collect the data from user devices connecting
to the live network. User privacy should still be properly
preserved, but it can also be a challengewhen the DTN is used
for enabling the virtual twin of an IoT for home, mobility,
healthcare, etc.

3) SDN ACTUATION FROM DTN
The built-in features of DTN implementation work in the
read-only mode. However, a DTN application can change the
network behaviour by interacting with the SDN Controller
through the REST API. However, actuating an SDN-based
network through a DTN application should be executed
safely. Network state verification before and after the SDN
actuation should be done in the SDN. Also, potential incon-
sistencies in the decision making logic between the SDN
Controller and the DTN Manager need to be mitigated or
eliminated without disturbing the ongoing network operation.
The issue of DTN-SDN inconsistency will likely happen to
the data representation based DTN approaches that do not
reproduce another network as a virtual twin.

4) SCOPE OF AI/ML INTEGRATION
Applying Artificial Intelligence (AI) / Machine learning
(ML) techniques on the data stored in KG is a very interesting
direction for various use cases, including predictive analysis
and causality analysis of broad phenomena in a live network
as well as optimisation of performance and resource usage in
the network [43], [44], [45]. Together with network verifica-
tion and actuation, AI/ML can benefit the network operation
to behave optimally with cost-effectiveness.

VIII. CONCLUSION
This paper proposed a data representation based DTN
architecture for SDN-based networks integrating Knowledge
Graph (KG) as its data storage together with the concept
of Template. The use of KG is highly promising to set and
retrieve the contextual understanding of the state of the live
network in a scalable manner, which is important to syn-
chronize DTN and SDN with high accuracy and frequency,
given the dynamic nature of a live network. The concept
of Template introduces flexibility to define the entities and
intent logic about the contextual information in the live

63104 VOLUME 11, 2023



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

network and determines how the KG needs to be built. The
PoC implementation of the proposed architecture integrated
an ONOS-based SDN Controller and Neo4j-based KG with
the built-in DTN applications for practical use. In the eval-
uation, the PoC implementation exhibited reasonably good
performance in terms of the query response time and through-
put and produced several insights, including the limitations
and potential challenges as discussed in §VII. As a future
work, the key research directions of our interest are the
safe actuation of SDN from DTN application, the integration
of AI/ML to the DTN Manager, the security and privacy
in operating a DTN, and the further improvement of DTN
scalability.

REFERENCES
[1] C. Zhou, H. Yang, X. Duan, D. Lopez, A. Pastor, Q. Wu, M. Boucadair,

and C. Jacquenet, ‘‘Concepts of digital twin network,’’ Internet-Draft,
Draft-ZHOU-NMRG-DigitalTwin-Network-Concepts-03, Internet Eng.
Task Force, 2021, p. 15. [Online]. Available: https://datatracker.ietf.
org/doc/draft-zhou-nmrg-digitaltwin-network-concepts/03/

[2] Y. Wu, K. Zhang, and Y. Zhang, ‘‘Digital twin networks: A survey,’’ IEEE
Internet Things J., vol. 8, no. 18, pp. 13789–13804, Sep. 2021.

[3] C. Jeffrey Mogul, D. Goricanec, M. Pool, A. Shaikh, D. Turk, B. Koley,
and X. Zhao, ‘‘Experiences with modeling network topologies at multi-
ple levels of abstraction,’’ in Proc. 17th USENIX Symp. Networked Syst.
Design Implement. (NSDI), Santa Clara, CA, USA: USENIX Association,
Feb. 2020, pp. 403–418.

[4] J. Deng, Q. Zheng, G. Liu, J. Bai, K. Tian, C. Sun, Y. Yan, and Y. Liu,
‘‘A digital twin approach for self-optimization of mobile networks,’’
in Proc. IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW),
Mar. 2021, pp. 1–6.

[5] P. Almasan, M. F. Galmés, J. Paillisse, J. Suárez-Varela, D. Perino,
R. D. López, A. A. P. Perales, P. Harvey, L. Ciavaglia, L. Wong, V. Ram,
S. Xiao, X. Shi, X. Cheng, A. Cabellos-Aparicio, and P. Barlet-Ros, ‘‘Digi-
tal twin network: Opportunities and challenges,’’ 2022, arXiv:2201.01144.

[6] A. Fuller, Z. Fan, C. Day, and C. Barlow, ‘‘Digital twin: Enabling
technologies, challenges and open research,’’ IEEE Access, vol. 8,
pp. 108952–108971, 2020.

[7] Y.-W.-E. Sung, X. Tie, S. H. Y. Wong, and H. Zeng, ‘‘Robotron: Top-down
network management at Facebook scale,’’ in Proc. ACM SIGCOMMConf.,
Aug. 2016, pp. 426–439.

[8] H. Hong, Q. Wu, F. Dong, W. Song, R. Sun, T. Han, C. Zhou, and
H. Yang, ‘‘NetGraph: An intelligent operated digital twin platform for data
center networks,’’ in Proc. ACM SIGCOMMWorkshop Netw.-Appl. Integr.,
Aug. 2021, pp. 26–32.

[9] M. Kherbache, M. Maimour, and E. Rondeau, ‘‘Network digital twin for
the industrial Internet of Things,’’ in Proc. IEEE 23rd Int. Symp. World
Wireless, Mobile Multimedia Netw. (WoWMoM), Jun. 2022, pp. 573–578.

[10] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, ‘‘CrystalNet: Faithfully emulating
large production networks,’’ in Proc. 26th Symp. Operating Syst. Princ.,
Oct. 2017, pp. 599–613.

[11] G. Bonofiglio, V. Iovinella, G. Lospoto, and G. Di Battista, ‘‘Kathará: A
container-based framework for implementing network function virtualiza-
tion and software defined networks,’’ in Proc. NOMS IEEE/IFIP Netw.
Oper. Manage. Symp., Apr. 2018, pp. 1–9.

[12] D. Pediaditakis, C. Rotsos, and A. W. Moore, ‘‘Faithful reproduction of
network experiments,’’ in Proc. ACM/IEEE Symp. Architectures Netw.
Commun. Syst. (ANCS), Oct. 2014, pp. 41–52.

[13] M. Shin, K. Nam, and H. Kim, ‘‘Software-defined networking (SDN): A
reference architecture and open Apis,’’ in Proc. Int. Conf. ICT Converg.
(ICTC), Oct. 2012, pp. 360–361.

[14] A. Leivadeas and M. Falkner, ‘‘A survey on intent-based networking,’’
IEEECommun. Surveys Tuts., vol. 25, no. 1, pp. 625–655, 1st Quart., 2023.

[15] T. A. Khan, A. Muhammad, K. Abbas, and W.-C. Song, ‘‘Intent-based
networking platform: An automated approach for policy and configuration
of next-generation networks,’’ in Proc. 36th Annu. ACM Symp. Appl.
Comput., Mar. 2021, pp. 1921–1930.

[16] M. Van Den Brand, L. Cleophas, R. Gunasekaran, B. Haverkort,
D. A. M. Negrin, and H. M. Muctadir, ‘‘Models meet data: Challenges to
create virtual entities for digital twins,’’ in Proc. ACM/IEEE Int. Conf.
Model Driven Eng. Lang. Syst. Companion (MODELS-C), Oct. 2021,
pp. 225–228.

[17] A. Rasheed, O. San, and T. Kvamsdal, ‘‘Digital twin: Values, chal-
lenges and enablers from a modeling perspective,’’ IEEE Access, vol. 8,
pp. 21980–22012, 2020.

[18] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, ‘‘A survey on
knowledge graphs: Representation, acquisition, and applications,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 2, pp. 494–514, Feb. 2022.

[19] C. El Houssaini, M. Nassar, and A. Kriouile, ‘‘A cloud service template for
enabling accurate cloud adoption and migration,’’ in Proc. Int. Conf. Cloud
Technol. Appl. (CloudTech), Jun. 2015, pp. 1–6.

[20] DTN-Project. Accessed: Jun. 23, 2023. [Online]. Available:
https://github.com/DTN-Project/DTN-KG

[21] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, ‘‘Digital twin in industry: State-
of-the-art,’’ IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2405–2415,
Apr. 2019.

[22] A. Canedo, ‘‘Industrial IoT lifecycle via digital twins,’’ in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Oct. 2016, p. 1.

[23] T. Sanislav, G. D. Mois, and S. Folea, ‘‘Digital twins in the Internet of
Things context,’’ in Proc. 29th Telecommun. Forum (TELFOR), Nov. 2021,
pp. 1–4.

[24] X. Wang, H. Song, W. Zha, J. Li, and H. Dong, ‘‘Digital twin based
validation platform for smart metro scenarios,’’ in Proc. IEEE 1st Int. Conf.
Digit. Twins Parallel Intell. (DTPI), Jul. 2021, pp. 386–389.

[25] T. Clemen, N. Ahmady-Moghaddam, U. A. Lenfers, F. Ocker,
D. Osterholz, J. Ströbele, and D. Glake, ‘‘Multi-agent systems and
digital twins for smarter cities,’’ in Proc. ACM SIGSIM Conf. Princ. Adv.
Discrete Simulation, May 2021, pp. 45–55.

[26] L. Zhao, G. Han, Z. Li, and L. Shu, ‘‘Intelligent digital twin-based
software-defined vehicular networks,’’ IEEE Netw., vol. 34, no. 5,
pp. 178–184, Sep. 2020.

[27] K. Ding, H. Han, L. Li, and M. Yi, ‘‘Research on question answering
system for COVID-19 based on knowledge graph,’’ in Proc. 40th Chin.
Control Conf. (CCC), Jul. 2021, pp. 4659–4664.

[28] H. Wang, X. Miao, and P. Yang, ‘‘Design and implementation of personal
health record systems based on knowledge graph,’’ in Proc. 9th Int. Conf.
Inf. Technol. Med. Educ. (ITME), Oct. 2018, pp. 133–136.

[29] K. Zhu, J. Zhou, X. Guo, F. Li, and H. Yang, ‘‘Review on knowledge graph
and its application in power dispatching,’’ in Proc. IEEE Int. Conf. Power,
Intell. Comput. Syst. (ICPICS), Jul. 2021, pp. 431–434.

[30] A. Syed, B. Anwer, V. Gopalakrishnan, and J. Van der Merwe, ‘‘DEPO: A
platform for safe DEployment of POlicy in a software defined infrastruc-
ture,’’ in Proc. ACM Symp. SDN Res., Apr. 2019, pp. 98–111.

[31] ONOS REST Services. Accessed: Jun. 23, 2023. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Appendix+B%3A+REST+
API

[32] YAML Ain’t Markup Language. Accessed: Jun. 23, 2023. [Online]. Avail-
able: https://yaml.org/

[33] S. Timón-Reina, M. Rincón, and R. Martínez-Tomás, ‘‘An overview
of graph databases and their applications in the biomedical domain,’’
Database, vol. 2021, May 2021, Art. no. baab026.

[34] Y. Cheng, P. Ding, T. Wang, W. Lu, and X. Du, ‘‘Which category is better:
Benchmarking relational and graph database management systems,’’ Data
Sci. Eng., vol. 4, no. 4, pp. 309–322, Dec. 2019.

[35] Z. J. Zhang, ‘‘Graph databases for knowledge management,’’ IT Prof.,
vol. 19, no. 6, pp. 26–32, Nov. 2017.

[36] Neo4j Graph Database. Accessed: Jun. 23, 2023. [Online]. Available:
https://neo4j.com/xproduct/neo4j-graph-database/

[37] Cypher Query Language. Accessed: Jun. 23, 2023. [Online]. Available:
https://neo4j.com/developer/cypher/

[38] Abilene Network. Accessed: Jun. 23, 2023. [Online]. Available:
https://web.archive.org/web/20120324103518/http://www.internet2.edu/
pubs/200502-IS-AN.pdf

[39] GÉANT The World’s Most Advanced International Research Net-
work. Accessed: Jun. 23, 2023. [Online]. Available: http://www.music.
mcgill.ca/~ich/classes/mumt301_11/network/Topology_Oct_2004.pdf

[40] M. Kamal, S. Amin, F. Ferooz, M. J. Awan, M. A. Mohammed,
O. Al-Boridi, and K. H. Abdulkareem, ‘‘Privacy-aware genetic algorithm
based data security framework for distributed cloud storage,’’ Micropro-
cessors Microsyst., vol. 94, Oct. 2022, Art. no. 104673.

VOLUME 11, 2023 63105



D. R. R. Potti et al.: Building a Digital Twin Network of SDN Using Knowledge Graphs

[41] S. Scott-Hayward, S. Natarajan, and S. Sezer, ‘‘A survey of security in
software defined networks,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 623–654, 1st Quart., 2016.

[42] M. B. Jiménez, D. Fernández, J. E. Rivadeneira, L. Bellido, and
A. Cárdenas, ‘‘A survey of the main security issues and solutions for the
SDN architecture,’’ IEEE Access, vol. 9, pp. 122016–122038, 2021.

[43] A. Lakhan, M. A. Mohammed, O. I. Obaid, C. Chakraborty,
K. H. Abdulkareem, and S. Kadry, ‘‘Efficient deep-reinforcement
learning aware resource allocation in SDN-enabled fog paradigm,’’
Automated Softw. Eng., vol. 29, no. 1, p. 20, Jan. 2022.

[44] A. Mestres, ‘‘Knowledge-defined networking,’’ ACM SIGCOMMComput.
Commun. Rev., vol. 47, no. 3, pp. 2–10, Sep. 2017.

[45] M. Bahnasy, F. Li, S. Xiao, and X. Cheng, ‘‘DeepBGP: Amachine learning
approach for BGP configuration synthesis,’’ in Proc. Workshop Netw.
Meets AI ML, Aug. 2020, pp. 48–55.

DEEPU RAJ RAMACHANDRAN POTTI received
the B.Tech. degree in computer science and
engineering from the College of Engineering,
Thiruvananthapuram, in 2014. He is currently
pursuing the M.Tech. degree with the Indian
Institute of Technology Hyderabad. He is also
a Research Assistant with the Indian Institute
of Technology Hyderabad. From 2014 to 2019,
he was a Senior Applications Engineer with Ora-
cle. From 2019 to 2021, he was a Senior Software

Developer with IBM. His current research interests include computer
networks, software-defined networks, and applying artificial intelligence/-
machine learning in the computer networks.

TAHIR AHMED SHAIK received the B.Tech.
degree in computer science and engineering,
in 2020, and the M.Tech. degree in computer sci-
ence and engineering from the Indian Institute
of Technology Hyderabad, in 2022. His research
interests include networks and security, artificial
intelligence, and software-defined networks.

ANISH HIRWE received the Ph.D. degree from
the Indian Institute of Technology Hyderabad
(IIT Hyderabad), India. He is an Assistant
Professor with the Department of Computer Sci-
ence and Engineering, Indian Institute of Tech-
nology Palakkad. His research interests include
network function virtualization, software-defined
networks, and network management.

PRAVEEN TAMMANA received the Ph.D. degree
from the University of Edinburgh, in 2018. He is
currently an Assistant Professor with the Com-
puter Science Department, Indian Institute of
Technology Hyderabad (IIT-Hyderabad). Before
IITH, he was a Postdoctoral Researcher with the
Computer Science Department, Princeton Uni-
versity, USA. He has published papers in top
networked systems conferences, such as NSDI,
OSDI, and SOSR. His research interests include

the intersection of systems, networks, and security. He received the Best
Paper Award at ACM SIGCOMM SOSR 2020.

KOTARO KATAOKA received the B.A. degree in
environmental information and the master’s and
Ph.D. degrees in media and governance from Keio
University, in 2002, 2004, and 2010, respectively.
Currently, he is an Associate Professor with the
Department of Computer Science and Engineer-
ing, Indian Institute of Technology Hyderabad.
His research interests include internet architecture,
software-defined networking, network functions
virtualization, blockchain, and online Japanese
education.

63106 VOLUME 11, 2023


