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ABSTRACT Non-ferrous copper prices exhibit high noise, non-smoothness, and non-linearity, which
pose significant challenges to accurate price prediction. One of the current methods for predicting copper
prices is multi-influencing factor analysis, which typically relies on traditional optimization or neural
network methods to identify factors that affect copper prices. However, extracting attribute features and
high-level semantics from raw data using these conventional methods can be difficult, which may necessitate
revision of the selected influencing factors and final results. This paper proposes a CNN-LSTM-based
approach that leverages the feature extraction capabilities of Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks. After analyzing the fluctuation features of copper prices and
their qualitative relationships with factors such as supply and demand, energy costs, alternative metals,
global macroeconomic conditions, and national policies, we selected 11 influencing factors for copper price
fluctuation as explanatory variables using scatter plots, Pearson correlation coefficients, and heat maps.
These variables are then fed into a CNN-LSTM network as a two-dimensional multivariate time series, along
with historical copper price data, for monthly price forecasting. Experimental results show that our proposed
method outperforms other existing methods by utilizing the attribute space feature extraction capability of
CNNs and the temporal feature extraction of LSTMs.

INDEX TERMS Convolutional neural network, long short-term memory, multi-influencing factor, correla-
tion analysis, price prediction.

I. INTRODUCTION
Non -ferrous metals are crucial raw materials and strategic
resources for national economic development and defense
technology. They find wide applications in power electron-
ics, household appliances, transportation energy, machinery
manufacturing, and construction [1], [2], [3]. In electronic
applications, for example, copper can be used to make circuit
boards, wires and cables for its good electrical conductivity,
and it can be also used to make heat sinks for electronic
devices because of its thermal conductivity. In addition,
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copper can be used for RF protection, connectors, and more.
The prices of non-ferrous metals have a significant impact on
the development of production, supply, and marketing inte-
gration plans. By forecasting the prices of non-ferrousmetals,
enterprises can better understand future market fluctuations,
assist decision-makers in developing early risk strategies,
and establish reasonable integration plans to enhance their
business performance. Thus, research and application of
future price prediction methods hold far-reaching practical
significance.

Non-ferrous metals have both commodity and finan-
cial attributes, and their price fluctuations are influenced
by numerous factors. As commodities, global supply and
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demand, as well as energy costs for smelting and produc-
tion, shape the medium and long-term trend of non-ferrous
metal prices. On the other hand, the financial attributes
of non-ferrous metals, such as the U.S. dollar exchange
rate, consumer indices, and price levels, contribute to their
short-term volatility [4]. Moreover, the various influencing
factors are often coupled and interrelated with each other,
resulting in the historical price series of non-ferrous metals
exhibiting high volatility and a complex fluctuation pattern.
Specifically, this pattern is characterized by apparent high
noise, non-smoothness, and non-linearity, making accurate
prediction of non-ferrous metal prices a complicated and
challenging scientific problem [5].

At present, the primary method for forecasting non-ferrous
metal prices is to analyze the various factors influencing their
price fluctuations, such as supply and demand, inventory lev-
els, production costs, economic indicators, national policies,
and unexpected events. Based on the historical price series
of non-ferrous metals and the past data of relevant influenc-
ing factors, reasonable judgments and predictions on future
prices are made using statistical and mathematical methods.
In recent years, with the rapid advancement of machine
learning, deep learning, and other technologies, non-ferrous
metal price predictionmethods withmulti-influencing factors
have emerged. With sufficient historical data, these advanced
methods have proven to be capable of making more accurate
predictions on future prices.

However, due to the non-linear relationship between each
factor and historical price data, there is still considerable
room for improving the accuracy of multi-factor forecast-
ing methods. Traditional neural networks and optimization
algorithms alone are incapable of extracting high-level
semantic features, requiring further refinement of the
approach.

Therefore, this paper proposed a CNN-LSTM-based non-
ferrous metal price prediction algorithm. Specifically, the
contributions of this study are:

1) We examined the volatility characteristics of cop-
per prices, a non-ferrous metal, and investigated the
evolution of the global copper market in light of
various uncertainties, including supply and demand
fluctuations, energy costs, competition from alterna-
tive metals, overall macroeconomic conditions, and
national policies.

2) Using correlation analysis techniques, we identified the
11most significant factors that influence copper prices.
These include refined copper production, refined cop-
per stocks, refined copper consumption, natural gas,
gold, silver, zinc, the U.S. dollar index, coffee, soy-
beans, and lean pigs, which serve as explanatory
variables for fluctuations in copper prices.

3) We propose a CNN-LSTM-based price prediction
method for two-dimensional multivariate time series,
which is different from previous applications on
one-dimensional time series, and we demonstrated its
effectiveness and accuracy through experimentation.

The rest of the paper is organized as follows: Section II
reviews the primary methods for predicting non-ferrous met-
als or copper prices. Section III introduces the theory of
CNN and LSTM. Section IV describes the volatility charac-
teristics of copper prices and lists the possible influencing
factors. Section V uses scatter plots, Pearson correlation
coefficient and heat map method to optimize and get top
11 influencing factors. Section VI introduces CNN-LSTM
networks and copper price prediction methods. Section VII
gives the experimental validation, and Section VIII discusses
the conclusions and future work.

II. RELATED WORKS
Over the past few decades, non-ferrous metal price predic-
tion has garnered significant attention and been extensively
investigated by scholars. There are two primary methods
for forecasting price series data: the raw data price predic-
tion method and the multi-influencing factor price prediction
method, which differ in their input signals.

A. RAW DATA PRICE PREDICTION METHOD
This method takes historical price series data as input and
employs mathematical techniques, such as mathematical
regression and neural networks, to forecast future prices.

Previous research mainly relied on statistical techniques
such as Autoregressive Moving Average (ARMA) [8],
Differential Autoregressive Moving Average (ARIMA,
Autoregressive Integrated Moving Average) [9], [10], Auto-
Regressive Conditional Heteroskedasticity (ARCH) [11],
Generalized Auto Regressive Conditional Heteroskedas-
ticity (GARCH) [12], and Conditional Heteroskedasticity
(ARCH) [13] to implement the raw data price prediction
method.

Other advanced statistical methods have been developed
for non-ferrous metal price prediction as well. García and
Kristjanpolller [13] combined a fuzzy inference system
(FIS) with the GARCH model to create an adaptive predic-
tion model for forecasting monthly copper price changes.
Hadavandi et al. [14] introduced a Particle Swarm Optimiza-
tion algorithm (PSO) time series prediction model, while
Zhao et al. [15] proposed a generalized pattern-matching
model based on a genetic algorithm (GPEGA) that incorpo-
rates empirical distribution. Alameer et al. [16] presented an
improved adaptive neuro-fuzzy inference system (ANFIS).

Statistical models for forecasting assume that the original
data undergo linear transformations. However, there is no
evidence to suggest that price data are intrinsically linear,
limiting the effectiveness of statistical models for long-term
predictions. As iterations accumulate during the forecasting
process, prediction errors can have a negative impact on the
final accuracy of these models.

When faced with frequent and drastic fluctuations
in prices, some approaches have incorporated artificial
intelligence (AI) algorithms to address the non-linear
nature of non-ferrous metal price changes. For instance,
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Dehghani and Bogdanovic [17] used the Brownian motion
mean reversion model (BMMR) to forecast copper prices.
Lasheras et al. [18] analyzed copper spot price data from
the New York Mercantile Exchange using three models-
ARIMA, Multi-Layer Perceptron (MLP), and local regres-
sion network Elman- respectively, to conduct forecasting
experiments.

A comparative analysis of statistical methods, artificial
intelligence algorithms, and machine learning techniques
reveals that machine learning and neural network methods
are superior to statistical models in identifying non-linear fea-
tures in price series and delivering more accurate predictions.
Nevertheless, the inherent non-linearity and non-smoothness
of one-dimensional price series data, combined with the com-
plex and subtle fluctuation patterns unique to non-ferrous
metals, make it difficult for simple forecasting models to
extract deep-level feature information from one-dimensional
price data alone. This renders future price forecasting for
non-ferrous metals a challenging task.

B. MULTI-INFLUENCING PRICE PREDICTION METHOD
The multi-influencing factor price forecasting method
involves analyzing numerous intricate factors that impact
price fluctuations, and incorporating them into the prediction
model as explanatory variables to make reasonable and pre-
cise forecasts of future prices. Generally speaking, the quality
of the influencing factors predominantly affects the final
prediction outcomes, with better-quality influencing factors
resulting in higher accuracy of predictions.

Traditional forecasting methods relying on multiple
influencing factors, typically involve qualitative analysis,
as demonstrated by Ciner and other researchers [19], who
experimentally established a strong correlation between
exchange rate fluctuations of the South African currency
and price fluctuations of palladium and platinum. In another
study, Frankel et al. [20] analyzed relevant factors impacting
non-ferrous metal prices in the London Metal Exchange,
such as inflation/deflation levels and appropriate fiscal poli-
cies, while also taking into account macroeconomic and
micro-market currency and exchange rate factors. Behmiri
and Manera [21] investigated the impact of oil price shocks
on the price volatility of variousmetals, including aluminium,
copper, lead, nickel, tin, zinc, gold, silver, palladium, and
platinum, and found that oil price shocks affect each metal’s
price volatility to varying degrees. Mo et al. [22] explored
the dynamic relationship between the U.S. dollar, crude oil,
and gold markets, concluding that the dynamic correlation
between gold and oil is always positive.

Furthermore, there are significant correlations between dif-
ferent types of non-ferrous metals. Ozdemir et al. [23] used
LSTM and GRU forecasting models based on historical
monthly price data of non-ferrous metals fromMarch 1991 to
May 2021 to conduct experiments. Their findings showed
that prices of metals such as aluminium, copper, gold, silver,
zinc, iron and lead have an impact on the future fluctuations
of nickel prices to some extent. Additionally, Buncic [24]

discovered a strong correlation between copper prices and the
costs of gold and silver, due to copper becoming a substitute
for precious metals like gold and silver in the investment
field.

In recent years, the availability of massive data and
advanced data mining techniques has led more researchers
to focus on multi-influencing factor forecasting, resulting in
a flourishing of data-driven multi-influencing factor price
prediction methods. These big data-driven forecasting tech-
niques have been found to exhibit higher prediction accuracy
and robustness when compared to traditional qualitative
analysis-based predictions. Onemajor advantage is the ability
to automatically extract feature information from the input
data, thus producing a more accurate representation of the
input data.

Feature extraction-based machine learning algorithms
have become a widely used approach for non-ferrous metal
price forecasting. For instance, Aye et al. [25] categorized
gold price influencing factors into six categories and utilized
the principal component analysis (PCA) method to predict
prices with 28 unclassified factors. Similarly, Liu et al. [26]
conducted a correlation analysis by the Pearson correla-
tion coefficient method between copper prices and eight
influencing factors including the Dow Jones index, crude
oil, and gold, and established a decision tree for copper
price forecasting based on the multi-dimensional data model.
This approach demonstrated high accuracy and robustness
in multi-influencing factor prediction. Building upon Liu’s
work, Díaz et al. [27] further proposed an improved copper
price forecasting method, which utilized random forest and
gradient-enhanced regression trees for short- and long-term
forecasting of future copper prices. The experimental results
showed that random forest and gradient-enhanced regression
tree models outperformed regression tree models.

Deep learning algorithms have been increasingly applied in
multi-influencing factor price analysis due to their powerful
feature learning capability. For example, Zhang et al. [28]
considered variables such as USCPI, federal funds rate, crude
oil futures price, nominal effective exchange rate, and Dow
Jones index as highly correlated with the gold price, and pro-
posed a deep belief network (DBN)-based multi-influencing
factor price forecasting method using monthly gold price
data published in the London market as output. Similarly,
Alameer et al. [29] studied the correlation between various
economic factors and gold price, copper price, iron ore price,
silver price, oil price, Chinese exchange rate, Indian exchange
rate, South African exchange rate, Chinese inflation rate,
and U.S. inflation rate, and utilized the latest meta-heuristic
Whale Optimization Algorithm (WOA) as a trainer to learn
multi-layer perceptron neural networks. Their improved deep
learning model WOA-NN accurately predicted long-term
monthly fluctuations in gold prices, outperforming basic
models such as ARIMA. Zhang et al. [30] focused on crude
oil, natural gas, gold, silver, and iron ore parameters as
influencing factors of copper price, and also considered
the exchange rates of the four largest copper-producing
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countries, Chile, China, Peru, and Australia. They predicted
future monthly copper prices using an extreme learning
machine prediction model optimized by the PSO and genetic
algorithms. The experimental results confirmed the correla-
tion between the above factors and copper price fluctuations.

Based on the above analysis, the multi-influencing factor
price forecasting method involves inputting complex factors
that affect the medium and long-term trend and short-term
fluctuations of metal prices into the forecasting model as
explanatory variables for price fluctuations. Since multiple
influencing factors exist in the same market and interact with
each other, their interrelationships may not be apparent in
the short term, making this method more suitable for price
forecasting over longer periods.

The accuracy of multi-influencing factor prediction meth-
ods is heavily dependent on the quality of the selected
factors. The selection of relevant factors requires economic
expertise and extensive investigation, and cannot be deter-
mined through qualitative analysis alone. Even with the
help of optimization algorithms and traditional neural net-
works, it remains challenging to confirm the relationships
between influencing factors. Therefore, new methods need to
be explored to quantitatively calculate the correlation coeffi-
cients between selected factors and prices and to determine
the influencing factors in a more rational manner.

III. THEORETICAL BACKGROUND
A. CNN
The convolutional neural network is a typical deep learning
model, and the main structure contains three parts: convo-
lutional layer, pooling layer and fully connected layer [31],
which extracts features from the input multi-dimensional data
through convolutional and pooling layers and then performs
feature fusion through the fully connected layer.

With the convolutional layer, the CNN can capture local
features from the input data. By stacking these local features,
it obtains global features that are further downscaled using
the pooling layer. The operation is defined as

x ji = f (
∑

k = 1nW j
i,k ∗ x j−1

k + bji) (1)

where x ji donates the ith output feature map of jth level; x j−1
k

donates the kth input feature map of (j − 1)th level; W j
i,k is

the convolution kernel between the ith output feature map at
the jth layer and kth input feature map at the (j − 1)th layer;
n is the number of the input feature maps; bji is the bias of the
ith output feature map at the jth layer; f (x) is the activation
function. In this paper, ReLU is used as follows due to its
excellent performance:

x ji = max(0, x ji ) (2)

B. LSTM
Traditional neural networks are not well-suited for accurately
extracting feature information from time-series data along

FIGURE 1. LSTM network structure.

the time dimension, making them ill-equipped to handle
historical copper prices and related influencing factors. How-
ever, Recurrent Neural Networks (RNNs) have emerged as a
solution to such problems. RNNs are composed of multiple
identical non-linear nodes that are internally connected in a
recursive chain. This configuration enables information to
be recursively transmitted along the direction of input data
advancement, imbuing RNNs with a memory function that
ensures practical information can persistently flow through
the network.

LSTM addresses the long-term dependency problem inher-
ent in RNNs [32]. Unlike RNNs, LSTM introduces more
complex gating signals in its structure to control information
flow. The memory unit of LSTM is composed of three parts:
the forgetting gate, input gate, and output gate. Fig. 1 illus-
trates the network architecture.

As shown in Fig. 1, the LSTM cell state is internally
composed of four feedforward networks, including one Tanh
activation function and three σ functions. xt denotes the input
of the current cell state, ht denotes the output information, ct
denotes the memory cell state output, and ft , it and ot denote
the forgetting gate, input gate and output gate, respectively,
where the forgetting gate is specifically used to store the past
state information, which can be very effective in processing
and retaining the long-term memory. At a particular moment,
the input information in the cell includes the sample features
of the current moment and passes the historical state over, and
outputs the current cell state after being processed by several
activation functions. The key idea that LSTM can achieve
long-term memory lies in its cell state. By these three gating
signals, the LSTM can control the historical and the current
input and determine to what extent the current output is.

The LSTM network update process can be divided into
three steps:

1) The forget gate determines the information to be for-
gotten, which can be expressed using Eq. (3):

ft = σ (Wf ∗ [ht−1, xt ] + bf ) (3)

In Eq. (3), Wf and bf represent the weight matrix and
bias term of the forget gate.The multiplication of ft and
ct−1 determines which information from the previous
cell state is forgotten.
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2) The input gate determines the information to be
updated, which can be expressed using Eq. (4) - Eq. (6):

it = σ (Wi ∗ [ht−1, xt ] + bi) (4)

ct = tanh(Wc ∗ [ht−1, xt ] + bc) (5)

ct = ft ∗ ct−1 + it ∗ ct (6)

In above equations, Wi, bi represent the weight matrix
and bias term of the input gate, while Wc,bc represent
the weight matrix and bias term of the memory cell
state. The input gate signal it is multiplied by ct , decid-
ing which information will be used for updating.

3) The output gate determines the information to be out-
put, which can be expressed using Eq. (7) and Eq. (8):

ot = σ (Wo ∗ [ht−1, xt ] + bo) (7)

ht = ot ∗ tanh(ct ) (8)

In above equations,Wo, bo represent the weight matrix
and bias term of the output gate.

In summary, LSTM is a powerful tool for tackling long-
term time-series problems. The historical copper prices
and each influencing factor data utilized in this study are
time-series data that can be effectively processed by the
LSTM network to extract useful time-series features. This
approach enables the prediction model to capture long-term
trends and relationships, leading to improved prediction
accuracy.

C. CNN-LSTM ARCHITECTURE
The price prediction model proposed in this study com-
prises two interconnected sub-modules, namely the CNN
and LSTM networks. The CNN-LSTM network structure is
illustrated in Fig. 2.

Two-dimensional time-series data is used as input and
another indicator variable (e.g., copper price in this paper) is
used as output in CNN-LSTM. Assume that each input data
format is (l, w), where l and w denote the length and width of
the two-dimensional data respectively, and there arem sample
data in total. CNN-LSTM divides the sample data into w
channels, each channel is a one-dimensional time-series sig-
nal. Each channel data goes through several one-dimensional
convolutional layers, a maximum pooling layer, and then
the extracted feature vectors are passed through Flatten and
RepeatVector operations to obtain some multivariate time
series of extracted feature sequences, which are then sent to
LTSM for training or prediction.

For one-dimensional time-series signals, LSTM can
already achieve better results. Furthermore, the CNN-LSTM
structure outperforms the single-model LSTM by exploiting
the knowledge extraction of CNN networks and the internal
representation learning capability of the temporal data.The
main roles of the CNN networks in CNN-LSTM are:

1) Feature extraction: CNNs are very good at automati-
cally learning and extracting useful features from data,

FIGURE 2. CNNL-LSTM network structure.

without the need for manual feature design and selec-
tion. In price forecasting, this may include short-term
trends in the market, cyclical patterns.

2) Local perception: CNNs has the ability of local per-
ception due to its convolutional operation, which can
identify and extract local patterns in time series, such
as sudden price peaks, oscillation patterns of prices.

3) Time Shift Invariance: The CNN has time shift invari-
ance, which means that if a pattern in the time series
occurs a displacement, the CNN still recognizes it.
This is very useful for processing financial time series,
as certain behavior patterns in the market may repeat in
different periods.

4) Reducing overfitting: Since CNNs share parameters
spatially (i.e., the same convolutional kernel is used
to process all parts of the input), they typically need
to learn a smaller number of parameters, which helps
reduce overfitting of the model.

In the case of multivariate time-series data, CNNs are not
only able to extract features in the time dimension, but also
to reduce the correlation between time series. Therefore, if a
forecasting model needs to consider multiple correlated time
series simultaneously (e.g., various economic indicators or
prices of other financial products), CNN-LSTM can effec-
tively handle such ‘‘multi-channel’’ data.

IV. RESEARCH ON THE CHARACTERISTICS OF PRICE
FLUCTUATIONS AND INFLUENCING FACTORS OF
NON-FERROUS COPPER METAL
In this section, we examine the characteristics of fluctuations
in copper prices and explore their historical trends in the
international market. We analyze various factors that may
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impact copper price fluctuations, including the fundamental
supply and demand relationship, energy costs, competition
from alternative metals, global macroeconomic conditions,
national policies, and other uncertainties.

A. PRICE FLUCTUATION CHARACTERISTICS OF
NON-FERROUS COPPER METAL
Non-ferrous copper metal is a crucial strategic resource
that finds widespread use in industries such as power
electronics, machinery manufacturing, energy construction,
transportation, military manufacturing, and aviation equip-
ment. Furthermore, since the establishment of copper futures
trading by the London Metal Exchange (LME) in 1877, the
role of copper as a bulk commodity in the financial market
has become increasingly prominent.

Non-ferrous copper possesses dual attributes as both an
inherent commodity and a financial instrument that can be
used to hedge against inflation through futures trading. There-
fore, when studying the price fluctuations of copper, it is
crucial to consider not only the primary supply and demand
relationship in the market but also the influence of its finan-
cial attributes.

The non-ferrous copper metal’s commodity properties are
its essential attributes and play a crucial role in determining
its medium and long-term price trends. Copper prices are
influenced by global supply and demand factors. When the
demand for copper exceeds its supply, market forces drive
copper prices upward, while the opposite occurs when supply
outstrips demand, causing prices to fall. Over time, fluctua-
tions in copper prices can also affect the supply and demand
of copper in the market. A decrease in copper prices leads to
an increase in demand while the available stock decreases,
and vice versa. This process gradually adjusts the supply and
demand balance until the copper price stabilizes, reflecting
the equilibrium in the market.

Financial attributes are secondary characteristics of non-
ferrous copper. With the increasing financialization of the
futures market, the economic properties of copper as a futures
commodity have become more prominent. The financial
attributes of copper stem from its nature as an asset that
can be used to preserve and increase value by linking it to
exchange rates and consumption indices. Moreover, copper
can serve as a financing tool. Thanks to its high unit value,
high density, ease of storage, and liquidity, copper, as a non-
renewable resource, is useful in the financial sector through
warehouse receipt pledges and trade financing, among other
applications.

To summarize, several uncertain factors influence the mar-
ket price of copper, and its price fluctuations have no apparent
pattern. The combined effect of multiple complex factors
generates non-cyclical, non-linear, frequent, and volatile
changes. Fig. 3 illustrates the daily closing price fluctuations
of LME copper from July 7, 2008, to October 29, 2021, using
the corresponding data.

Fig. 3 depicts the historical fluctuations of copper prices
over the past 13 years, where the lowest price was less than

FIGURE 3. LME copper closing price from July 7, 2008, to October 29,
2021.

$3,000 per ton, and the highest exceeded $10,000 per ton,
showing significant and unpredictable variations. Notably,
copper price changes can be roughly divided into four stages:
(1) During 2008-2009, the global financial crisis, triggered
by the U.S. subprime mortgage crisis, led to a sharp decline
in copper prices; (2) From 2009 to 2011, efforts by the
Chinese and U.S. governments to counter the economic
downturn drove the global economic recovery, resulting in
a surge in copper prices; (3) Between 2011 and 2020, with
the easing of monetary policies worldwide, bulk commodi-
ties gradually gained appeal among investors as an asset
class, thereby highlighting the financial attributes of copper;
(4) From 2020 to the present, the COVID-19 pandemic has
significantly impacted copper prices, which initially declined
before slowly bouncing back due to the vaccine’s introduction
and broader epidemic mitigation measures.

B. STUDY ON FACTORS INFLUENCING PRICES OF
NON-FERROUS COPPER METALS
The previous examination of historical trends in LME copper
closing prices reveals that prices continue to fluctuate due
to a confluence of complex factors. This subsection will
explore copper price fluctuations within the context of var-
ious uncertainties, including but not limited to supply and
demand dynamics, energy costs, alternative metals, global
macroeconomic conditions, and national policies.

1) SUPPLY AND DEMAND
As noted earlier, non-ferrous metals, including copper, are
commodity assets whose medium and long-term trends are
primarily determined by supply and demand dynamics.

2) ENERGY COSTS
The price fluctuations of copper are significantly influenced
by the energy cost required in its smelting process, with
the likes of oil and natural gas [33] playing pivotal roles.
Currently, the pyrometallurgical method is predominantly
used in copper smelting, with oil and natural gas serving
as crucial raw materials and fuels throughout the process.
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Consequently, energy expenses also exert significant pressure
on copper prices.

3) ALTERNATIVE METALS
Non-ferrous metals, such as zinc and aluminum, can serve as
potential substitutes for copper in certain applications. If the
price gap between copper and these metals widens beyond
a certain limit, some demand for copper may shift to alterna-
tives like aluminum or zinc, resulting in lowermarket demand
for copper and ultimately leading to a corresponding reduc-
tion in copper prices. Furthermore, copper is often preferred
over precious metals like gold and silver due to its lower cost
and greater availability. In certain situations, copper can also
replace gold and silver [34]. Therefore, fluctuations in gold
and silver prices can marginally impact copper demand in the
market, thereby affecting copper prices as well.

4) GLOBAL MACROECONOMIC CONDITIONS
Global economic conditions have a significant bearing on the
performance of relevant companies and economies, leading
to fluctuations in international copper prices that are closely
tied to industrial consumption demand [18], [35]. During
periods of a weak global macroeconomic environment or
financial crisis, the prices of international copper tend to
decline, while an optimistic global economic outlook usually
drives international copper prices upward.

Moreover, the international copper market typically
employs the U.S. dollar as the trading currency. A surge in
the dollar index suggests that the value of the dollar has
risen, which results in a reduction in purchasing power and
ultimately leads to a corresponding drop in copper prices.
Conversely, a fall in the dollar index is likely to spur an
increase in purchasing power, which stimulates demand and
subsequently leads to a rise in copper prices. Therefore, there
exists an inverse relationship between the dollar index and the
trend of copper prices.

5) NATIONAL POLICIES AND OTHER UNCERTAINTIES
Significant policy changes in major copper-producing and
consuming countries can also have a considerable impact
on copper prices. For instance, in 2015, China incentivized
the use of copper scrap as a raw material, leading to an
increase in copper scrap imports. However, in 2017, to mit-
igate the adverse environmental impact of hazardous solid
waste, China enforced restrictions on copper scrap imports.
Consequently, the amount of copper scrap imports had a
direct impact on the fluctuations in copper prices.

To sum up, the fluctuations in copper prices are influenced
by a multitude of factors, including but not limited to the
supply and demand dynamics of copper in the international
market, energy costs, the availability of alternative met-
als, global macroeconomic conditions, and significant policy
changes inmajor copper-producing and consuming countries.
These complex and interrelated factors impact copper prices
to varying degrees.

V. THE CHOICE OF NON-FERROUS METAL PRICE
INFLUENCING FACTORS
As described above, the closing price fluctuations of copper
are primarily driven by uncertain factors such as the supply
and demand dynamics of copper in the market, energy costs
associated with copper smelting, the availability of alterna-
tive metals, global macroeconomic conditions, and national
policies. Furthermore, these factors are becoming increas-
ingly interconnected, leading to a more intricate relationship
between them.

This section examines various factors that can impact
fluctuations in copper supply and demand, including refined
copper production, inventory, and consumption. We also con-
sider energy costs by analyzing WTI crude oil futures and
natural gas futures, and assess the influence of alternative
metals using gold futures, silver futures, and zinc futures.
To gauge global macroeconomic conditions, we analyze the
Dow Jones Industrial Average (DJI), NASDAQ, S&P 500
(SPX), and the U.S. dollar index. In addition, we investigate
national policies and other uncertainties by selecting Chinese
copper scrap imports, U.S. C-coffee futures, U.S. soybean
futures, and lean hog futures as explanatory variables for
predicting non-ferrous copper metal closing prices. Historical
international copper closing prices ($/ton) are combined with
these factors to predict future copper prices.

Table 1 presents the 16 selected factors that impact copper
price fluctuations, categorized into five perspectives, and are
used as explanatory variables in our copper price prediction
model.We obtained data on refined copper production, inven-
tory, and consumption from the International Copper Study
Group (ICSG), while data on copper scrap imports were col-
lected from the General Administration of Customs of China.
The remaining futures and index data were sourced from the
Invesco website, and all variables are reported monthly.

To comprehensively characterize the factors influencing
copper closing prices, it is crucial to select an adequate num-
ber of feature variables. However, including too many feature
variables can lead to redundant information and increased
complexity. Each feature variable is complex and interacts
with others, further compounding this complexity. This high
level of complexity can lead to overfitting during the training
process, leading to decreased generalization performance of
the prediction model. Therefore, it is important to strike a
balance between selecting enough feature variables to capture
the relevant factors and keeping the model simple enough to
prevent overfitting.

The accuracy of the deep learning model used in this
study is heavily reliant on the quality of the input feature
information. To ensure the generalization and precision of
the prediction model, the multidimensional features selected
above undergo a thorough analysis and processing. Firstly,
we qualitatively analyze the correlation between each influ-
encing factor and international copper prices by analyzing
scatter plots. Next, we use the Pearson correlation coefficient
to quantitatively assess the correlation between each influenc-
ing factor and international copper prices. We then exclude
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TABLE 1. (a) Copper price volatility influencing factors data. (b) Copper price volatility influencing factors data.

features with weak correlation and only select explanatory
variables with a strong correlation with global copper prices.
This screening process ensures accurate prediction of copper
prices by using the most relevant and influential factors.

A. SCATTER PLOT CORRELATION ANALYSIS
By observing the distribution of data points in the scatter plot
of copper prices and various factors, we can qualitatively ana-
lyze the correlation between each factor and copper prices.

Fig. 4 displays the scatter plot of the initial selection of
influencing factors in Table 1, alongwith international copper
prices.

In Fig. 4(a), we observe a negative correlation between
refined copper production and international copper prices in
the range of 1200-1500 kt. When the production of refined
copper increases, the supply of copper in the market also
increases, resulting in a decline in international copper prices.
However, when refined copper production exceeds 1500 kt,
the global copper price no longer decreases. This is because
the decrease in copper price leads to increased demand
in the market, eventually resulting in a balance in supply
and demand, keeping the copper price floating between
4000-8000 USD/ton. Fig. 4(b) shows a negative correlation
between the amount of refined copper inventory and interna-
tional copper prices. An increase in refined copper inventory
indicates that the production in the market is greater than
the current consumption. The excess supply of copper in the
market leads to a decline in copper prices. Finally, in Fig. 4(c),
we can see that consumption of refined copper in the range
of 1500-1900 kt also negatively correlates with international
copper prices. A high international copper price stimulates
the expansion of copper production capacity, leading to an

increase in copper supply on the market, and a resulting
decline in copper price. As the copper price drops to a cer-
tain range, the demand for copper increases, and ultimately,
the market reaches a state of balance between supply and
demand, which stabilizes the copper price.

Fig. 4(d) and Fig. 4(e) demonstrate a positive correlation
between WTI crude oil and natural gas futures with interna-
tional copper prices. The smelting process requires heavy oil
and natural gas to fuel the equipment and LPG as a raw mate-
rial during the reduction period, making crude oil and natural
gas energy sources essential for the copper smelting industry.
Moreover, crude oil and natural gas are critical industrial raw
materials, and their price fluctuations can reflect the global
economic situation to some extent. So, when the international
crude oil and natural gas prices rise, it leads to corresponding
adjustments in copper prices.

Fig. 4(f), Fig. 4(g), and Fig. 4(h) demonstrate a positive
correlation between gold, silver, and zinc prices with inter-
national copper prices. Copper is often used interchangeably
with gold and zinc in certain products. As a result, an increase
in the cost of gold and silver may cause some of the demand
to shift towards copper, leading to an upward trend in copper
prices. Similarly, an increase in zinc prices may also cause a
rise in copper prices to some extent.

The Dow Jones Industrial Average (DJI), NASDAQ, and
the S&P 500 are three crucial stock market indices in the US
that can reflect the global economic situation. To examine
their correlation to the international copper price, we selected
the DJI index, and Fig. 4(i) shows its non-monotonic correla-
tion with global copper price. The Dow Jones index continues
to rise continuously by updating its constituents regularly,
while the international copper price has been fluctuating
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over the past decade due to several complex factors such
as national policies and epidemics. Therefore, the expected
correlation between the three indices and the international
copper price is less pronounced than predicted.

Fig. 4(l) illustrates that the U.S. dollar index has a negative
correlation with international copper prices. An increase in
the dollar index indicates an appreciation of the dollar, which
causes non-US buyers to spend more in their currency to
purchase the same amount of copper leading to a decrease in
demand and purchasing power, ultimately causing a decline
in international copper prices. Conversely, a decrease in the
dollar index represents a depreciation of the dollar, increasing
the purchasing power and demand, ultimately leading to an
increase in international copper prices.

Fig. 4(m) reveals that the correlation between copper scrap
imports and international copper prices is not significant. This
outcome ismainly due to China’s national grid renovation and
waste appliance dismantling programs, which have generated
significant quantities of copper scrap. This copper scrap has
filled the gap in copper scrap demand, resulting in minimal
impact on international copper prices.

Furthermore, as revealed in Fig. 4(n), Fig. 4(o), and
Fig. 4(p), coffee futures, soybean futures, and lean hog
futures all have a positive correlation with international cop-
per prices. This is due to the fact that in relatively mature
futures markets, if the prices of these critical commodities
futures (coffee, soybean, and lean pork) show an upward
trend, it indicates a better development of the real economy.
Consequently, the demand for copper increases, leading to
a change in supply and demand ultimately resulting in an
increase in copper prices.

B. PEARSON COEFFICIENT CORRELATION ANALYSIS
To analyze the correlation between copper prices and various
influencing factors, we employed the Pearson correlation
coefficient method [36]. This method quantitatively analyzes
the correlation among variables based on their covariance and
standard deviation. For instance, to examine the relationship
between copper prices and the closing price of gold, we calcu-
lated the correlation coefficient using the following formula.

ρc,g =
cov(Pc,Pg)
σPc × σPg

(9)

where c and g indicate Copper and Gold, Pc and Pg show
the closing price of copper and gold, cov(Pc,Pg) means the
covariance of copper and gold prices, and σPcand σPg indi-
cate the standard deviation of copper and gold prices. ρc,g
shows the correlation coefficient between copper and gold
prices. The covariance of gold and copper prices is calculated
as

cov(Pc,Pg) =
1
n

n∑
i=1

(Pci − Pc)(Psi − Ps) (10)

where n is the total number of samples, Pci and Psi is the
copper and gold prices at the i-th sample point, respectively,

TABLE 2. Pearson correlation coefficients between copper price
influencing factors and copper prices.

and Pc and Pc are the average values of copper and gold
prices, respectively.

If the Pearson correlation coefficient is zero, it indicates
that there is no correlation between copper price and gold
price. A positive number between (0, 1] implies a positive
correlation between copper price and gold price, with a higher
value indicating a stronger correlation. Conversely, a nega-
tive number between [-1, 0) suggests a negative correlation
between copper price and gold price, with a smaller value
indicating a stronger negative correlation. We categorized
the correlation between variables into five groups based
on the magnitude of Pearson’s correlation coefficient: no
correlation, weak correlation, moderate correlation, strong
correlation, and very strong correlation.

To examine the correlation between each influencing factor
and global copper price, we calculated the Pearson correla-
tion coefficient between each variable and copper price and
gave the correlation strengths. Table 2 illustrates the Pearson
correlation coefficients between worldwide copper price and
each influencing factor.

Table 2 displays the correlation coefficients between inter-
national copper prices and each influencing factor. Our
analysis revealed that factors such as refined copper produc-
tion, inventory, and consumption - selected from the supply
and demand perspective - displayed weak correlation with
global copper prices. On the other hand, WTI crude oil and
natural gas - selected from the energy cost perspective -
moderately and strongly correlate with international copper
prices, respectively. Gold and silver, chosen from the per-
spective of alternative metals, exhibit a strong correlation
with international copper prices, while zinc displays a weak
correlation. In terms of global macroeconomic perspective,
the Dow Jones Index, NASDAQ Index, and S&P 500 Index
do not correlate with copper prices and have little influence on
them; thus, we excluded these three factors. The U.S. dollar
index is highly correlated with international copper prices.
Furthermore, while the correlation between China’s copper
scrap imports and international copper prices - selected from
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FIGURE 4. Correlation analysis between influencing factors and copper prices.

the national policy perspective - is less than 0.2, we still
discarded it. Finally, coffee, soybean, and lean pork futures
show moderate-to-strong correlation with international cop-
per prices, respectively.

Table 2 focuses solely on the degree of influence of
each factor on international copper prices, while disre-
garding the correlation between these factors. Although
Table 2 partially eliminates redundant information, further
refinement is necessary. We need to conduct two more
screening processes by analyzing the correlation coefficients
between each influencing factor to obtain a more accurate
analysis.

After the first screening, a heat map in Fig. 5 illustrates
the Pearson correlation coefficients between each influencing
factor. The coordinate values 1 to 12 in Fig. 5 correspond
to Copper Production, Copper Inventory, Copper Consump-
tion, Crude Oil, Natural Gas, Gold, Silver, Zinc, USD Index,
Coffee, Soybean, and Lean Hogs, respectively.

In Fig. 5, the right side of the heat map displays the
color index and the squares record the correlation coefficients
between each influencing factor. Based on the correlation
coefficients calculated in Fig. 4 and the Pearson correlation
criteria analysis in Table 2, we can observe that the correlation
coefficient between WTI crude oil and the U.S. dollar index
is -0.89, indicating a very strong correlation that enhances
redundancy in the data set. Although the correlation indices
of WTI crude oil, the U.S. dollar index, and international
copper price are 0.655 and 0.671, respectively, WTI crude oil
has a lesser influence on global copper prices than the U.S.

FIGURE 5. Pearson correlation coefficient heat map.

dollar index. Therefore, we exclude WTI crude oil from our
analysis.

To summarize, we have selected refined copper produc-
tion, copper stocks, copper consumption, natural gas, gold,
silver, zinc, the U.S. dollar index, coffee, soybeans, and lean
hogs as the final set of influencing factors. The process of
filtering these 11 factors effectively reduces redundancy in
the dataset and maximizes its information integrity. This
will decrease the training cost of the prediction model and
improve its accuracy in predicting future trends.
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FIGURE 6. General flowchart of multi-influencing copper price prediction
based on CNN-LSTM.

VI. CNN-LSTM-BASED MONTHLY PRICE PREDICTION
MODEL
A. OVERALL SYSTEM FLOW CHART
The general flow of CNN-LSTM-based multi-influencing
factor price prediction proposed in this paper is shown in
following Fig. 6.
The proposed multi-influencing factor price prediction

using CNN-LSTM follows a general flow consisting of two
phases. In the first phase, data acquisition is performed where
we select main influencing factors using scatter plots and
Pearson correlation coefficients as discussed in Section V.
In the second phase, the collected data is pre-processed and
sent to CNN-LSTM to train the model parameters.

B. INPUT DATA PRE-PROCESSING
Table 1 presents the dataset information utilized in this study,
where copper prices and their respective influencing factors
exhibit different magnitudes. To ensure compatibility among
the various dimensions of the dataset during training of the
CNN-LSTM prediction model, normalization is necessary.
In this paper, we employ a normalization method, which
involves:

x∗
t =

xt − xmin
xmax − xmin

(11)

where xt denotes the original data before normalization,
xmax and xmin are the maximum and minimum values in the
sequence, respectively, and x∗

t denotes the normalized data
with values between 0 and 1

Upon completion of dataset normalization, it is neces-
sary to adjust the dataset format in accordance with the
internal structure of the network. This conversion is carried

out by sliding window and sliding step sampling, result-
ing in a [TIME_STEP, INPUT_FEATURES] format. Here,
TIME_STEP represents the input data step size for consec-
utive data points, while INPUT_FEATURES indicates the
feature dimension of the input data. In essence, a sliding
window size of TIME_STEP is employed to sample the
time dimension, using the data of the first TIME_STEP
month as input and copper price of the subsequent month
(TIME_STEP+1) as output.

Subsequently, the sample set obtained through sliding win-
dow sampling is further divided into a training set, validation
set, and test set. This division is necessary to enable adequate
training and evaluation of the prediction model on a specified
scale.

C. NETWORK TRAINING PROCESS
The network training module in the model includes three
parts: the network initialization module, the network training
module and the network evaluation module.

1) THE NETWORK INITIALIZATION MODULE
This module comprises of three parts, namely the CNN
network, the LSTM network, and the fully connected net-
work. The primary function of the CNN network is to
extract features from multi-dimensional data, while the
LSTM network extracts information from the time dimen-
sion. Finally, prediction information is output through the
fully connected network. During network initialization, sev-
eral hyperparameters such as the number of convolutional
kernels, convolutional kernel size, filter size of the CNN
network, number of cells in the LSTM network, and the fully
connected layer must be defined.

2) THE NETWORK TRAINING MODULE
Once the network model has been initialized, the next step
involves setting the optimizer, loss function, and accuracy
criterion to compile the model. This is followed by inputting
the training and validation sets, and continuously optimizing
the network parameters.

3) THE NETWORK EVALUATION MODULE
In order to examine the accuracy and validity of the prediction
model, we feed the test set samples into the pre-trained model
and evaluate its performance using various metrics.

D. PSEUDO-CODE FLOW
The pseudo-code flow of the proposed CNN-LSTM-based
price prediction method is as follows:

VII. EXPERIMENTAL VALIDATION ANALYSIS
A. DESCRIPTION OF THE EXPERIMENTAL DATA SET
As mentioned earlier, the initially identified factors influ-
encing copper price fluctuations in Table 1 underwent two
rounds of screening to finalize the list of influencing factors.
Based on this, we selected the international copper prices
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TABLE 3. The pseudo-code flow of the proposed CNN-LSTM-based price
prediction method.

and related factors from March 2011 to June 2021 to form
the dataset used in this study. The data is structured as (124,
12), consisting of 124 sampling points and 12 characteristic
columns. Fig. 7 depicts the dataset of international copper
prices and related influencing factors.

We partitioned the dataset into training, validation, and test
sets according to a 6:2:2 ratio. Subsequently, we used sliding
window sampling with a window width of 7 and a step size
of 1 to intercept data from the previous seven months of
copper price and associated influencing factors, and predict
the copper price for the eighth month. The sampled training
set, validation set, and test set are structured as (69, 7, 12), (17,
7, 12), and (17, 7, 12) respectively, while the output formats
are (69, 1), (17, 1), and (17, 1) respectively.

B. EXPERIMENTAL EVALUATION METRICS
To evaluate the accuracy of the prediction model, we selected
root mean square error (RMSE), mean absolute error (MAE)
and mean absolute percentage error (MAPE) for evaluation
in this paper. The formulas for these three evaluation metrics
are as followings:

RMSE =

√√√√ 1
m

m∑
i=1

(Ri − Pi)2 (12)

MAE =
1
m

m∑
i=1

|Ri − Pi| (13)

MAPE =
1
m

m∑
i=1

|
Ri − Pi
Ri

| (14)

where Ri denotes the actual copper price in the i-th week,
Pi denotes the copper price forecast result in the i-th week,
and m denotes the number of forecast samples. All three
indicators are used to assess the accuracy of the forecasting
model, reflecting the difference between the predicted copper

TABLE 4. Prediction results with different numbers of network layers.

price and the actual copper price. The smaller the value, the
better the forecasting result.

C. EXPERIMENTAL PARAMETER SETTING
The hyperparameters set for the proposed CNN-LSTM net-
work in this study consists of two main parts. The first set
includes hyperparameters such as the number of layers and
neurons in the CNN and LSTM. The second set includes
hyperparameters such as loss function, optimizer, learning
rate, and the number of training sessions required for model
training.

1) NUMBER OF NETWORK LAYERS
The performance of a deep neural network model is closely
linked to the number of network layers. Generally speaking,
increasing the number of layers can enhance the model’s
processing power to a certain extent. However, the predictive
power of the model does not always improve linearly with
the number of network layers. With each additional layer,
the complex structure of the neural network significantly
increases the model’s training time and internal parameters.
Moreover, overfitting may occur due to an excessive number
of layers. Therefore, in this study, we determined the optimal
number of network layers for the prediction model by com-
paring the RMSE values of model predictions under different
neural network layer configurations, as shown in Table 4.
Table 4 displays some of the prediction results obtained using
different network layers. From the first four rows of the table,
it is clear that the RMSE value decreases as the number of
LSTM layers increases when the number of LSTM layers is
less than 3. Nonetheless, if we continue to increase the num-
ber of LSTM layers, it would eventually lead to an increase
in the RMSE value, and the model performs optimally when
it has 3 LSTM layers. Similarly, upon observing the data in
rows 5, 6, and 5, 7, we can conclude that the model has a
minor prediction error when configured with two convolu-
tional layers and one pooling layer. As such, we finalized
the model structure as having two convolutional layers, one
pooling layer, and three LSTM layers.

2) NUMBER OF NEURONS
The model’s prediction accuracy is also influenced by the
number of neurons in the neural network. Within a certain
range, increasing the number of neurons can enhance the

VOLUME 11, 2023 69469



F. Li et al.: Medium to Long-Term Multi-Influencing Factor Copper Price Prediction Method

FIGURE 7. The dataset of international copper prices and related influencing factors.

TABLE 5. The number of neurons corresponding to different network
layers.

speed and precision of model training. However, beyond
this range, increasing the number of neurons would result
in poor training outcomes. Therefore, in this study, we ini-
tially set the number of neurons according to an empir-
ical formula and then fine-tuned it through experiments.
The final selected neuron hyperparameters are presented
in Table 5.

3) THE LOSS FUNCTION
The loss function is a metric utilized to assess the dispar-
ity between the predicted values and actual values during
the training phase. The model’s prediction accuracy is
deemed superior with a lower loss function. In this study,
we employed the mean squared error (MSE) as the loss
function, which is suitable for resolving regression problems.
The calculation of the MSE value can be expressed by the
following formula:

MSE =
1
m

m∑
i=1

(Ri − Pi)2 (15)

The symbols in Eq. (15) are the same as those in
Eq. (12) - Eq. (14).

4) OPTIMIZER AND LEARNING RATE
During backpropagation, the optimizer continuously tunes
the optimization model’s parameters to minimize the loss
function and decrease the gap between the predicted results
and actual values. This process enables the updated model
to achieve a global optimum prediction effect. The learning
rate serves as the basis for dynamically adjusting the weight
and bias size at each training session, and its value influences
the convergence speed and accuracy of the model. A low
learning rate leads to small adjustment magnitudes, thereby
lengthening the model’s training time and convergence dura-
tion. Conversely, a high learning rate results in significant
adjustment magnitudes, causing the model to oscillate repeat-
edly around the optimal value and reducing the model’s
prediction accuracy. In this study, we employed the Adam
optimizer [37], which can automatically adjust the learning
rate. We set the initial value of the learning rate to 1 ×

e−3 based on empirical methods.

5) NUMBER OF MODEL TRAINING
The number of training iterations also has an impact on the
prediction performance of themodel. In theory, increasing the
number of training iterations raises the likelihood of the loss
function achieving the optimal value. Nonetheless, when the
number of training iterations is excessively high, it can result
in overfitting of the model, causing the prediction model to
perform well on the training set but poorly on the validation
and test sets, thereby affecting the model’s generalization.
In this study, we set the number of training epochs to 100 and
the batch size to 4 based on empirical methods and the results
of numerous experiments. These parameters were chosen to
strike a balance between improving the model’s convergence
rate and avoiding overfitting.
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FIGURE 8. Copper price forecast results under multiple influencing
factors.

D. ANALYSIS OF EXPERIMENTAL RESULTS
To evaluate the CNN-LSTM price prediction method’s
efficiency and stability under various influencing factors
proposed in this research, we conducted comparative exper-
iments with other models such as Deep Neural Network
(DNN), LSTM, and mixed-model CNN-DNN network. The
experimental results of these four prediction models are pre-
sented in Fig. 8.

According to Fig. 8, theDNNnetwork is somewhat close to
the actual value for certain data points in copper price predic-
tion. However, most of the observations deviate from the true
values, indicating that the simple DNN network is inadequate
for addressing intricate time-series data prediction problems.
In contrast, the LSTM network is more precise in predict-
ing the copper price fluctuation trends owing to its superior
time-series data processing capabilities. Nevertheless, the
LSTM network alone is insufficient for effectively extract-
ing the spatial feature information of the multi-dimensional
dataset, resulting in notable inaccuracies in prediction
accuracy.

The proposed CNN-LSTM model in this research signifi-
cantly reduces the amount of data and number of parameters
transmitted in the network after conducting spatial dimen-
sion feature extraction and data dimensionality reduction
of copper price and influencing factor data by CNN net-
work. Consequently, the LSTM network’s time-series feature
extraction capabilities are amplified, resulting in a consider-
able improvement in the model’s prediction abilities. Upon
observing the fluctuation curves of the CNN-LSTM net-
work’s prediction results and actual prices, we can note some
errors between certain data points of the predictions and the
actual values. Despite this, the overall prediction accuracy
and fluctuation trends of the CNN-LSTM network are the
most well-fitted.

Fig. 9. shows the results of comparing different models’
forecasting performance evaluation indexes.

The CNN-LSTM method proposed in this research out-
performs all other prediction models in terms of the three
metrics, namely RMSE, MAE, and MAPE. For single-model
prediction, the LSTM model has lower error values than the

FIGURE 9. Comparison of RMSE, MAE and MAPE metrics of different
models.

TABLE 6. Comparison of the errors of different copper price forecasting
models.

DNN model due to the former’s capacity to capture medium-
and long-term dependencies of intricate time series. More-
over, after adding the CNN feature extraction network, the
prediction errors of both the CNN-DNN network and the
CNN-LSTM network are lower than those of their respective
single models. Out of all models, the CNN-LSTM network
proposed in this research yields the lowest prediction error
value.

The above conclusion is deduced from Fig.9. Table 6
displays the quantitative analysis of the model’s prediction
accuracy, presenting the RMSE, MAE, and MAPE results of
all four methods.

Table 6 reveals that the CNN-LSTMmodel proposed in this
research yields the lowest values for all three metrics, namely
RMSE (30.132), MAE (26.020), and MAPE (8.819). Hence,
the proposed method demonstrates the most exceptional pre-
diction performance among all other models.

When considering single-model prediction methods, the
DNN approach yields inferior results for all three metrics
(RMSE: 54.16, MAE: 50.29, and MAPE: 34.28) in compar-
ison to LSTM due to its reduced effectiveness in managing
time-series data. However, LSTM demonstrates promising
potential in processing time series as demonstrated by its
superior performance, with RMSE, MAE, and MAPE val-
ues of 46.03, 42.77, and 23.91 respectively, resulting in
improvements of 15.02%, 15.85%, and 30.26% relative to
DNN. By incorporating CNN networks to extract dimen-
sional spatial features, both CNN-DNN and CNN-LSTM
models present substantially better performance with all three
metrics (RMSE: 36.62, MAE: 33.01, and MAPE: 12.80 and
RMSE: 30.13, MAE: 26.02, and MAPE: 8.82, respectively),
leading to an improvement of 32.39%, 35.05%, 62.66%,
and 34.54%, 39.17%, 63.11%, respectively, compared to the
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single model. This is due to the ability of CNN networks to
extract spatial features and perform deep mining of features
between copper prices and influencing factors, demonstrating
that the incorporation of CNN can further enhance model
performance.

VIII. CONCLUSION
This paper primarily addresses the price forecasting problem
of non-ferrous metals under multiple influencing factors.
To tackle this problem, the study selects refined copper
production, inventory, and consumption, natural gas, gold,
silver, zinc, U.S. dollar index, coffee, soybean, and lean
pork as contributing factors to copper prices. Additionally,
we propose a CNN-LSTM monthly price forecasting model.
Through experimental validation and analysis, our findings
indicate that compared to DNN and LSTM networks, our
proposed CNN-LSTM method outperforms in terms of both
forecasting accuracy and trend-fitting results.

The follow-up work focuses on continuous refinement and
supplementation of the algorithm, as follows:

1) The monthly price forecasting model exhibits limited
generalization abilities due to the rapidly changing
nature of the free market. Unexpected significant
events, such as economic crises or pandemics, can
cause drastic and unpredictable fluctuations in copper
prices. This leads to insufficient model generaliza-
tion capacity. To address this issue, future research
will undertake a more comprehensive and in-depth
analysis of the factors associated with copper prices.
We aim to leverage characteristic-rich information
among influencing factors to accurately anticipate the
future fluctuation trend of copper prices.

2) The fluctuations in historical copper price series are
complex and volatile, presenting a wealth of feature-
rich information. In future studies, we plan to explore
various data mining algorithms to enhance the accuracy
of our daily forecast model.
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