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ABSTRACT We propose an improved convergence analysis technique that characterizes the distributed
learning paradigm of federated learning (FL) with imperfect/noisy uplink and downlink communications.
Such imperfect communication scenarios arise in the practical deployment of FL in emerging communication
systems and protocols. The analysis developed in this paper demonstrates, for the first time, that there is
an asymmetry in the detrimental effects of uplink and downlink communications in FL. In particular, the
adverse effect of the downlink noise is more severe on the convergence of FL algorithms. Using this insight,
we propose improved Signal-to-Noise (SNR) control strategies that, discarding the negligible higher-order
terms, lead to a similar convergence rate for FL as in the case of a perfect, noise-free communication channel
while incurring significantly less power resources compared to existing solutions. In particular, we establish
that to maintain the O( 1

√
K
) rate of convergence like in the case of noise-free FL, we need to scale down

the uplink and downlink noise by �(
√
k) and �(k) respectively, where k denotes the communication round,

k = 1, . . . ,K . Our theoretical result is further characterized by twomajor benefits: firstly, it does not assume
the somewhat unrealistic assumption of bounded client dissimilarity, and secondly, it only requires smooth
non-convex loss functions, a function class better suited for modern machine learning and deep learning
models. We also perform extensive empirical analysis to verify the validity of our theoretical findings.

INDEX TERMS Deep learning, distributed systems, federated learning, optimization, signal-to-noise ratio.

I. INTRODUCTION
The advancements in the field of Machine Learning (ML)
are attributable to the increasing ability to generate and
process data from various edge devices such as sensors,
mobile phones, and the internet of things (IoT) devices.
However, traditional ML approaches that rely on storing data
on a server can be problematic in terms of the privacy of
the user and scalability. To address these issues, we see
the eminent shift towards distributed and collaborative ML
approaches, such as consensus-based distributed optimiza-
tion and Federated learning (FL) [1], [2], [3], [4], [5], [6], [7],
which allow for learning to occur without the need for
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central data storage. In this paper, our primary focus is on
the FL setting. The algorithm popularly known as Feder-
ated Averaging (FedAvg) presented in [8], provided the
foundation for FL. Breaking the quintessential model of tra-
ditional ML, FedAvg, preserves the privacy of the agent
(typically referred to as clients in FL) by allowing them
to retain their data. In FedAvg, a set of agents (referred
to as clients in FL), based on their local data, perform the
Stochastic Gradient Descent (SGD) iteratively for a cer-
tain number of local steps and then transmits their updated
model parameters to a central server, which then averages
these updates and, in turn, updates the global model. Iter-
ative communication between servers and clients and the
collaborative nature of FL shows the importance of communi-
cation vis-à-vis, FedAvg and other FL and consensus-based
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methods, and it has been an active area of research in terms
of improving the efficiency and resiliency of such algo-
rithms [9], [10], [11], [12], [13], [14], [15], [16].

A. RELATED WORKS
Several recent results, where improving communication effi-
ciency is the core, focus mainly on reducing the number of
communication rounds [8], [17], or the size of information
during transmission [18], [19], [20], [21], [22], [23]. How-
ever, in most of these studies, the process of communication
from the server to clients (downlink) and then from clients
to the server (uplink), a perfect communication link is often
assumed. Now, some literature investigates the impact of hav-
ing a noisy transmission channel but only studies the effect of
noisy uplink transmission [24], [25], [26], [27], [28]. How-
ever, only a few articles in the literature deal with the impact
of only downlink noise or both noises [29]. A major consid-
eration among all these works is their somewhat restrictive
assumptions that typically are not satisfied in practical set-
tings or are hard to verify. For instance, in [24], where
they analyze the effect of downlink noise, they assume a
perfect uplink communication channel. Additionally, exist-
ing research that studies both uplink and downlink noise
focuses on the modification of the training of ML models.
Reference [30] aims to counter the effect of noise by mod-
ifying the loss function to consider the addition of noise
as a regularizer. Similarly [21], [31], [32], [33] focus on
compressing the gradients to counter the effect of noisy trans-
mission channels. Since compression inherently adds noise
to the message communicated, it poses an adverse impact on
model convergence. The limitations of these works serve as
our primary motivation as we aim to understand the impact of
the uplink and downlink communication on the performance
of FedAvg by developing an improved analysis to reduce
the burden of intensive power consumption while relaxing
the assumptions of convexity and bounded client dissimilarity
(BCD) required by the existing works.

Recently, [29] studies the impact of both uplink and down-
link noises with restrictive assumptions of strong-convexity
and Bounded Client Dissimilarity (BCD) [34]. To avoid the
client-drift [34], a standard assumption used in FL is BCD
(refer to eq. (10)). This drift occurs due to multiple local SGD
updates on clients with non-IID data distribution, which pro-
hibits the algorithm from converging to the global optimum.
Nevertheless, the result of [29] has an important shortcoming:
the analysis is not tight due to which while the model con-
verges, the dominant terms in the convergence error depend
on noise characteristics and as a result, the Signal-to-Noise
Ratio (SNR) scaling policy requires more power compared
to our results.

B. CONTRIBUTIONS
The contributions of our work are motivated towards miti-
gating the restrictions imposed in previous literature. Unlike
the previous work, [29], we propose an analysis of smooth

non-convex FedAvg with noisy (both uplink and downlink)
communication channels and without the BCD assumption.
We leverage the non-negativity of the typical loss functions
in optimization/ML and their smoothness in conjunction with
a novel sampling technique to avoid using BCD while estab-
lishing our improved convergence results. We present the
results of our analysis in Theorem 7 and Corollary 10, which
shows that the effect of downlink noise, i.e., O(1), is more
degrading than uplink noise, i.e., O( 1

√
K
) where K is the

number of communication rounds. Hence, following these
results, we draw an inference that as long as we control
the effect of downlink and uplink noise such that they do
not dominate the inherent noisy communication aspect of
SGD, the convergence of the model can be achieved while
limiting the adverse effect of noise to negligible higher-order
terms. In particular, we demonstrate both theoretically and
empirically that in order to maintain the convergence rate of
O( 1

√
K
) for the case of noise-free FedAvg, we need to scale

down the downlink noise by�(k) and uplink noise by�(
√
k),

or, equivalently scale the downlink noise by �( 1k ) and uplink
noise by �( 1

√
k
). These scaling rates ensure that the noise

appears as a higher-order term, not as a dominant term.1

To summarize, the contributions of this paper are as
follows:

• Weprovide an improved analysis alongside the complete
proof of FL under the presence of uplink and downlink
noise without using any constraining assumption which
results in tighter convergence analysis.

• In reference to Corollary 10, we provide empirical
results that show the asymmetric effect of both uplink
and downlink noises. We provide plots that verify that
for a constant number of communication rounds, uplink
noise scales as O( 1

E2√r
), while the term corresponding

to downlink noise is O(1). Here r denotes the number
of clients participating in each round.

• In this paper, we present a method for controlling the
SNR ratio in order to mitigate the deleterious effects
of noise on both the uplink and downlink communi-
cation channels. The proposed scaling policy is more
accommodating and robust towards higher noise con-
centrations as well. Our analysis demonstrates that this
approach leads to improved performance.

• We provide empirical results on both synthetic and
real-world deep learning experiments on datasets such
as MNIST, Fashion-MNIST, CIFAR-10, and FEMNIST
datasets, to establish the efficacy and validity of the
proposed technique.

II. PRELIMINARIES AND SYSTEM-MODEL
The setting of the problem follows the traditional FL scenario
presented in [8] (see also Figure 1). In a standard FL setting,
we have a central server and a set of n clients, each having

1Refer Theorem 7 and Corollary 10 for more details about the effect of
noises.
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FIGURE 1. Problem setting: an FL system with uplink and downlink
communication noise.

their local training data. The ith client stores their local data
sampled from a distribution Di. The central server aims to
train a machine learning model on the client’s local data,
parameterized by w ∈ Rd . Then, f i(w) is the expected loss
over a sample x drawn fromDi with respect to a loss function
ℓ for the ith client. The primary objective of the central server
is to minimize the loss f (w) over n clients, i.e.,

f (w) :=
1
n

n∑
i=1

f i(w) & f i(w) = Ex∼Di [ℓ(x,w)]. (1)

Also, to emulate an FL setting in practice, we consider
partial client participation, i.e., a set of r clients chosen
uniformly at random without replacement from a set of n
clients, whereas in the case of full participation, r = n.
Such an assumption is motivated by the consideration that the
clients may have limited communication capabilities and not
all will be able to collaborate at every communication round.
We assume that these clients have access to the unbiased
stochastic gradient of their individual losses which is denoted
by ∇̃fi(w;B) computed at w over a batch of samples B.
In addition, K denotes the communication rounds, and E rep-
resents the number of local iterations for each communication
round.

The FL process can be thought of as an iterative, three-step
pipeline: 1) global model update from the central server to the
clients over a noisy channel, i.e., noisy downlink communi-
cation, 2) client-level computation, and 3) sending updated
model parameters from the clients to the server over a noisy
channel, i.e, noisy uplink communication. We will discuss
these steps next.

A. NOISY DOWNLINK COMMUNICATION
The central server sends the global model parameter, wk ,
to the set of r clients denoted by Sk chosen uniformly at
random without replacement. Now due to disturbances and
distortion in the communication channel, these clients receive
a noisy version of the global model parameter, i.e.,

w(i)
k,0 = wk + ν

(i)
k , (2)

where ν
(i)
k ∈ Rd is the zero mean random downlink noise and

w(i)
k,0 is the received model to the ith client. Subsequently, the

SNR we get for the ith client for k th downlink communication
round can be written as,

SNRDk,(i) =
E[||wk ||2]
E[||ν(i)k ||2]

. (3)

Since we assumed that ν(i)k is a zero mean noise, the variance
can be written as:

N2
k,i := E

[∥∥∥ν
(i)
k

∥∥∥2]. (4)

B. CLIENT LEVEL COMPUTATION
Each client performs a local computation on its data using
the updated noisy global model parameter.We use mini-batch
SGD for training the model and updating the weights itera-
tively. This can be referenced from lines 6 to 9 in Algorithm 1
and written as,

w(i)
k,τ+1 = w(i)

k,τ − ηk ∇̃fi(w
(i)
k,τ ;B

(i)
k,τ ),

∀τ = 0, 1, . . . ,E − 1,

(5)

where B(i)
k,τ represents the random batch of samples in client i

for τ th local iteration.

C. NOISY UPLINK COMMUNICATION
After the local computation, the clients in Sk send their
local model to the central server. Similar to the downlink
case, due to disturbances and distortion in the communication
channel, the central server receives a noisy version of local
weights which can be seen from line 10 in Algorithm 1 and
is formulated as,

w(i)
k,0 − w(i)

k,E + e(i)k , (6)

where e(i)k ∈ Rd is a zero mean random noise. Subsequently,
the SNRwe get for the ith client for k th uplink communication
round can be written as,

SNRUk,(i) =
E[||w(i)

k,0 − w(i)
k,E ||

2]

E[||e(i)k ||2]
. (7)

Since we assumed that e(i)k is a zero mean noise, the variance
can be depicted as:

U2
k,i := E

[∥∥∥eik∥∥∥2]. (8)

Finally, the weights received from all the participating clients
are aggregated and formulated in line 12 in Algorithm 1
as

wk+1 = wk −
1
r

∑
i∈Sk

(w(i)
k,0 − w(i)

k,E + e(i)k ), (9)

and the process continues again for all the communication
rounds.
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D. MAIN ASSUMPTIONS
Before we start the analysis, the following is the set of
assumptions that we make. Assumptions 1, 2, and 3 are
standard used in analyzing FL setting [15], [34].
Assumption 4 is referred to as Noise model is also used
in [29].
Assumption 1 (Smoothness): ℓ(x,w) is L-smooth with

respect to w, for all x. Thus, each fi(w) (i ∈ [n]) is L-smooth,
and so is f (w).

∥∇fi(w1) − ∇fi(w2)∥ ≤ L∥w1 − w2∥; for any i,w1,w2.

Assumption 1 is a commonly used assumption in
convergence analysis of gradient descent based algo-
rithms, [35], [36] and it restricts the sudden change in
gradients.
Assumption 2 (Non-Negativity): Each fi(w) is non-negative

and therefore, f ∗
i ≜ min fi(w) ≥ 0.

Assumption 2 is a standard assumption made and is
satisfied by most of the loss functions used in prac-
tice. However, if in case a loss function is negative the
assumption can be achieved by simply adding a constant
offset.
Assumption 3 (Bounded Variance): The variance of the

stochastic gradient for each client i is bounded:
E[||∇̃fi(w(i)

k,τ ;B
(i)
k,τ ) − ∇fi(w

(i)
k,τ )||

2] ≤ σ 2, ∀i = 1, . . . , n,
where B(i)

k,τ represents the random batch of samples in client i
for τ th local iteration.
The Assumption 3 is commonly used in analyzing the

convergence of gradient descent-based algorithms, as seen
in various works such as [29], [37], [38], and [39]. How-
ever, some other works have used a stricter assumption
that assumes uniformly bounded stochastic gradients, i.e.,
E[||∇̃fi(w(i)

k,τ ;B
(i)
k,τ )||

2] ≤ σ 2. This assumption is stronger
than Assumption 3 and also does not hold true for convex
loss functions as shown in [39].
Assumption 4 (Noise Model): Both the downlink and

uplink noise are independent and have zero mean i.e.,
E[ν(i)k ] = 0 and E[eik ] = 0 and have a bounded variance
i.e., E[||eik ||

2] = U2
k < ∞ and E[||ν(i)k ||

2] = N2
k < ∞.

In a noisy communication scenario, the modelling of noise
as an additive white Gaussian noise (AWGN) is extremely
common, refer [24], [30]. Here, Assumption 4 provides a
weaker notion of AWGN and makes the problem more gen-
eral and diverse.

III. NOISY-FedAvg: IMPROVED ANALYSIS
In this section, we describe the improved convergence anal-
ysis of the proposed algorithm. In addition to addressing
complications arising from the simultaneous presence of both
uplink and downlink noises, our analysis in this section
is done without assuming Bounded Client Dissimilarity
(BCD) that aims to limit the extent of client heterogene-
ity and is a frequently-used assumption in FL theory; see,
e.g. [29], [34], [38] is the BCD assumption, i.e.,

∥∇fi(w) − ∇f (w)∥2 ≤ G2
∀ w, i ∈ [n], (10)

Algorithm 1 Noisy-FedAvg
1: Input: Initial point w0, # of communication rounds K ,

period E , learning rates {ηk}
K−1
k=0 , and global batch size r .

2: for k = 0, . . . ,K − 1 do
3: Server sends wk to a set Sk of r clients chosen uni-

formly at random without replacement.
4: for client i ∈ Sk do
5: Downlink communication: Broadcasting wk

through a noisy downlink communication channel
having zero mean. Set w(i)

k,0 = wk + ν
(i)
k , where ν

(i)
k

is the downlink noise.
6: for τ = 0, . . . ,E − 1 do
7: Pick a random batch of samples in client i, B(i)

k,τ .
Compute the stochastic gradient of fi at w

(i)
k,τ over

B(i)
k,τ , viz. ∇̃fi(w

(i)
k,τ ;B

(i)
k,τ ).

8: Update w(i)
k,τ+1 = w(i)

k,τ − ηk ∇̃fi(w
(i)
k,τ ;B

(i)
k,τ ).

9: end for
10: Uplink communication: (wk − w(i)

k,E ) goes to the
server through a noisy uplink communication chan-
nel having zero mean. So, send (w(i)

k,0 −w(i)
k,E + e(i)k ),

where e(i)k is the uplink noise.
11: end for
12: Update wk+1 = wk −

1
r

∑
i∈Sk (w

(i)
k,0 − w(i)

k,E + e(i)k ).
13: end for

where G is a large constant. Furthermore, in contrast to [29]
and [38], we do not make any assumption about the strong
convexity of the loss function.

A. NOISY-SGD
To give more insight into the analysis of Noisy-FedAvg
and its implications we first consider a fictitious scenario
where a noisy version of SGD is employed to minimize
a stochastic, non-convex, and L-smooth function with the
following update

wt+1 = wt − η[et + ∇̃f (wt + νt ;Bt )], (11)

where et and νt can be thought of as uplink and down-
link noise, respectively. The purpose of this analysis
is to shed light on the effect of noise on SGD-based
FL algorithms.
Theorem 5 (Smooth Non-Convex Case for Noisy-SGD):

Let f : Rd
→ R be a L-smooth non-convex function and

f ∗
:= infw∈Rd f (w). Consider the noisy-SGD method with

the update in eq. (11). Let et and νt satisfy Assumption 4
and the stochastic gradient satisfy Assumption 3. If, ηt = η

and η ≤
1
L , then for all t ∈ {0, . . . ,T − 1} noisy-SGD

satisfies

1
T

T−1∑
t=0

E
{Bt ,et ,νt }T−1

t=0
[||∇f (wt )||2]]
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≤
2
(
f (w0) − f ∗

)
Tη

+ ηLσ 2
+
L2

T

T−1∑
t=0

N2
t︸ ︷︷ ︸

Term I

+
ηL
T

T−1∑
t=0

U2
t︸ ︷︷ ︸

Term II

. (12)

Proof: Using L-smoothness assumption we can obtain,

f (wt+1) ≤ f (wt ) + ⟨∇f (wt ),wt+1 − wt ⟩ +
L
2

||wt+1 − wt ||2.

(13)

Using eq. (11) in eq. (13) yields

f (wt+1) ≤ f (wt ) − η⟨∇f (wt ), et + ∇̃f (wt + νt ;Bt )⟩︸ ︷︷ ︸
(A)

+
η2L
2

||et + ∇̃f (wt + νt ;Bt )||2︸ ︷︷ ︸
(B)

.

(14)

Using A :

A = η⟨∇f (wt ), et + ∇̃f (wt + νt ;Bt )⟩
= η⟨∇f (wt ), et ⟩ + η⟨∇f (wt ), ∇̃f (wt + νt ;Bt )⟩ (15)

In eq. (15), taking expectation with respect to et , will result
in eq. (16).

Eet [A] = η⟨∇f (wt ), ∇̃f (wt + νt ;Bt )⟩ (16)

Using B :

B =
η2L
2

||et + ∇̃f (wt + νt ;Bt ) − ∇f (wt + νt )

+ ∇f (wt + νt )||2 (17)

=
η2L
2

||et ||2 +
η2L
2

||∇̃f (wt + νt ;Bt ) − ∇f (wt + νt )||2

+
η2L
2

||∇f (wt + νt )||2 + 2⟨et , ∇f (wt + νt )⟩

+ 2⟨et , ∇̃f (wt + νt ;Bt ) − ∇f (wt + νt )⟩

+ 2⟨∇̃f (wt + νt ;Bt ) − ∇f (wt + νt ), ∇f (wt + νt )⟩

(18)

Taking the expectation with respect to et which has zero
mean, alongside the independence assumption of noises in
eq. (18), we can re-write B as

Eet [B] =
η2L
2

||∇̃f (wt + νt ;Bt ) − ∇f (wt + νt )||2

+ 2⟨∇̃f (wt + νt ;Bt ) − ∇f (wt + νt ), ∇f (wt + νt )⟩

+
η2L
2
U2
t +

η2L
2

||∇f (wt + νt )||2 (19)

Now, putting the results of eqs. (16) and (19) in eq. (14) along
with taking the expectation with respect to data, we get

EBt ,et [f (wt+1)] ≤ EBt ,et [f (wt )] +
η2L
2
U2
t +

η2L
2

σ 2

− ηEBt ,et [⟨∇f (wt ), ∇f (wt + νt )⟩]

+
η2L
2

EBt ,et [||∇f (wt + νt )||2]. (20)

For any 2 vectors a and b, we have that

−⟨a, b⟩ =
1
2
(∥a− b∥2 − ∥a∥2 − ∥b∥2). (21)

Using this in eq. (20) we get

EBt ,et [f (wt+1)] ≤ EBt ,et [f (wt )] +
η2L
2

(U2
t + σ 2)

+
η

2
EBt ,et

[
||∇f (wt ) − ∇f (wt + νt )||2

− ||∇f (wt + νt )||2 − ||∇f (wt )||2
]

+
η2L
2

EBt ,et [||∇f (wt + νt )||2]. (22)

If η ≤
1
L , we can dropEBt ,et [||∇f (wt+νt )||2 as it will appear

with a negative sign in the RHS of eq. (22). Consequently,
using L-smoothness yields

EBt ,et [f (wt+1)]

≤ EBt ,et [f (wt )] +
η2L
2

(U2
t + σ 2)

+
η

2
EBt ,et

[
L2||(νt )||2 − ||∇f (wt )||2

]
. (23)

Taking expectation w.r.t. νt we have

EBt ,et ,νt [f (wt+1)]

≤ EBt ,et ,νt [f (wt )] +
η

2
L2N2

t

−
η

2
EBt ,et ,νt [||∇f (wt )||

2] +
η2L
2

(U2
t + σ 2). (24)

Summing the above equation for t = 0, 1, . . . ,T − 1 and
dividing both sides by Tη/2 we obtain,

1
T

T−1∑
t=0

E
{Bt ,et ,νt }T−1

t=0
[||∇f (wt )||2]

≤
2
(
f (w0) − f (wT )

)
Tη

+ ηLσ 2
+
L2

T

T−1∑
t=0

N2
t +

ηL
T

T−1∑
t=0

U2
t . (25)

Now using the fact that f ∗
≤ f (wT ) in the equation above,

we obtain the stated result in eq. (12).
The implication of eq. (12) is that the downlink noise

(Term I) is more degrading than the uplink noise (Term II)
given that the effect of the latter on the convergence can be
controlled by η. That is, uplink noise slows the convergence
rate while the downlink noise may inhibit the convergence.
The following corollary describes a SNR control strategy that
aims to recover the rate of noise-free SGD by pushing the
noise-driven terms, i.e., Terms I and II in the RHS of eq. (12),
to the higher-order term. In the context of this paper, a higher-
order term deviant from the dominant term is one that does
not control the order of convergence error.
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Corollary 6: If η ≤
1
L and η = O( 1

√
T
) and a SNR control

strategy is employed such that 1
T

∑T−1
t=0 U2

t = O(T−δ1 )
and 1

T

∑T−1
t=0 N2

t = O( 1
T 0.5+δ2

) for some δ1, δ2 > 0, the
dominant term in the convergence error of Noisy-SGD will
be O( 1

√
T
) which is independent of noise characteristics and

hence similar to the noise-free case of SGD.

B. NOISY-FedAvg
In what follows, we build upon Theorem 5 to present
Theorem 7, which holds for both partial and full client par-
ticipation, IID, and non-IID data distribution.
Theorem 7 (Smooth Non-Convex Case for Noisy-

FedAvg): Let Assumptions 1, 2, 3, 4 holds for Noisy-
FedAvg (Algorithm 1). In Noisy-FedAvg, set ηk =

1
γLE

√
r
K for all k, where γ > 4 is a universal constant. Define

a distribution P for k ∈ {0, . . . ,K − 1} such that P(k) =
(1+ζ )(K−1−k)∑K−1

k=0 (1+ζ )k
where ζ := 8η2L2E2

(
(n−r)
r(n−1) +

2ηLE
3

)
. Sample k∗

from P uniformly. Then, for K ≥ max
(
1024r3

9γ 2 ( 1
γ 2−16

)2, 4r
γ 2

)
,

eq. (26), as shown at the bottom of the page.
In the Theorem 7 the expectation is w.r.t the choice of

clients, data, uplink, and downlink noises. The Terms I and III
in the theorem above depict the effects of uplink and downlink
noises respectively. Furthermore, Term II is a direct con-
sequence of Assumption 3, stemming from the stochastic
gradients of the clients. Now, from Theorem 7, mirroring the
result of Theorem 5, we can observe that the uplink noise is
not dominant compared to the downlink noise. As we will
discuss in Section V, our tight analysis in establishing 7 is
verified numerically as well by showing that uplink noise’s
impact is not as detrimental as downlink noise.
Remark 8: Theorem 7 is derived without using the restric-

tive assumption of BCD, in eq. (10). Now, to clarify why this
assumption is restrictive, let us consider a toy example of a
univariate quadratic function. The following notations hold
their usual meaning as defined in Section II.

fi(w) =
1
2
(w2), ∀i = 1, . . . , n− 1 (27)

fn(w) = w2 (28)

By using eq. (1), a global objective function can be formu-
lated as,

f (w) =
1
2n

(n+ 1)w2 (29)

For i = n, by taking the gradient of eqs. (28) and (29), and
putting them back in eq. (10), we get

∥∇fi(w) − ∇f (w)∥2

≤ G2

H⇒ ∥2w−
n+ 1
n

w∥
2

≤ G2, where i = n

H⇒ ∥w∥
2
∥1 −

1
n
∥
2

≤ G2 (30)

We can infer from eq. (30) that the inequality does not hold
for every w ∈ R, given a fixed G and hence it makes the
assumption restrictive and somewhat unrealistic.
Remark 9: Before we start with the proof of the Theorem 7,

we would like to emphasize that the theorem provides an
upper bound on the performance for the FedAvg algorithm,
which depends on the noise characteristics. It is an inter-
esting future work to investigate the effect of noise on the
lower bound that essentially bounds the performance of any
algorithm in this scenario and see if one could use such lower
bounds towards SNR scaling (for more details on SNR scaling
refer Section IV).

Proof: The proof is motivated by the approach taken
in [15]. However, with the inclusion of downlink and uplink
noises, the first local update (refer eq. (2) and the model
update (refer eq. (6)) are considerably different which makes
the analysis significantly different and more involved. As will
be outlined shortly, the proof relies on careful treatment of the
first local and model updates using new techniques.

To commence the proof, using Lemma 11, for ηkLE ≤
1
2 ,

we can bound the per-round progress as:

E[f (wk+1)]

≤ E[f (wk )] −
ηk (E − 1)

2
E[∥∇f (wk )∥2]

+ 4η2kLE
2
( (n− r)
r(n− 1)

+
2
3
ηkLE

)(1
n

∑
i∈[n]

E[∥∇fi(wk )∥2]
)

E[∥∇f (wk∗ )∥2]

≤
8γLf (w0)

√
rK

+
4

γE2K
√
rK

K−1∑
k=0

U2
k︸ ︷︷ ︸

Term I

+
4

γE

√
r
K

( 1
γ n

√
r
K
(1 +

2nE
3

+ n) +
1
r

+
(n− r)
r(n− 1)

)
σ 2︸ ︷︷ ︸

Term II

+
4L2

EK

(
1 + 4E +

2
γE

√
r
K
(1+2E2

{
3

γE2

√
r
K

+ 2(2+
3

γ 2E2

r
K
)(

2
3γ

√
r
K

+
(n− r)
r(n− 1)

)})
)K−1∑
k=0

N2
k .︸ ︷︷ ︸

Term III

(26)
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+ η2kLE
(ηkLE

n

(
1 +

2nE
3

+ n
)

+
1
r

+
(n− r)
r(n− 1)

)
σ 2

+
η2kL

2r
1
n

∑
i∈[n]

U2
k,i +

ηkL2

2

(
1 + 2ηkL + 4E{1 + 3η2kL

2

+ 2ηkLE(2 + 3η2kL
2)(

2
3
ηkLE +

(n− r)
r(n− 1)

)}
)1
n

∑
i∈[n]

N2
k,i.

(31)

Now using the L-smoothness and non-negativity of the fi’s,
we get:∑

i∈[n]

E[∥∇fi(wk )∥2] ≤

∑
i∈[n]

2L(E[fi(wk )] − f ∗
i )

≤ 2nLE[f (wk )] − 2L
∑
i∈[n]

f ∗
i

≤ 2nLE[f (wk )]

Putting this result in eq. (31), we get for a constant learning
rate of ηk = η,U2

k,i = U2
k and N

2
k,i = N2

k :

E[f (wk+1)]

≤

(
1 + 8η2L2E2

( (n− r)
r(n− 1)

+
2ηLE
3

))
E[f (wk )]

−
η(E − 1)

2
E[∥∇f (wk )∥2] + η2LE

(ηLE
n

(1 +
2nE
3

+ n) +
1
r

+
(n− r)
r(n− 1)

)
σ 2

+
η2L
2r

1
n

∑
i∈[n]

U2
k

+
ηL2

2

(
1 + 2ηL + 4E{1 + 3η2L2 + 2ηLE(2 + 3η2L2)

(
2ηLE
3

+
(n− r)
r(n− 1)

)}
)1
n

∑
i∈[n]

N2
k .

For ease of notation, define ζ := 8η2L2E2
(

(n−r)
r(n−1) +

2ηLE
3

)
,

ζ2 :=

(
ηLE
n

(
1 +

2nE
3 + n

)
+

1
r +

(n−r)
r(n−1)

)
and ζ3 :=

(
1 +

2ηL + 4E{1+ 3η2L2 + 2ηLE(2+ 3η2L2)( 2ηLE3 +
(n−r)
r(n−1) )}

)
.

Then, unfolding the recursion of the equation above from
k = 0 through to k = K − 1, we get:

E[f (wK )] ≤ (1 + ζ )K f (w0)

−
η(E − 1)

2

K−1∑
k=0

(1 + ζ )(K−1−k)E[∥∇f (wk )∥2]

+ η2LEζ2σ
2
K−1∑
k=0

(1 + ζ )(K−1−k)

+
η2L
2r

K−1∑
k=0

U2
k (1 + ζ )(K−1−k)

+
ηL2

2
ζ3

K−1∑
k=0

N2
k (1 + ζ )(K−1−k). (32)

Let us define pk :=
(1+ζ )(K−1−k)∑K−1

k′=0(1+ζ )(K−1−k′) . Then, re-arranging

eq. (32) and using the fact that E[f (wK )] ≥ 0 and

η(E−1)
2 >

ηE
4 , we get:

K−1∑
k=0

pkE[∥∇f (wk )∥2]

≤
4(1 + ζ )K f (w0)

ηE
∑K−1

k ′=0(1 + ζ )k ′
+ 4ηLζ2σ

2

+
2ηL
rE

∑K−1
k=0 U

2
k (1 + ζ )(K−1−k)∑K−1

k ′=0(1 + ζ )k ′

+
2L2ζ3
E

∑K−1
k=0 N

2
k (1 + ζ )(K−1−k)∑K−1

k ′=0(1 + ζ )k ′
(33)

=
4ζ f (w0)

ηE(1 − (1 + ζ )−K )
+ 4ηLζ2σ

2

+
2ηL
rE

ζ
∑K−1

k=0 U
2
k

(1 + ζ ) − (1 + ζ )−K+1

+
2L2ζ3
E

ζ
∑K−1

k=0 N
2
k

(1 + ζ ) − (1 + ζ )−K+1 (34)

where the eq. (34) follows by using the fact that
∑K−1

k ′=0(1 +

ζ )k
′

=
(1+ζ )K−1

ζ
and Hölder’s Inequality. Now,

(1 + ζ )−K < 1 − ζK + ζ 2K (K + 1)
2

< 1 − ζK + ζ 2K 2

H⇒ 1 − (1 + ζ )−K > ζK (1 − ζK ). (35)

Also,

(1 + ζ )−K+1 < 1 + ζ (−K + 1) + ζ 2 (−K )(−K + 1)
2

< (1 + ζ ) − ζK + ζ 2K 2

H⇒ (1 + ζ ) − (1 + ζ )−K+1 > ζK (1 − ζK ).

(36)

Plugging eqs. (35) and (36) with ζ2 and ζ3 in eq. (34),
we have for ζK < 1:

K−1∑
k=0

pkE[∥∇f (wk )∥2]

≤
4f (w0)

ηEK (1 − ζK )
+ 4ηLE

(ηL
n

(
1

+
2nE
3

+ n
)

+
1
rE

+
(n− r)
r(n− 1)E

)
σ 2

+
2ηL
rE

∑K−1
k=0 U

2
k

K (1 − ζK )

+
2L2

EK (1 − ζK )

(
1 + 2ηL + 4E{1 + 3η2L2 + 2ηLE(2

+ 3η2L2)(
2ηLE
3

+
(n− r)
r(n− 1)

)}
) K−1∑
k=0

N2
k . (37)

In this case, note that the optimal step size will be η =

O( 1
LE

√
K
), even for r = n.

So let us pick η =
1

γLE

√
r
K , where γ is some constant

such that γ > 4. Note that we need to have ηLE ≤
1
2 ; this

happens for K ≥
4r
γ 2 . Further, let us ensure ζK < 1

2 ; this
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happens for K ≥
1024r3

9γ 2 ( 1
γ 2−16

)2. Thus, we should have K ≥

max
(
1024r3

9γ 2 ( 1
γ 2−16

)2, 4r
γ 2

)
. Putting η =

1
γLE

√
r
K in eq. (37)

and also using 1 − ζK ≥
1
2 , we get:

K−1∑
k=0

pkE[∥∇f (wk )∥2]

≤
8γLf (w0)

√
rK

+
4

γE

√
r
K

( 1
γ n

√
r
K
(1 +

2nE
3

+ n) +
1
r

+
(n− r)
r(n− 1)

)
σ 2

+
4L2

EK

(
1 + 4E +

2
γE

√
r
K
(1 + 2E2

{
3

γE2

√
r
K

+ 2(2

+
3

γ 2E2

r
K
)(

2
3γ

√
r
K

+
(n− r)
r(n− 1)

)})
)K−1∑
k=0

N2
k

+
4

γE2K
√
rK

K−1∑
k=0

U2
k . (38)

This finishes the proof.

IV. THEORY GUIDED SNR CONTROL
Theorem 7 provides us with actionable insight into the
effect of uplink and downlink noise on model convergence,
i.e., the inherent asymmetry of their adverse effect on the
performance of FL algorithms. One strategy to improve
the convergence properties of the model in noisy settings
is to boost the SNR of the communicated messages (see,
e.g. [29] and the references therein). In this section, we aim
to establish an improved SNR control strategy following the
improved analysis presented in Theorem 7. First, we stated
the following corollary for an easier-to-interpret result.
Corollary 10: Instate the notation and hypotheses of The-

orem 7. Also, let U2
k ≤ e2 and N2

k ≤ ν2 to be the maximum
bounded variances for all k. Then, if K = �(r3),

E[∥∇f (wk∗ )∥2] = O
( 1
E

√
r
K

σ 2
+

1

E2
√
rK

e2 + ν2
)
. (39)

A. IMPLICATIONS
Following Corollary 10, we can observe that the term corre-
sponding to uplink noise scale as O( 1

E2
√
rK

), while the term

corresponding to downlink noise is O(1). We can visual-
ize the impact of both uplink and downlink noises on the
MNIST dataset (refer Section V-B for the details about the
model architecture and other parameters) in Figure 2. From
figs. 2b and 2d, we can confirm that any changes in the
number of participating clients, i.e., r , and the local number
of iterations, i.e., E does not make any difference and it scales
as O(1). Similarly, from figs. 2a and 2c, we inspect that the
term corresponding to uplink noise scales asO( 1

E2
√
rK

). This
tells us that the impact of uplink and downlink noises on
convergence errors is different. Using this result, we propose
to employ SNR control strategies such that the effect of both

the noises appear as higher-order terms, not as dominant
terms. Hence to curtail the impact of the noises, we want the
order of the terms corresponding to the uplink and downlink
noise to beO( 1

E1+δ1K
1
2+δ2

), for some δ1, δ2 > 0. For instance,

in what follows we will adopt a strategy such that δ1 = 1 and
δ2 = 0.5.
Since we have already established that the effects of both

uplink and downlink noises are different, we need to employ
different scaling policies for these noises. Hence, for the
model to converge to an ϵ−stationary point like in FedAvg,
we need to scale down the downlink noise by �(E2k) and
uplink noise by �(

√
k). These scaling rates result in requir-

ing considerably less power resources compared to the prior
work, e.g. [29]. Putting the requirement of strong convexity
aside, the proposed policy in [29], while consuming more
power resources2 ensures that the model converges, albeit
the dominant term in the rate will depend on noise statistics.
However, employing our strategy ensures that noise appears
merely as a higher-order term, which means that for a large
number of communication rounds, the difference between
noisy and noise-free FedAvg will be negligible. In the dis-
cussions above we talk about the necessity of SNR scaling
to ensure that the performance gracefully depends on the
noise. There are works such as [20] and [24] and others that
provide a practical perspective towards designing distributed
systems and it is an interesting future work to implement
the theoretical findings of this work in practical systems and
come up with new design paradigms. A simple setting is
a scenario where a set of UAVs (acting as clients in FL)
need to communicate with the base station (acting as the
central server in FL). Our paper’s main findings indicate
that the effect of the downlink channel noise is particularly
detrimental, and thus, an effective strategy would involve
boosting the power of the signal sent from the base station to
the UAVs.

V. VERIFYING EXPERIMENTS
In this section, we demonstrate the efficacy and validity of
the proposed theory through empirical analysis. For this pur-
pose, we devise two categories of experiments, (i) synthetic
experiments and (ii) deep learning experiments.

A. SYNTHETIC EXPERIMENT
In the synthetic experiment, we train a linear regression
model with m = 15000 samples. The samples {(xj, yj)mj=1}

are generated based on the model yj = ⟨θ∗, xj⟩ + cj, where
θ∗

∈ R60, the jth input xj ∼ N (0, I60), and noise cj ∼

N (0, 0.05). This dataset is generated such that the (samples×
features) matrix has the ℓ2 norm of its Hessian equal to 1.
These samples are then distributed over 50 clients resulting
in 300 samples/client. Also, we use the mean squared error
loss function. To conduct this numerical experiment we use
n = 50 clients and set the values of γ = 18 (see Theorem 7),

2Considering non-convex, L-smooth problems, the result in [29] seems to
require �(k) scaling for both uplink and downlink noises.
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FIGURE 2. Effect of r (top 2 figures) and E (bottom 2 figures) on uplink
and downlink noise.

FIGURE 3. Linear regression: Comparing the impact of uplink and
downlink noise with (left) and without (right) SNR control.

FIGURE 4. Train loss vs. communication rounds for the IID and non-IID
data distribution of the MNIST dataset. The plots (4a) and (4c) present the
constant noise addition setting. We can see that the theory is verified
from the plots. Similarly, the plots (4b) and (4d) show the effect of the
proposed SNR control strategy.

L = 1, E = 5 and K = 100 and BS (local batch size) = 16.
In each round, 20% of the clients participate based on random

FIGURE 5. Train loss vs. communication rounds for the IID and non-IID
data distribution of the FMNIST dataset. The plots (5a) and (5c) present
the constant noise addition setting. We can see that the theory is verified
from the plots. Similarly, the plots (5b) and (5d) show the effect of the
proposed SNR control strategy.

FIGURE 6. Train loss vs. communication rounds for the IID and non-IID
data distribution of the CIFAR-10 dataset. The plots (6a) and (6c) present
the constant noise addition setting. We can see that the theory is verified
from the plots. Similarly, the plots (6b) and (6d) show the effect of the
proposed SNR control strategy.

selection, which leads to r = 10. Now from Theorem 7,
we have ηk =

1
γLE

√
r
K , i.e. ηk = 0.0035.

We first consider a constant noise setting where we
add both uplink and downlink noise to the communicated
messages where the noises are sampled from a Gaussian
distribution having zero mean i.e., e(i)k ∼ N (0, υ2) and ν

(i)
k ∼

N (0, υ2), where υ = 0.2. We visualize the impact of adding
noises in Figure 3a; as the figure demonstrates, consistent
with the result of Theorem 7, the effect of downlink noise
is more severe than the uplink noise and results in model
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FIGURE 7. Test accuracy vs. communication rounds for the IID (top 3 figures) and non-IID (bottom 3 figures) data distribution of the MNIST, FMNIST,
and CIFAR-10 datasets.

divergence. Furthermore, the adverse effect of noise increases
as υ increases.

Now, we test the efficacy of the proposed SNR control
strategy in Section IV. In particular, since we already estab-
lished using Theorem 7 that the effect of downlink noise is
more degrading than uplink noise, we can utilize different
SNR scaling policies to save on power resources while alle-
viating the effect of noise. Hence, we scale the downlink and
uplink noises by �( 1

E2k
) and �( 1

√
k
), respectively. We can

observe the results from Fig. 3b and see how it converges
almost in tandem with the noise-free case, as predicted by
Corollary 10.

B. DEEP LEARNING EXPERIMENT
To check the validity of our theory on real-world
datasets, we run deep learning experiments on the MNIST,
CIFAR-10, and Fashion-MNIST (FMNIST) datasets, both for
IID and non-IID settings. Before we start with the different
experimental setups we clarify that these experiments are not
designed to provide benchmark results on the corresponding
dataset but rather provide insights into the proposed theory.

1) MNIST
In this, we train a CNN model with 60000 samples, equally
distributed over a set of n = 100 clients. In each round, 20%
of the clients participate based on random selection, which
leads to r = 20. To emulate the IID setting, the data is
shuffled and then randomly assigned to each client resulting
in 600 samples/client. For the non-IID setting, we assign 1 or
2 labels to each client randomly. The model in each client
is two 5 × 5 convolution layers, having 32 and 64 channels,

respectively. Each of these layers is followed by a 2× 2 max
pooling. Finally, the output is fed to a fully connected layer
with 512 units followed by a ReLU activation, and a final
output layer with softmax. We also included a dropout layer
having the dropout = 0.2. The following are the parameters
used for the training: local number of iterations,E = 5, global
communication rounds, K = 100, local batch size, BS = 20,
and learning rate, ηk = 0.01 for IID case and ηk = 0.001 for
the non-IID case.

2) FASHION-MNIST(FMNIST)
Here we train a CNN model with 60000 samples. The data
is distributed over a set of n = 100 clients, where, r = 20
clients participate in each round randomly. The experimen-
tal premise is divided into the IID and non-IID settings
based on the distribution of the dataset. In IID the dataset
is equally distributed equally amongst all the clients and in
the non-IID setting, we only share 1 or 2 labels with each
client to maintain high data heterogeneity. In each client, the
model consists of two convolutional layers and three fully-
connected layers. These 5 × 5 convolution layers have 6 and
12 channels respectively. Each of these layers is followed
by ReLU activation and a 2 × 2 max pooling layer. The
following are the parameters used for the training: local
number of iterations, E = 5, global communication rounds,
K = 100, local batch size, BS = 20, and learning rate,
ηk = 0.01.

3) CIFAR-10
We train a CNN model similar to MNIST and FMNIST. The
50000 samples are equally distributed over n = 100 clients
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FIGURE 8. Train loss vs. communication rounds for the non-IID data
distribution of the FEMNIST dataset. The plots (8a) present the constant
noise addition setting. We can see that the theory is verified from the
plots. Similarly, the plots (8b) show the effect of the proposed SNR
control strategy.

out of which 20%, i.e., r = 20, clients participate randomly
in each round. In the case of the IID setting the data is shuffled
and then randomly assigned to each client whereas in the case
of the non-IID setting only 1 or 2 labels are assigned to each
client randomly. The model architecture consists of two con-
volutional layers, followed by three fully-connected layers.
The first convolutional layer has 3 input channels and 6 output
channels, with a kernel size of 5. The second convolutional
layer has 6 input channels and 16 output channels, also with
a kernel size of 5. Between the convolutional layers, there
is a max pooling layer with a kernel size of 2 and a stride
of 2. After the convolutional layers, the output is flattened and
passed through the three fully-connected layers, with 120,
84, and 10 units respectively. The forward function applies a
ReLU activation function after each convolutional and fully-
connected layer, except for the final fully-connected layer.
The following are the parameters used for the training: local
number of iterations, E = 5, global communication rounds,
K = 100, local batch size, BS = 20, and learning rate,
ηk = 0.01.

4) FEMNIST
In this, we train a CNN model with n = 1000 clients on
the FEMNIST [40] dataset where in each round only 1%,
i.e., 10 clients participate. This dataset consists of images
that are highly heterogeneous since it has 62 classes consist-
ing of digits and upper and lower case English characters.
Additionally, the heterogeneity comes from the fact that these
characters are written by different subjects. Thus, we only
conduct experiments for the non-IID case. The model archi-
tecture consists of two convolutional layers followed by
max-pooling, dropout, and fully-connected layers. Themodel
architecture is adapted from [41]. The following are the
parameters used for the training: local number of iterations,
E = 5, global communication rounds, K = 100, local batch
size, BS = 50, and learning rate, ηk = 0.01.

For all four (MNIST, FMNIST, CIFAR-10, and FEMNIST)
experiments, we follow the same experimental setting as the
synthetic experiment, i.e., the uplink and downlink noises are
sampled from a zero mean Gaussian distribution∼ N (0, υ2).
For our experiments, we choose υ = 0.2. Again, to imitate

FIGURE 9. Test accuracy vs. communication rounds for the non-IID data
distribution of FEMNIST dataset.

the noisy transmission channels, we add both uplink and
downlink noise to the communicated messages. The results
are shown in Figures 4 to 9 and are generated by averaging
over 3 independent runs.We can visualize from the figure that
the effect of noises inhibits the model from converging. One
noteworthy point in the case of the FEMNIST dataset is the
overlap of uplink and downlink noises after certain rounds.
We hypothesize that this discrepancy goes back to the features
of this experiment which is highly heterogeneous in nature.
Also, the model and thus the objective function is not smooth
and that is why we see this gap. So, essentially the effect of
having a non-smooth function is exacerbated in this particular
experiment due to the high level of heterogeneity. However,
by employing our proposed SNR control policy in Section IV,
we achievemodel convergence for both noiseswith negligible
convergence error with respect to the noise-free case.

VI. CONCLUSION
We studied the effects of having imperfect/noisy communi-
cation channels for federated learning. To the best of our
knowledge, this paper is the first to establish the convergence
analysis of FL where consideration has been made on both
noisy transmission channels and smooth non-convex loss
function without requiring the restrictive and hard-to-verify
assumption of bounded client dissimilarity. By analyzing
the convergence with these relaxed assumptions, we the-
oretically demonstrated that the effect of downlink noise
is more detrimental than uplink noise. Using this insight,
we proposed to employ SNR scaling policies for respective
noisy channels that result in considerable savings in power
consumption compared to existing approaches. We verified
these theoretical findings via empirical results demonstrating
the efficacy of the proposed analysis and its validity. Future
work may involve investigating a parameter-free version of
this scenario, i.e., an FL scheme that does not require the
knowledge of parameters such as smoothness and analyzing
its implication on the design of the system.
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APPENDIX A
LEMMAS AND PROOFS
Lemma 11: For ηkLE ≤

1
2 , we have:

E[f (wk+1)]

≤ E[f (wk )] −
ηk (E − 1)

2
E[∥∇f (wk )∥2]

+ 4η2kLE
2
( (n− r)
r(n− 1)

+
2
3
ηkLE

)(1
n

∑
i∈[n]

E[∥∇fi(wk )∥2]
)

+ η2kLE
(ηkLE

n

(
1 +

2nE
3

+ n
)

+
1
r

+
(n− r)
r(n− 1)

)
σ 2

+
η2kL

2r
1
n

∑
i∈[n]

U2
k,i +

ηkL2

2

(
1 + 2ηkL + 4E{1 + 3η2kL

2

+ 2ηkLE(2 + 3η2kL
2)(

2
3
ηkLE +

(n− r)
r(n− 1)

)}
)1
n

∑
i∈[n]

N2
k,i.

Proof: Define

û(i)k,τ := ∇̃fi(w
(i)
k,τ ;B

(i)
k,τ ), ûk,τ :=

1
n

∑
i∈[n]

û(i)k,τ ,

uk,τ :=
1
n

∑
i∈[n]

∇fi(w
(i)
k,τ ), wk,τ :=

1
n

∑
i∈[n]

w(i)
k,τ .

Then:

∇f (wk )

=
1
n

∑
i∈[n]

∇fi(wk ) (40)

wk+1

= wk − ηk

[1
r

∑
i∈Sk

(
e(i)k +

E−1∑
τ=0

û(i)k,τ

+ ∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)

)]
. (41)

w(i)
k,τ

= wk + ν
(i)
k − ηk

( τ−1∑
t=0

û(i)k,τ

+ ∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)

)
. (42)

wk,τ

= wk +
1
n

∑
i∈[n]

ν
(i)
k − ηk

[ τ−1∑
t=0

ûk,t

+
1
n

∑
i∈[n]

(
∇̃fi(wk + ν

(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)

)]
. (43)

E
{B(i)

k,τ }
n
i=1

[̂uk,τ ]

= uk,τ . (44)

E
[∥∥∥ τ−1∑

t=0

ûk,t
∥∥∥2]

≤ τ

τ−1∑
t=0

E[∥uk,t∥2] +
τσ 2

n
. (45)

E
[∥∥∥ τ−1∑

t=0

û(i)k,t
∥∥∥2]

≤ τ

τ−1∑
t=0

E[∥∇fi(w(i)
k,t )∥

2] + τσ 2. (46)

N2
k,i

:= E
[∥∥∥νik

∥∥∥2]. (47)

U2
k,i

:= E
[∥∥∥eik∥∥∥2]. (48)

Recall that σ 2 is the maximum variance of the local (client-
level) stochastic gradients. In eq. (45), the expectation is w.r.t.
{B(i)

k,t }
n,τ−1
i=1,t=0 and it follows due to the independence of the

noise in each local update of each client. Similarly, eq. (46),
the expectation is w.r.t. {B(i)

k,t }
τ−1
t=0 and it follows due to the

independence of the noise in each local update. Also, eq. (47)
and eq. (48) follows since both downlink and uplink noises
have zero mean.
Next, using the L-smoothness of f and eq. (41), we get

E[f (wk+1)] ≤ E[f (wk )] + (A) + (B) (49)

where

A = −E
[〈

∇f (wk ), ηk
[1
r

∑
i∈Sk

(
e(i)k +

E−1∑
τ=0

û(i)k,τ

+ ∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)

)]〉]
(50)

and

B =
L
2

E
[∥∥∥ηk

[1
r

∑
i∈Sk

(
e(i)k +

E−1∑
τ=0

û(i)k,τ

+ ∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)

)]∥∥∥2]
(51)

Now using (A), eq. (52), as shown at the bottom of the next
page.
A1 will be zero since uplink noise has zeromean. Now, let’s

use A2 :

A2 = −ηkE
[〈

∇f (wk ),
E−1∑
τ=0

uk,τ
〉]

= −ηk

E−1∑
τ=0

E
[〈

∇f (wk ),uk,τ
〉]

For any 2 vectors a and b, we have that:

⟨a, b⟩ =
1
2
(∥a∥2 + ∥b∥2 − ∥a− b∥2) (53)
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Using this we will get A2 as:

A2 =
ηk

2

E−1∑
τ=0

E[∥∇f (wk ) − uk,τ∥2]

−
ηkE
2

E[∥∇f (wk )∥2] −
ηk

2

E−1∑
τ=0

E[∥uk,τ∥2]

(54)

Again using A3 :

− ηkE
[〈

∇f (wk ),
1
n

∑
i∈[n]

(∇̃fi(wk + ν
(i)
k ) − ∇̃fi(wk )

〉]

= −ηkE
[〈

∇f (wk ),
1
n

∑
i∈[n]

(∇fi(wk + ν
(i)
k )

〉]

+ ηkE
[〈

∇f (wk ),
1
n

∑
i∈[n]

∇fi(wk )
〉]

Using eq. (53) and eq. (40) in the equation above, we get

A3 =
ηk

2
E[∥∇f (wk ) −

1
n

∑
i∈[n]

∇fi(wk + nik )∥
2]

︸ ︷︷ ︸
A,
3

−
ηk

2
E[∥∇f (wk )∥2] −

ηk

2
E[∥

1
n

∑
i∈[n]

∇fi(wk + nik )∥
2]

+ ηkE[⟨∇f (wk ), ∇f (wk )⟩]

Reducing A,
3 :

A,
3 =

ηk

2
E[∥

1
n

∑
i∈[n]

∇fi(wk ) −
1
n

∑
i∈[n]

∇fi(wk + nik )∥
2] (55)

≤
ηkL2

2
1
n

∑
i∈[n]

N2
k,i (56)

The eq. (55) follows by using eq. (40), while eq. (56) follows
from the L-smoothness of fi, eq. (47) and independence of

noises. So, A3 now becomes:

A3 ≤
ηkL2

2
1
n

∑
i∈[n]

N2
k,i −

ηk

2
E[∥∇f (wk )∥2]

−
ηk

2
E[∥

1
n

∑
i∈[n]

∇fi(wk + nik )∥
2] + ηkE[∥∇f (wk )∥2]

≤
ηkL2

2
1
n

∑
i∈[n]

N2
k,i +

ηk

2
E[∥∇f (wk )∥2]

−
ηk

2
E[∥

1
n

∑
i∈[n]

∇fi(wk + nik )∥
2] (57)

So, finally by combining eq. (54) and eq. (57), A becomes:

A ≤
ηk

2

E−1∑
τ=0

E[∥∇f (wk ) − uk,τ∥2]

−
ηk (E − 1)

2
E[∥∇f (wk )∥2] −

ηk

2

E−1∑
τ=0

E[∥uk,τ∥2]

+
ηkL2

2
1
n

∑
i∈[n]

N2
k,i −

ηk

2
E[∥

1
n

∑
i∈[n]

∇fi(wk + nik )∥
2]

(58)

Now using (B):

B =
L
2

η2k

(
E[∥

1
r

∑
i∈Sk

e(i)k ∥
2] + E[∥

1
r

∑
i∈Sk

E−1∑
τ=0

û(i)k,τ∥
2]

+ E[∥
1
r

∑
i∈Sk

∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)∥

2]

+ 2E[⟨
1
r

∑
i∈Sk

e(i)k ,
1
r

∑
i∈Sk

E−1∑
τ=0

û(i)k,τ ⟩] + 2E[⟨
1
r

∑
i∈Sk

e(i)k ,

1
r

∑
i∈Sk

(∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0))⟩]

+ 2E[⟨
1
r

∑
i∈Sk

E−1∑
τ=0

û(i)k,τ ,
1
r

∑
i∈Sk

(∇̃fi(wk + ν
(i)
k ;B(i)

k,0)

− ∇̃fi(wk ;B(i)
k,0)⟩]

)
(59)

A = −ηkE
[〈

∇f (wk ),
1
r

∑
i∈Sk

e(i)k
〉]

︸ ︷︷ ︸
(A1)

−ηkE
[〈

∇f (wk ),
1
r

∑
i∈Sk

E−1∑
τ=0

û(i)k,τ
〉]

︸ ︷︷ ︸
(A2)

−ηkE
[〈

∇f (wk ),
1
r

∑
i∈Sk

(
∇̃fi(wk + ν

(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)

)〉]
︸ ︷︷ ︸

(A3)

(52)
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Using the fact that E[eik ] = 0 and Young’s Inequality in
eq. (59), we get:

B

≤
L
2

η2k

(
E[∥

1
r

∑
i∈Sk

e(i)k ∥
2]

︸ ︷︷ ︸
B1

+ 2E[∥
1
r

∑
i∈Sk

E−1∑
τ=0

û(i)k,τ∥
2]

︸ ︷︷ ︸
B2

+ 2E[∥
1
r

∑
i∈Sk

∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)∥

2]

︸ ︷︷ ︸
B3

)

(60)

Starting withB1 :

B1 =
n(r − 1)
r(n− 1)

E[∥
1
n

∑
i∈[n]

e(i)k ∥
2]

+
(n− r)
r(n− 1)

1
n

∑
i∈[n]

E[∥e(i)k ∥
2] (61)

=
(r − 1)
nr(n− 1)

∑
i∈[n]

U2
k,i +

(n− r)
nr(n− 1)

∑
i∈[n]

U2
k,i (62)

=
1
nr

∑
i∈[n]

U2
k,i (63)

Here, eq. (61) follows due to expectation w.r.t Sk and eq.
(62) follows due to expectation w.r.t uplink noise and its
independence. Now let’s focus on B2 :

B2 ≤
2n(r − 1)E
r(n− 1)

( E−1∑
τ=0

E[∥uk,τ∥2] +
σ 2

n

)

+
2(n− r)E
r(n− 1)

(1
n

∑
i∈[n]

E−1∑
τ=0

E[∥∇fi(wik,τ )∥
2] + σ 2

)
(64)

The eq. (64) follows due to expectation w.r.t Sk , eq. (44), eq.
(45) and eq. (46). Again, let’s use B3 :

B3 ≤ 2E[
1
r

∑
i∈Sk

∥∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)∥

2]

(65)

≤ 2L2E[
1
r

∑
i∈Sk

∥ν
(i)
k ∥

2] (66)

≤ 2L2
1
n

∑
i∈[n]

N2
k,i (67)

Here we used Jensen’s inequality to reach eq. (65). Again,
eq. (66) follows due to the L-smoothness of fi and eq. (67)
follows due to expectation w.r.t Sk and eq. (47). So, finally
by combining B1, B2 and B3, (B) becomes:

B ≤
Lη2k

2

( 1
nr

∑
i∈[n]

U2
k,i +

2n(r − 1)E
r(n− 1)

( E−1∑
τ=0

E[∥uk,τ∥2]

+
σ 2

n

)
+

2(n− r)E
r(n− 1)

(1
n

∑
i∈[n]

E−1∑
τ=0

E[∥∇fi(wik,τ )∥
2] + σ 2)

+ 2L2
1
n

∑
i∈[n]

N2
k,i

)
≤
Lη2k

2nr

∑
i∈[n]

U2
k,i +

L3η2k
n

∑
i∈[n]

N2
k,i +

η2kLE

r
σ 2

+
n(r − 1)
r(n− 1)

η2kLE
( E−1∑

τ=0

E[∥uk,τ∥2]
)

+
(n− r)
r(n− 1)

η2kLE
(1
n

∑
i∈[n]

E−1∑
τ=0

E[∥∇fi(wik,τ )∥
2]

)
(68)

Now, by putting eq. (58) and eq. (68) in eq. (49) we will get:

E[f (wk+1)]

≤ E[f (wk )] −
ηk (E − 1)

2
E[∥∇f (wk )∥2]

−
ηk

2

(
1 − ηkLE

n(r − 1)
r(n− 1)

) E−1∑
τ=0

E[∥uk,τ∥2]

−
ηk

2
E[∥

1
n

∑
i∈[n]

∇fi(wk + ν
(i)
k )∥2] +

η2kLE

r
σ 2

+
η2kL

2nr

∑
i∈[n]

U2
k,i +

ηkL2

2

(
1 + 2ηkL

)1
n

∑
i∈[n]

N2
k,i

+
ηk

2

E−1∑
τ=0

E[∥∇f (wk ) − uk,τ∥2]︸ ︷︷ ︸
(M )

+ η2kLE
(n− r)
r(n− 1)

(1
n

∑
i∈[n]

E−1∑
τ=0

E[∥∇fi(w(i)
k,τ )∥

2]
)

︸ ︷︷ ︸
(N )

(69)

We upper bound (M) and (N) using Lemma 12 and
Lemma 13, respectively. Plugging in these bounds and drop-
ping the last term of eq. (69), we get:

E[f (wk+1)]

≤ E[f (wk )] −
ηk (E − 1)

2
E[∥∇f (wk )∥2]

−
ηk

2

(
1 − ηkLE

n(r − 1)
r(n− 1)

− 2η2kL
2E2

)
︸ ︷︷ ︸

(C)

E−1∑
τ=0

E[∥uk,τ∥2]

+ 4η2kLE
2
( (n− r)
r(n− 1)

+
2
3
ηkLE

)(1
n

∑
i∈[n]

E[∥∇fi(wk )∥2]
)

+ η2kLE
(ηkLE

n

(
1 +

2nE
3

+ n
)

+
1
r

+
(n− r)
r(n− 1)

)
σ 2
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+
η2kL

2r
1
n

∑
i∈[n]

U2
k,i +

ηkL2

2

(
1 + 2ηkL + 4E{1 + 3η2kL

2

+ 2ηkLE(2 + 3η2kL
2)(

2
3
ηkLE +

(n− r)
r(n− 1)

)}
)1
n

∑
i∈[n]

N2
k,i.

(70)

for ηkLE ≤
1
2 . Note that (C) ≥ 0 for ηkLE ≤

1
2 . Thus, for

ηkLE ≤
1
2 , we have:

E[f (wk+1)]

≤ E[f (wk )] −
ηk (E − 1)

2
E[∥∇f (wk )∥2]

+ 4η2kLE
2
( (n− r)
r(n− 1)

+
2
3
ηkLE

)(1
n

∑
i∈[n]

E[∥∇fi(wk )∥2]
)

+ η2kLE
(ηkLE

n

(
1 +

2nE
3

+ n
)

+
1
r

+
(n− r)
r(n− 1)

)
σ 2

+
η2kL

2r
1
n

∑
i∈[n]

U2
k,i +

ηkL2

2

(
1 + 2ηkL + 4E{1 + 3η2kL

2

+ 2ηkLE(2 + 3η2kL
2)(

2
3
ηkLE +

(n− r)
r(n− 1)

)}
)1
n

∑
i∈[n]

N2
k,i.

(71)

Lemma 12: For ηkLE ≤
1
2 :

E−1∑
τ=0

E[∥∇f (wk ) − uk,τ∥2]

≤ 2η2kL
2E2

E−1∑
τ=0

E[∥uk,τ∥2]

+
16
3

η2kL
2E3 1

n

∑
i∈[n]

E[∥∇fi(wk )∥2]

+ 2η2kL
2E2(

1
n

+
2E
3

+ 1)σ 2

+ 4L2E(1 + 3η2kL
2
+

4
3
η2kL

2E2(2 + 3η2kL
2))

1
n

∑
i∈[n]

N2
k,i.

Proof: We have:

E[∥∇f (wk ) − uk,τ∥2]

= E[∥∇f (wk ) − ∇f (wk,τ ) + ∇f (wk,τ ) − uk,τ∥2]

≤ 2E[∥∇f (wk ) − ∇f (wk,τ )∥2]

+ 2E[∥∇f (wk,τ ) − uk,τ∥2]

≤ 2L2E[∥wk − wk,τ∥2]︸ ︷︷ ︸
M1

+ 2E
[∥∥∥1
n

∑
i∈[n]

(∇fi(wk,τ ) − ∇fi(w
(i)
k,τ ))

∥∥∥2]︸ ︷︷ ︸
M2

(72)

UsingM1 :

2L2E[∥wk − wk,τ∥2]

= 2L2E
[∥∥∥ηk

τ−1∑
t=0

ûk,t +
ηk

n

∑
i∈[n]

{∇̃fi(wk + ν
(i)
k ;B(i)

k,0)

− ∇̃fi(wk ;B(i)
k,0)} −

1
n

∑
i∈[n]

ν
(i)
k

∥∥∥2]

= 2L2
(
E[∥ηk

τ−1∑
t=0

ûk,t∥2] + E[∥
1
n

∑
i∈[n]

ν
(i)
k ∥

2]

+ E[∥
ηk

n

∑
i∈[n]

{∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)}∥

2]

+ 2E[⟨ηk
τ−1∑
t=0

ûk,t ,
ηk

n

∑
i∈[n]

{∇̃fi(wk + ν
(i)
k ;B(i)

k,0)

− ∇̃fi(wk ;B(i)
k,0)}⟩]

+ 2E[⟨
ηk

n

∑
i∈[n]

{∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)},

−
1
n

∑
i∈[n]

ν
(i)
k ⟩] + 2E[⟨−

1
n

∑
i∈[n]

ν
(i)
k , ηk

τ−1∑
t=0

ûk,t ⟩]
)

(73)

Simplifying eq. (73) using the fact that E[∥n(i)k ∥] = 0 and
Young’s Inequality we will get:

2L2E[∥wk − wk,τ∥2]

≤ 2L2
(
2E[∥ηk

τ−1∑
t=0

ûk,t∥2]

+ 3E[∥
ηk

n

∑
i∈[n]

{∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)}∥

2]

+ 2E[∥
1
n

∑
i∈[n]

ν
(i)
k ∥

2]
)

Using Jensen’s Inequality in the equation above, we get

2L2E[∥wk − wk,τ∥2]

≤ 2L2
(
2η2kE[∥

τ−1∑
t=0

ûk,t∥2]

+ 3η2k
1
n

∑
i∈[n]

E[∥∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)∥

2]

+
2
n2

E[∥
∑
i∈[n]

ν
(i)
k ∥

2]
)

(74)

In eq. (74) using the L-smoothness of fi, eq. (45), eq. (47) and
independence of noise, we get

2L2E[∥wk − wk,τ∥2]

≤ 2L2
(
2η2kτ (

τ−1∑
t=0

E[∥uk,t∥2] +
σ 2

n
)

+ 3η2kL
2 1
n

∑
i∈[n]

N2
k,i +

2
n2

∑
i∈[n]

N2
k,i

)
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Now let’s useM2:

2E[∥
1
n

∑
i∈[n]

(∇fi(wk,τ ) − ∇fi(w
(i)
k,τ ))∥

2]

≤ 2L2
1
n

∑
i∈[n]

E[∥w(i)
k,τ − wk,τ∥2]

(75)

Here eq. (75) follows from Jensen’s Inequality. Now using the
definition of wk,τ and the L-smoothness of fi in conjunction
with the same simplification process as used to simplify
eq. (73), we get eq. (76), as shown at the bottom of the next
page.

Using (X):

2E[∥(n(i)k −
1
n

∑
i∈[n]

n(i)k )∥2]

= 2E[∥n(i)k ∥
2]

+ 2E[∥
1
n

∑
i∈[n]

n(i)k ∥
2] − 4E[⟨n(i)k ,

1
n

∑
i∈[n]

n(i)k ⟩]

= 2N2
k,i +

2
n2

∑
i∈[n]

N2
k,i −

4
n
N2
k,i (77)

= 2(1 −
2
n
)N2

k,i +
2
n2

∑
i∈[n]

N2
k,i (78)

Equation (77) follows due to eq. (47) and independence of
noise. So, now moving on to (Y):

2E[∥ηk (
τ−1∑
t=0

ûk,t −

τ−1∑
t=0

û(i)k,t )∥
2]

= 2η2kE[∥
τ−1∑
t=0

ûk,t −

τ−1∑
t=0

û(i)k,t∥
2]

≤ 2η2kτ
τ−1∑
t=0

E[∥̂uk,t − û(i)k,t∥
2] (79)

= 2η2kτ
τ−1∑
t=0

E[∥̂uk,t∥2 + ∥̂u(i)k,t∥
2
− 2⟨̂uk,t , û

(i)
k,t ⟩] (80)

Equation (79) follows because of Jensen’s Inequality and
using the fact that ûk,τ =

1
n

∑
i∈[n] û

(i)
k,τ , we can simplify

eq. (80) to:

2E[∥ηk (
τ−1∑
t=0

ûk,t −

τ−1∑
t=0

û(i)k,t )∥
2]

≤ 2η2kτ
τ−1∑
t=0

(E[∥̂u(i)k,τ∥
2] − E[∥̂uk,t∥2])

≤ 2η2kτ
τ−1∑
t=0

E[∥̂u(i)k,τ∥
2] (81)

≤ 2η2kτ
τ−1∑
t=0

(E[∥∇fi(w(i)
k,t )∥

2] + σ 2) (82)

Now using Lemma 13 for nkLE ≤
1
2 in eq. (82), we get:

2E[∥ηk (
τ−1∑
t=0

ûk,t −

τ−1∑
t=0

û(i)k,t )∥
2]

≤ 2η2kτ
2(4E[∥∇fi(wk )∥2]

+ 4L2(2 + 3η2kL
2)N2

k,i) + 2η2k (τ
2
+ τ )σ 2 (83)

Next, using (Z):

Z = 3η2kE
[
∥
1
n

∑
i∈[n]

(∇̃fi(wk + ν
(i)
k ;B(i)

k,0)

− ∇̃fi(wk ;B(i)
k,0))∥

2

+ ∥(∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0))∥

2

− 2
〈1
n

∑
i∈[n]

(∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)),

(∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0))

〉]
(84)

We simplify eq. (84) using the similar fact that we used to
simplify eq. (79). Subsequently, by using the L-smoothness
of fi, we get

Z = 3η2k (E[∥(∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0))∥

2]

− E[∥
1
n

∑
i∈[n]

(∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0))∥

2])

≤ 3η2kE[∥(∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0))∥

2]

≤ 3η2kL
2E[∥ν(i)k ∥

2] ≤ 3η2kL
2N2

k,i (85)

Now putting the results of eq. (78), eq. (83) and eq. (85) in
eq. (76) we get:

2E[∥
1
n

∑
i∈[n]

(∇fi(wk,τ ) − ∇fi(w
(i)
k,τ ))∥

2]

≤ 2L2
1
n

∑
i∈[n]

(
2(1 −

2
n
)N2

k,i +
2
n2

∑
i∈[n]

N2
k,i

+ 2η2kτ
2(4E[∥∇fi(wk )∥2] + 4L2(2 + 3η2kL

2)N2
k,i)

+ 2n2k (τ
2
+ τ )σ 2

+ 3η2kL
2N2

k,i

)
≤ 16η2kL

2τ 2
1
n

∑
i∈[n]

E[∥∇fi(wk)∥2] + 2L2(2 −
2
n

+ 3η2kL
2)
1
n

∑
i∈[n]

N2
k,i + 16η2kL

4τ 2(2 + 3η2kL
2)
1
n

∑
i∈[n]

N2
k,i

+ 4η2kL
2(τ 2 + τ )σ 2. (86)

So, by combiningM1 and M2 in eq. (72), we get

E[∥∇f (wk ) − uk,τ∥2]

≤ 4η2kL
2τ

τ−1∑
t=0

E[∥uk,t∥2]

+ 16η2kL
2τ 2

1
n

∑
i∈[n]

E[∥∇fi(wk)∥2]
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+ 4η2kL
2(τ 2 +

τ

n
+ τ )σ 2

+ 4L2(1 + 3η2kL
2)
1
n

∑
i∈[n]

N2
k,i

+ 16η2kL
4τ 2(2 + 3η2kL

2)
1
n

∑
i∈[n]

N2
k,i. (87)

Now summing up eq. (87) for all τ ∈ {0, . . . ,E − 1}, we get:

E−1∑
τ=0

E[∥∇f (wk ) − uk,τ∥2] ≤ 2η2kL
2E2

E−1∑
τ=0

E[∥uk,τ∥2]

+
16
3

η2kL
2E3 1

n

∑
i∈[n]

E[∥∇fi(wk )∥2] + 2η2kL
2E2(

1
n

+
2E
3

+ 1)σ 2
+ 4L2E

(
1 + 3η2kL

2
+

4
3
η2kL

2E2(2

+ 3η2kL
2)

)1
n

∑
i∈[n]

N2
k,i. (88)

Lemma 13: For ηkLE ≤
1
2 , we have:

τ−1∑
t=0

E[∥∇fi(w(i)
k,t )∥

2] ≤ 4τE[∥∇fi(wk )∥2]

+ 4L2τ (2 + 3η2kL
2)N2

k,i + σ 2.

Proof:

E[∥∇fi(w(i)
k,t )∥

2]

= E[∥∇fi(w(i)
k,t ) − ∇fi(wk ) + ∇fi(wk )∥2]

≤ 2E[∥∇fi(wk )∥2] + 2E[∥∇fi(w(i)
k,t ) − ∇fi(wk )∥2]

≤ 2E[∥∇fi(wk )∥2] + 2L2E[∥w(i)
k,t − wk∥2]. (89)

But:

E[∥w(i)
k,t − wk∥2]

= E
[∥∥∥ν

(i)
k − ηk

( t−1∑
t ′=0

û(i)k,t ′

+ ∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)

)∥∥∥2]
= E[∥ν(i)k ∥

2] + η2kE[∥
t−1∑
t ′=0

û(i)k,t ′∥
2]

+ η2kE[∥∇ f̃i(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)∥

2]

+ 2E[⟨ν(i)k , −ηk

t−1∑
t ′=0

û(i)k,t ′⟩] + 2E[⟨ν(i)k ,

− ηk{∇ f̃i(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)}⟩]

+ 2E[⟨−ηk

t−1∑
t ′=0

û(i)k,t ′ , −ηk{∇ f̃i(wk + ν
(i)
k ;B(i)

k,0)

− ∇̃fi(wk ;B(i)
k,0)}⟩] (90)

Now using the fact that E[nik ] = 0 and Young’s Inequality in
eq. (90), we get:

E[∥w(i)
k,t − wk∥2]

≤ 2E[∥ν(i)k ∥
2] + 2η2kE[∥

t−1∑
t ′=0

û(i)k,t ′∥
2]

+ 3η2kE[∥∇ f̃i(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)∥

2]

≤ 2N2
k,i + 2η2k t(

t−1∑
t ′=0

E[∥∇fi(w(i)
k,t ′∥

2]) + σ 2) + 3η2kL
2N2

k,i

(91)

Putting eq. (91) in eq. (89), we get:

E[∥∇fi(w(i)
k,t )∥

2]

≤ 2E[∥∇fi(wk )∥2]

+ 2L2(2 + 3η2kL
2)N2

k,i + 4η2kL
2t(

t−1∑
t ′=0

E[∥∇fi(w(i)
k,t ′ )∥

2]

+ σ 2) (92)

2E[∥
1
n

∑
i∈[n]

(∇fi(wk,τ ) − ∇fi(w
(i)
k,τ ))∥

2]

≤ 2L2
1
n

∑
i∈[n]

(
2E[∥(n(i)k −

1
n

∑
i∈[n]

n(i)k )∥2]

︸ ︷︷ ︸
(X )

+ 2E[∥ηk (
τ−1∑
t=0

ûk,t −

τ−1∑
t=0

û(i)k,t )∥
2]︸ ︷︷ ︸

(Y )

+3E[∥ηk ({
1
n

∑
i∈[n]

(∇̃fi(wk + ν
(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0))} − {∇̃fi(wk + ν

(i)
k ;B(i)

k,0) − ∇̃fi(wk ;B(i)
k,0)})∥

2]
)

︸ ︷︷ ︸
(Z )

(76)
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Summing up eq. (92) for all t ∈ {0, . . . , τ − 1}, we get:

τ−1∑
t=0

E[∥∇fi(w(i)
k,t )∥

2]

≤ 2τE[∥∇fi(wk )∥2]

+ 2L2τ (2 + 3η2kL
2)N2

k,i + 2η2kL
2τ 2(

τ−1∑
t=0

E[∥∇fi(w(i)
k,t )∥

2]

+ σ 2) (93)

Let us set ηkLE ≤ 1/2. Then:

τ−1∑
t=0

E[∥∇fi(w(i)
k,t )∥

2]

≤ 2τE[∥∇fi(wk )∥2]

+ 2L2τ (2 + 3η2kL
2)N2

k,i +
1
2

τ−1∑
t=0

E[∥∇fi(w(i)
k,t )∥

2] +
1
2
σ 2

(94)

Simplifying, we get:

τ−1∑
t=0

E[∥∇fi(w(i)
k,t )∥

2] ≤ 4τE[∥∇fi(wk )∥2]

+ 4L2τ (2 + 3η2kL
2)N2

k,i + σ 2

(95)
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