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ABSTRACT Smart farming helps to increase yield by smartly deciding the steps that should be practised in
the season. A few components of precision farming are recommending the crops for cultivation, predicting
the weather conditions, examining the soil; determining the pesticides, and fertilizers that have to be used.
Smart Farming utilizes advanced technologies namely data mining (DM), machine learning (ML), the
Internet of Things (IoT), and data analytics for collecting the data, predicting the outcomes and training
the system. One of the most significant parameters is proper soil prediction which decides the proper crop
and is manually executed by the agriculturalists. Hence, the farmer’s efficacy can be improved by producing
automated tools for soil type classification. This study presents a Chaotic Jaya Optimization Algorithm
with Computer Vision based Soil Type Classification (CJOCV-STC) for smart farming. The presented
CJOCV-STC technique applies CV with metaheuristic algorithms for the automated soil classification
process, which identifies the soil into distinct types. To accomplish this, the presented CJOCV-STC technique
uses the SqueezeNet model for producing a set of feature vectors. To improve the performance of the
SqueezeNet model, the CJO algorithm is used for the hyperparameter tuning process. Moreover, the Elman
neural network (ENN) technique is applied for soil type classification and the parameters related to it can be
adjusted by the chicken swarm algorithm (CSA). The soil classification performance of the CJOCV-STC
method can be studied on the Kaggle dataset and the outcomes stated the better performance of the
CJOCV-STC algorithm over other recent approaches with increased accuracy of 98.47%.

INDEX TERMS Smart farming, computer vision, soil type classification, deep learning, chaotic systems.

I. INTRODUCTION
Agriculture or farming is the practice of raising cattle and
growing crops. It makes a significant contribution to the
economy [1]. Several food products and raw materials were
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produced by agriculture. Raw materials like cotton and
jute were utilized by industries to produce several products
that are consumed in everyday life [2]. Agriculture not
only supports food production but even produces resources
required to create commercial products. Traditional farming
is typically practised worldwide [3]. Such methods are inac-
curate and hence lead to time consumption and hard labour.
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The implementation of digital technologies including
automation technologies, robots, sensors and electronic
devices was linked with Precision Agriculture [4]. This target
is to rise profitability, decision management, and reduce work
pressures.

Soil becomes a basic element in the nutrient supply and
the crop yield to the crops and results in the growth of
the redundant weed from soil because of fertility [5]. Soil
classification laid the foundation for several fields like land
consolidation, crop management, and soil improvement [6].
Physical properties such as temperature and moisture affect
pores and particle formation, which affects water infiltra-
tion, root growth, and plant emergence speed, finally crop
yield [7]. Chemical features like the NPK parameters, pH,
and organic carbon determine the mobility of contaminants,
obtainability of nutrients, and the incidence of other species.

Machine learning (ML) makes agricultural applications
simple and efficient [8]. Generalization, Data acquisition,
and model building are the three phases of the ML process.
In many cases, ML techniques were utilized to deal with
complicated issues when human competence is inadequate.
ML may be used in agriculture to predict soil variables like
organic carbon and moisture content, crop yield prediction,
weed and disease detection in species and crop detection [9].
Deep Learning (DL) improves conventional ML by adding
additional complexity to the model and varying the input with
different functions that let data representation hierarchically
with many levels of abstraction, relying upon the network
architecture. The ability to find unknown things like anoma-
lies instead of collecting existing items is a main aspect of the
DL method [10], which utilizes the homogeneous properties
of an agricultural domain to find unknown, faraway, and
badly obstructed objects.

Al-Naji et al. [11] present a non-contact vision sys-
tem based on the video camera to forecast the irrigation
requirement for loam soils by implementing a feedforward
BPNN. The presented method utilized this colour data as
input to the ANN method for deciding whether to irri-
gate soil or not. In [12], the authors addressed the soil
nutrient analysis by regression procedure and its spectral
index related to the forecast procedure through Iterative
Self-Organizing (ISO) cluster unsupervised categorizing pro-
cedure. Suruliandi et al. [13] focused on the design of an
optimal feature selection approach for the crop prediction
process. The research outcome demonstrates the Recursive
Feature Elimination (RFE) procedure with Adaptive Bagging
(AB) categorizer that exceeds other individuals.

In [14], the fundamental parameters were decided by
employing a soil map and the Shuttle Radar TopographyMis-
sion record. Land use competence classes, erosion hazard,
soil depth, and other characteristics are attained from soil
map, and elevation, while slop, and factors were attained
from Shuttle Radar Topography Mission record. In [15],
advanced Adaboost methods are devised to categorize soil
kinds based on tree algorithmmethods that are less frequently
utilized in this field. Srivastava et al. [16] discuss diverse

computer-oriented soil categorization practices separated into
2 main streams. The first is CV-related soil categorization and
image processingmethods which encompasses the traditional
image processing procedures and models to categorize soil
by implementing diverse factors such as particle size, texture,
and colour. Second is ML and DL-based soil categorization
approaches like CNN which provide modernized outcomes.

Azadnia et al. [17] suggest a transportable smartphone-
related machine vision structure by employing CNN for the
categorization of soil texture imagery from 20, 40, and 60 cm
heights. The presented CNN approach comprises 2 blocks
with many distinct layers. The initial block (extraction fea-
ture) comprises batch normalization, Conv, dropout, and
Max-pooling layers. The second comprises SVM methods,
FC layers, and flattening. During this case, the SVM, ANN,
RF, and KNN techniques are utilized for comparing the pre-
sented CNN outcomes with other classifiers. The outcomes
exposed the presented CNN algorithm can rapidly forecast
the kind of soil textures on huge scale farms and so be an opti-
mum substitute to expensive and time-taking lab approaches.

Although many ML and DL algorithms were available in
this study for soil classification, still it needed to improve
the performance of the classification. Also, the number of
parameters of the DL algorithm quickly increases owing to its
continuous deepening of the model, resulting in model over-
fitting. Together, many hyperparameters have a significant
effect on the efficacy of the CNN model. Especially, hyper-
parameters like learning rate selection, batch size, and epoch
count are crucial to obtain superior outcomes. In the mean-
time, the trial and error technique for hyperparameter tuning
is a challenging and tedious task, metaheuristic algorithm is
used.

This study proposes a Chaotic Jaya Optimization
Algorithm with Computer Vision based Soil Type Classi-
fication (CJOCV-STC) for smart farming. The presented
CJOCV-STC technique uses the SqueezeNet model for
producing a set of feature vectors. The CJO algorithm is
exploited for the hyperparameter tuning to enhance the per-
formance of the SqueezeNet model. Moreover, the Elman
neural network (ENN) technique was applied for the soil
type classification and the parameters related to it can be
adjusted by the chicken swarm algorithm (CSA). The soil
classification performance of the CJOCV-STC method can
be studied on the Kaggle dataset.

• An intelligent CJOCV-STC model comprising
SqueezeNet feature extraction, CJO-based hyperpa-
rameter tuning, ENN classification, and CSA-based
parameter tuning is presented. To the best of our knowl-
edge, the proposed CJOCV-STC technique never existed
in the literature.

• Employ the CJO algorithm for hyperparameter tuning,
which incorporates chaotic dynamics into the JOA to
enhance its exploration and exploitation capabilities.
By introducing chaos, the algorithm is expected to
achieve a better balance between the exploration of the
solution space and the exploitation of promising regions.
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• Hyperparameter tuning of the SqueezeNet model and
ENN model using CJO and CSA helps to improve the
soil classification performance on unseen data.

The rest of the paper is organized in the following. Section II
provides the proposed model. Later, section III provides the
result analysis and section IV concludes the paper.

II. THE PROPOSED MODEL
In this study, a new CJOCV-STC method was proposed for
automated soil type classification in the smart farming sec-
tor by the use of CV and metaheuristic algorithms. In the
presented CJOCV-STC technique, various subprocesses are
involved namely SqueezeNet feature vector generation, CJO-
based hyperparameter tuning, ENN-based classification, and
CSO-based parameter optimization. Fig. 1 illustrates the
workflow of the CJOCV-STC approach.

A. FEATURE EXTRACTION: OPTIMAL SQUEEZE NET MODEL
In this work, the SqueezeNet model was used for feature
vector generation. The technique for the feature extraction
utilizes a SqueezeNet approach which has previously been
trained [18]. The SqueezeNet scheme assumes the input
image develops forward and works as an extraction feature
but still it attains a layer previously set (extraction feature
layer). The procedure ends here, having the final layer output.
The SqueezeNet approach of pretrained CNN was employed
in this presented method. SqueezeNet is a new version of the
CNN algorithm that utilizes just 3 × 3 and 1 × 1 convolution
layers. Here fire module is the kterm indicating constructing
block of SqueezeNet.

A fire module contains a convolutional layer with
‘‘expand’’ and ‘‘squeeze’’ layers. Initially, the input image
passes through a convolution layer termed ‘‘conv1’’.
A squeeze convolution layer has one filter. It is provided as
an expanded layer that comprises a combination of 1× 1 and
3× 3 convolutional filters which capture spatial data (extrac-
tion feature) at several scales. This layer has afterwards 8
‘‘fire modules,’’ numbered ‘‘fire2’’ through ‘‘fire9’’. After
fire8, fire4, conv10, and conv1, max-pooling layers have been
executed with a stride of 2. Dropout layers can be included in
the Fire9 module for reducing over-fitting. Downsampling
has been placed late, which leads to SqueezeNet with a
‘‘complex bypass’’.

The CJO model is exploited for the hyperparameter tuning
to enrich the performance of the SqueezeNet model [19]. The
objective of leveraging chaos in an optimizer technique is
to use its easier implementation, better dynamic behaviour
and exceptional capability to improve the diversity of the
population. The study integrated chaos in the JO algorithm
to avoid falling in local optima and enhance its searching
behaviour.

The logistic map is a higher sensitivity to the slight mod-
ification of an initial condition, the random-like and ergodic
and also 1D chaotic system can be determined using the

subsequent formula:

βk+1
= µβk

(
1 − βk

)
, k= 1, 2, . . .β ∈ [0, 1] (1)

In Eq. (1), ∈ [0, 4). The chaotic map can be determined
in the interval. The bifurcation diagram of the logistic map
is the fruit of plotting, as a function of µ, a sequence of
values for β, accomplished by beginning with a random inte-
ger, which iterates it several times and eliminates the initial
point respective to the value beforehand the iterates converge
towards the attractor. The chaotic map is embedded in an
optimized technique due to the pseudo-random behaviour.
The sensitivity of the initial condition and control param-
eter enables better outcomes in the generation of chaotic
sequences. In the presented method, the logistic map was
leveraged for substituting arbitrary numbers in the original
JO technique.

The original JO technique suffers from certain short-
comings namely lack of population diversity and premature
convergence. As a result, it might fall into local optimal.
The efficiency of the presented technique is primarily related
to accomplishing a compromise between exploration and
exploitation capabilities. The exploitation is connected to the
convergence towards the optimum solution in a speedy way.
On the other hand, exploration can be recognized as the
examination of the potential area in the search space.

The authors recommended the new CJO algorithm by
incorporating chaos in the typical JO algorithm. The three
mutually exclusive search expressions are proposed to
obtain a compromise between exploitation and exploration,
as defined in Eqs. (2)-(4):

Xnew,j = Ci,jXrandi,j + Ci,j(Xi,j − Ci,jXrandi,j)

+ Ci,j
(
Xbestj − Ci,jXrandi,j

)
(2)

Xnew,j = Ci,jXrandi,j + Ci,j
(
Xi,j − Ci,jXrandi,j

)
+ Ci,j

(
Xworst,j − Ci,jXrandi,j

)
(3)

Xnew,j = Ci,jXbestj + Ci,j
(
Xrandi,j − SFXbestj

)
(4)

where Ci,j indicates the values of chaotic numbers generated
using the logistic map. The variable SF could chaotically take
two values (1 or 2). The local search capability of the CJO
algorithm can be enhanced by Eq. (4). Early convergence can
be commonly encountered due to a massive amount of local
optimal. Thus, the global optima could not be attained. These
problems are tackled while the scaling factor has taken its
maximal value. In such cases, trapping in local optimal was
prevented, and search behaviours can be improved.

B. SOIL TYPE CLASSIFICATION: ENN MODEL
The ENN method was exploited in this study for the identi-
fication and classification of soil into diverse types. The four
main layers involved in the ENN model are the input layer,
a hidden layer (HL), an output layer, and a context layer [20].
The basic configuration of this NN is like feedforward NN
so that the connection in the HL, output, and input layers is
exactly alike themulti-layer NN. In addition, the context layer
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FIGURE 1. Working flow of CJOCV-STC approach.

FIGURE 2. The architecture of the ENN model.

was another layer in ENN that existed so that the input derived
from the output of the HL is used to store the prior value of
the HL.

Fig. 2 illustrates the structure of ENN. TheWV i
h,WV

c
h , and

WV 0
h correspondingly the output weight matrices, external

input, and context weight. Concerning the form of ENN,
the dimension of the output and input layers were n and
the dimension of the context layer is m, viz., x1(t) = [x11 (t),

x12 (t), . . ., x
1
n (t)]

T and y(t) = [y1(t),y2(t), . . . ,yn(t)]T . In this
network, the input layer is modelled as follows:

ui (l) = ei (l) , i = 1, 2, . . . , n (5)

In Eq. (5), l demonstrates the input and the output layer at the
l − th iteration and the k − th HLs can be formulated by:

vk (l) =

∑N

j=1
ω1
kj (l) x

c
j (l)

+

∑N

i=1
ω2
ki (l) ui (l) , k= 1, 2, . . . ,N (6)

In Eq. (6), xcj (l) defines the forwarded signal from the
kth context layer nodes, andω1

kj(l) determines the ith and jth

weights of HLs transmitted from the oth node. Thus, the
weight of k − th HL was accomplished using ω2

ki (l) for the
input layer. Lastly, the output values of HL which are added
to the context layer can be attained by Eq. (7):

Wk (l) = f0 (vk (l)) (7)

where

v (l) =
vk (l)

max {vk (l)}
(8)
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Eq. (7) is the normalized value of the HL and Eq. (8) is the
context layer. Now, the output is equal to the Eq. (9):

Ck (l) = βk (l − 1) +WVk (l − 1) ,k= 1, 2, . . . ,N (9)

In Eq. (9), WVk refers to the gain of self-connected
feedback between [0, 1]. Lastly, the output layer can be rep-
resented as follows:

y0 (l) =

∑N

k=1
ω3
0/e (l)WVk (l) 0 = 1, 2, . . . ,n (10)

In Eq. (10), ω3
0/e determines the weight connection from

k th into oth layers.

C. HYPERPARAMETER TUNING: CSA
Finally, the CSA is utilized for the optimal parameter adjust-
ment of the ENN algorithm. The CSA inspires hierarchal
order from CS and the performance of CS which stems from
the performance of bird foraging actions [21]. The CS has
been categorized into several groups such as one rooster,
several hens, andmany chicks. Roosters continuously explore
for optimal food in the foraging. The hens frequently track
the rooster for finding food, and the chicks track their mother
to find food. An individual surrounded by CS complies
with different laws of motion. There would be competition
amongst individuals with CS in a particular hierarchal order.
The place of each individual with CS portrays a feasible
result of the optimizer system. Primarily, define the variable
beforehand determining the position upgrade formula of indi-
viduals within the CS: HN ,RN ,MN , and CN correspondingly
demonstrates the hen, rooster, mother hen, and chick counts;
N implies the count of CSs, D signifies the dimensional
of problems; xi,j(t)(i∈ [1, · · · ,N ],j∈ [1, · · · ,D]) denotes a
place of individuality time t.
During the CS, the bestRN chicken can be regraded rooster,

but the worse CN one was observed as a chick. The remain-
ing CS was viewed as a hen. Rooster having best fitting
values takes a major problem for food accessing if related
to one with worst fitting value and it can be expressed in
the Eqs. (11)-(12):

xi,j (t + 1) = xi,j (t)
(
1 + Randn

(
0,σ 2

))
(11)

σ 2
=

 1, fi ≥ fk , k∈ [1,N ],k ̸= i

exp
(
fk − fi
|fi| + ε

)
, otherwise,

(12)

In Eq. (12), Randn (0,σ 2) stands for Gaussian distribution
taking standard deviation σ and mean 0,ε displays the least
constant to avoid zero-division-error, k shows the rooster
index, which is haphazardly selected in the rooster groups,
(k ̸=i),fi refers fitness value of particles i.

Intended for the hens, it follows a group-mate rooster for
finding food and randomly takes food found by others as

given in Eqs. (13)-(15):

X t+1
i,j = X ti,j + C1Rand(X tr1,j − X ti,j)

+ C2Rand(X tr2,j − X ti,j) (13)

C1 = exp((fi − fr1)/(|fi| + ε (14)

C2 = exp ((fr2 − fi)) (15)

where Rand shows uniformly distributed random integer in
[0, 1],r1 implies the index of roosters, viz ith hen’s group-
mate, and r2 signifies the index of chickens which is selected
randomly in the CS r1 ̸=r2.Concerning the chicks, it is fol-
lowing their mother for foraging for food and it can be
demonstrated in Eq. (16):

X t+1
i,j = X ti,j + F

(
X tm,j − X ti,j

)
(16)

But xm,j(t) signifies the place of the chick’s mother,
F∈ [0, 2] followed by co-efficient signifies that the chick
tracks its mother for foraging for food. The CSA approach
has derived a fitness function to get optimal performance
of the classification. It ascertains a positive value to denote
the superior outcome of the solution candidate. Herein, the
decline of the classifier error rate was the fitness function,
as seen in Eq. (17).

fitness (xi) =
number of misclassified samples

Total number of samples
∗100 (17)

III. RESULTS AND DISCUSSION
The proposed method is simulated utilizing Python 3.6.5 tool
on PC i5-8600k, 250GB SSD, GeForce 1050Ti 4GB, 1TB
HDD, and 16 GB RAM. The parameter settings are rep-
resented in the following: epoch counts 50, batch size: 5,
learning rate: 0.01, dropout: 0.5, and activation: ReLU.
The Python packages utilized are Keras, TensorFlow (GPU-
CUDA Enabled), numpy, pickle, sklearn, pillow, matplotlib,
and opencv-python.

In this study, the soil type recognition performance of the
CJOCV-STC technique can be studied on the dataset [22],
containing 280 sampleswith seven classes. The details related
to this dataset are described in Table 1. Fig. 3 characterizes
the sample images.

TABLE 1. Details of the dataset.

The sand type recognition output of the CJOCV-STC tech-
nique is demonstrated in Fig. 4 in the way of a confusion
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FIGURE 3. Sample soil-type images.

FIGURE 4. Confusion matrices of CJOCV-STC algorithm (a-b) 80:20 of
TRP/TSP and (c-d) 70:30 of TRP/TSP.

matrix. The figure identifies that the CJOCV-STC technique
proficiently identified and categorized various kinds of sands
with 80:20 and 70:30 of TRP/TSP.

In Table 2 and Fig. 5, the entire sand classifi-
cation outcomes of the CJOCV-STC technique are
studied well. The table values notify the improvised per-
formance of the CJOCV-STC technique under 80:20 of
TRP/TSP. With 70% of TRP, the CJOCV-STC tech-
nique attains an average accuy of 97.96%, precn of
92.98%, recal of 92.91%, Fscore of 92.89%, and MCC
of 91.73%. Besides, with 30% of TSP, the CJOCV-STC
approach attains an average accuy of 98.47%, precn of
94.60%, recal of 94.93%, Fscore of 94.71%, and MCC
of 93.85%.

TABLE 2. Sand classifier outcome of CJOCV-STC approach under 80:20
of TRP/TSP.

FIGURE 5. Average soil classification results of CJOCV-STC approach
under 80:20 of TRP/TSP.

In Table 3 and Fig. 6, the entire sand classification out-
comes of the CJOCV-STCmethod are studied well. The table
values notify the improvised performance of the CJOCV-STC
approach under 70:30 of TRP/TSP. With 70% of TRP, the
CJOCV-STC method attains an average accuy of 97.67%,
precn of 92.02%, recal of 91.84%, Fscore of 91.88%, and
MCC of 90.55%. Besides, with 30% of TSP, the CJOCV-STC
algorithm attains an average accuy of 97.96%, precn of
93.12%, recal of 92.90%, Fscore of 92.74%, and MCC
of 91.73%.

Fig. 7 inspects the accuracy of the CJOCV-STC technique
during the training and validation process on the test dataset.
The figure notifies that the CJOCV-STC method reaches

65854 VOLUME 11, 2023



H. Alshahrani et al.: CJOCV-STC for Smart Farming

TABLE 3. Sand classifier outcome of CJOCV-STC method under 70:30
of TRP/TSP.

FIGURE 6. Average soil classification results of CJOCV-STC approach
under 70:30 of TRP/TSP.

increasing accuracy values over increasing epochs. As well,
the increasing validation accuracy over training accuracy
shows that the CJOCV-STC technique learns efficiently on
the test dataset.

The loss analysis of the CJOCV-STC technique at the time
of training and validation is given on the test dataset in Fig. 8.
The outcomes indicate that the CJOCV-STC method reaches
closer values of training and validation loss. TheCJOCV-STC
technique learns efficiently on the test dataset.

A brief precision-recall (PR) curve of the CJOCV-STC
method is demonstrated on the test dataset in Fig. 9. The
outcomes stated that the CJOCV-STC technique results in

FIGURE 7. Training and validation accuracy curves of the CJOCV-STC
approach.

FIGURE 8. Training and validation loss curves of the CJOCV-STC approach.

FIGURE 9. The precision-recall curve of the CJOCV-STC approach.

increasing values of PR. Additionally, the CJOCV-STC tech-
nique can reach higher PR values in all classes.

In Fig. 10, a ROC study of the CJOCV-STC method
is revealed on the test dataset. The figure described that
the CJOCV-STC method resulted in improved ROC values.
Besides, the CJOCV-STC technique can extend enhanced
ROC values in all classes.
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FIGURE 10. ROC curve of the CJOCV-STC approach.

TABLE 4. Comparative outcome of CJOCV-STC method with other
systems [23].

To highlight the improvements of the CJOCV-STC system,
a widespread comparison study is performed in Table 4 [23].
In Fig. 11, a comparative accuy and Fscore assessment
of the CJOCV-STC technique with existing models. The
results demonstrate that the CJOCV-STC technique results in
improved values of accuy and Fscore of 98.47% and 94.71%.
At the same time, the PSO, GSA, DE, and SMO models
showcase lower classifier results. Although the CSMO and
FCMCSO-ASC models accomplish considerable outcomes,
they failed to outperform the CJOCV-STC technique.

In Fig. 12, the detailed precn and recal assessment of the
CJOCV-STC method with existing models. The outcomes
exhibit that the CJOCV-STC method that has superior values
of precn and recal of 94.60% and 94.93%. Simultaneously,
the PSO, GSA, DE, and SMO approaches display lower
classifier results.

Although the CSMO and FCMCSO-ASC methods accom-
plish considerable outcomes, they failed to outperform
the CJOCV-STC algorithm. These results highlighted the
enhanced performance of the CJOCV-STCmethod on the soil
type classification process. The enhanced performance of the
proposed model is due to the inclusion of a hyperparameter
tuning process. In addition, the CJO algorithm integrates
chaotic concepts to achieve a better balance between the
exploration of the solution space and the exploitation of
promising regions. The CJO and CSO algorithms choose the

FIGURE 11. Accuy and Fscore outcome of CJOCV-STC algorithm with soil
type classifiers.

FIGURE 12. Precn and Recal outcome of CJOCV-STC algorithm with soil
type classifiers.

optimal values for the hyperparameters of the SqueezeNet
and ENN models respectively. They can have a significant
impact on the performance of the model, and selecting the
optimal values can lead to better accuracy. By combining CJO
and CSO-based hyperparameter tuning, the proposed model
can achieve even better results by focusing on selecting the
optimal settings for the algorithm. These results ensured the
improved performance of the proposed technique over other
existing techniques.

IV. CONCLUSION
In this study, a new CJOCV-STC method was proposed for
automated soil type classification in the smart farming sec-
tor by the use of CV and metaheuristic algorithms. In the
presented CJOCV-STC technique, various subprocesses are
involved namely SqueezeNet feature vector generation, CJO-
based hyperparameter tuning, ENN-based classification, and
CSO-based parameter optimization. The CJO approach is
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used for the hyperparameter tuning process to enhance the
performance of the SqueezeNet method. Furthermore, the
CSA with ENN model is exploited for the recognition and
classification of soil into diverse types. The soil classification
performance of the CJOCV-STC method can be studied on
the Kaggle dataset and the outcomes demonstrated better
performance of the CJOCV-STC algorithm over other exist-
ing techniques with 98.47% of maximum accuracy. In the
upcoming years, the presented CJOCV-STC technique can
be extended to the soil type classification on remote sensing
images. In addition, the proposed model can be tested on a
large-scale real-time dataset, comprising region-wise distinct
soil types.
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