
Received 7 June 2023, accepted 18 June 2023, date of publication 21 June 2023, date of current version 26 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3288285

False-Bottom Encryption: Deniable Encryption
From Secret Sharing
SHAHZAD AHMAD 1, STEFAN RASS1,2, (Member, IEEE), AND PETER SCHARTNER 2
1LIT Secure and Correct Systems Laboratory, Johannes Kepler University Linz, 4040 Linz, Austria
2Institute for Artificial Intelligence and Cybersecurity, Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt, Austria

Corresponding author: Shahzad Ahmad (shahzad.ahmad@jku.at)

This work was supported in part by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

ABSTRACT We show how to implement a deniable encryption method from secret sharing. Unlike the
related concept of honey encryption, which employs a preprocessing step in symmetric encryption to
re-shape the distribution of a plaintext towards making the real plaintext indistinguishable from a ciphertext
for a fake message, we can avoid both, computational intractability assumptions and preprocessing of the
data. This accomplishes deniability against an attacker that can force decryptions, and it can brute-force break
a ciphertext with sufficient computational power. Following the concept of plausible deniability, we herein
have different decryption keys to open up distinct plaintexts from within the same ciphertext. For instance,
a plaintext revealed from a ciphertext with a key which was shared by a victim under duress, will convince
the attacker that it is real, while the actual secret remains unnoticed. False Bottom Encryption constructs a
symmetric scheme (in the sense of using the same key to encrypt and decrypt) that shares the properties of
both honey encryption and deniable encryption. We specifically formalize and differentiate ‘‘deniable’’ from
‘‘plausibly deniable’’ as a security feature, showing how plausible deniability falls back to (only) deniability,
depending on the plaintext distribution. Our scheme is simple, lightweight to implement and efficient in terms
of encryption and decryption, and is based on secret sharing. As such, we do not rely on computational
intractability. We corroborate the construction by giving numeric examples and providing implementations
of the method as a Jupyter notebook supplementary to this work.

INDEX TERMS Deniable encryption, honey encryption, plausible deniability, secret sharing.

I. INTRODUCTION
Generally speaking, a sender and receiver must first share
information to communicate safely. In many cases, encryp-
tion and good password protection may be sufficient to
safeguard your data. For instance, with AES, the sender
and receiver share the same key in a symmetric encryp-
tion system. However, using the RSA technique, the sender
and receiver of an asymmetric-key encryption technique
exchange a public system parameter and the recipient’s public
key, with the public key delivery occurring through public
key infrastructure. These general encryption techniques offer
a security guarantee against eavesdropping attempts, but they
fall short when faced with threats of coercion. Even if the
attacker does not have access to the key, if it intercepts the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wang .

ciphertext, it may be able to force both the sender and the
receiver to decrypt the message.

Non-committing encryption [1] and deniable encryp-
tion [2] have been presented as solutions to this issue. Users
can decrypt an existing ciphertext associated with a cer-
tain counterfeit message using these two different encryption
algorithms. The first algorithm is called the sender’s encryp-
tion algorithm to encrypt a message under a secret key
sk . The second algorithm, known as the faking algorithm,
is publicly known, and the sender uses this fake algorithm to
produce fake messages. Getting the same ciphertext from two
different algorithms is computationally cumbersome. In our
work, we show how the actual message and the fake message
ciphertexts can both be produced using a single algorithm that
also is computationally efficient.

There are many circumstances under which plausible deni-
abilitymay also be necessary. If your opponents cannot obtain

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 62549

https://orcid.org/0000-0002-9654-869X
https://orcid.org/0000-0002-5964-8480
https://orcid.org/0000-0003-1911-4676

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

your password, strong encryption can keep them out. How-
ever, if the threat model incorporates coercion, such as the
prospect of a jail term or torture, you might give up and hand
over the key to rescue yourself. As a result, the attacker would
have access to the data, perhaps putting you at risk for later
repercussions.

The idea of plausible deniability originates in politics and
espionage and refers to one’s capacity to downplay one’s
culpability for, or knowledge of specific facts or events.
It may entail carrying out operations in a way that leaves no
trace, especially changing systems around particular people,
to enable them to honestly deny their knowledge of what took
place. Destruction of evidence is another method that can be
used to make a given action plausible to deny, but there are
also positive use-cases as we will outline next.

We questionwhether it is conceivable to produce ciphertext
that appears to be for certain claimed receivers but are actually
for different receivers. Imagine that Alice wants to secretly
send her friend John a message. If she encrypts and sends it
to John, she could be asked by her mother who the message
was for and command her to decrypt the message. Conse-
quently, John might get a call from Alice’s mother, asking
him to confirm as well what it says. To prevent this from
happening, Alice can encrypt the message using deniable
encryption. Alice will first prepare a pair of texts. One is a
trivial message for Bob, whereas the other is a simple covert
message for John. John’s text is jointly encrypted with Bob’s
text by Alice using a suitable encryption algorithm. Alice
posts the ciphertext to a public channel and requests her
friends to download the message. The only two people who
can successfully decrypt the ciphertext are Bob and John, but
they produce two different messages: the fake message and
the real message. The term ‘‘successful decryption’’ refers to
the fact that Bob and John are able to decrypt and receive
useful messages from the sender. Alice can tell her mother
that the ciphertext is for Bob and reveal the message that
was transmitted to Bob when questioned. Considering that
Bob only knows what he has received, he can also be a
trustworthy witness. Even if Alice’s mother thinks something
is concealed in the ciphertext, she cannot determine which of
Alice’s friends is the true recipient. In this case, Alice does
not need to help John because her mother would not be able
to suspect John, unless she suspects all of Alice’s friends.

II. RELATED WORK
The concept of honey encryption [3] is a generic construction
to extend conventional encryption by making decryptions
under the wrong key ‘‘appear to be plausible’’. This is accom-
plished by transforming the input plaintext towards obtaining
a certain fixed distribution that matches the distribution of
the decryption result under a different key. Consequently,
if the (same) ciphertext is decrypted under the real or the fake
key, the resulting plaintexts (one real, the other being fake)
will have approximately the same distribution. The security
of honey encryption relies on the probability of an attacker
judging a plaintext to be legitimate can be calculated by the

encrypting party at the time of encryption. The main differ-
ence to deniable encryption and to our scheme is that honey
encryption does not insert a second plaintext into the cipher-
text. As in conventional encryption, there still is only one
plaintext inside the ciphertext, but false decryptions should
become less recognizable. This approach aims at retaining
security even against keys or plaintexts of low min-entropy,
which can be efficient to guess. The main difference to deni-
able encryption and our scheme is thus in the attacker model:
we assume (as does deniable encryption) that the attacker puts
force on the plaintext owner to open the ciphertext, while
honey encryption lets the attacker attempt decryptions under
keys of its own (random) choice.

The construction of honey encryption makes use of
distribution-transforming encoders that aim to shape the dis-
tribution of a random plaintext towards a desired and fixed
target distribution. Our scheme can use such encoders as well,
as a source of plausibly looking plaintexts to act as fakes.
We will not make explicit use of such transformations, but
mention them as a possible technical implementation of our
assumption that fake plaintexts are producible with the same
distribution as the real secret plaintexts.

Canetti et al. [1] initially developed the concept of deniable
encryption. A deniable shared key scheme and a public key
scheme are two types of deniable encryption. A straightfor-
ward illustration of deniable encryption is the one-time pad:
Let m be the original message to be encrypted, and c be
the ciphertext such that c = m

⊕
k where k represents the

shared key. Nobody can refute the encryptor’s assertion that
the message is m′ using the key k ′ = m′

⊕
c. In Canetti et al.

[2] technique, falsified messages with strong justification
were presented using the idea of a translucent set: roughly
speaking, this is a set whose membership is not decidable
efficiently without a trapdoor information. Encryption of a bit
b is done by emitting a random string if b = 0 or a string from
the translucent set T if b = 1. Under duress, the plaintext bit
is deniable, since the claim of having taken a random string or
one from T is not efficiently verifiable without the trapdoor
information to decide its membership in T . According to
Canetti et al., this system is sender-deniable, meaning that the
sender can produce proof of falsified messages. Canetti et al.
also extended the scheme through an interactive approach,
to support receiver-deniability and combined them into a
bi-deniable encryption scheme.

Numerous researchers have constructed translucent sets
using a variety of methods based on this concept. Samplable
encryption was implemented by Dürmuth and Freeman [4] to
create a translucent set. A bi-translucent set built on a lattice
was created byO’Neill et al. [5], in which they emphasize that
the schemes are noninteractive and involve no third parties
as they build bi-deniable public-key cryptosystems that allow
both the sender and the recipient to communicate simultane-
ously.

Klonowski et al. [6] improved the Canetti et al. sys-
tem to allow messages at any depth, by demonstrating that
deniable encryption can be implemented in a different way,

62550 VOLUME 11, 2023

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

so that it does not point to exploiting deniable encryption.
Additionally, they demonstrated how even the initial pur-
pose scheme could be expanded to permit any ‘‘depth’’ of
deniability under certain conditions. In addition to translu-
cent set approaches, other methods for creating deniable
encryption algorithms have been proposed. For deniability,
O’Neill et al. [5] used a voting strategy and a simulatable
public-key system. An oblivious key generation function and
an oblivious ciphertext function are offered by the simulatable
public-key system. Another viable technique, proposed by
Gasti et al. [7], has two pairs of public-private key pairings
that the system claims to have created. The sender chooses
which key is made available, based on the presence of a
coercer. Ibrahim [8] used a scheme that relies on the quadratic
residuosity of a two-prime modulus to provide deniability.
A decryption method based on composite order groups was
proposed by Chi and Lei [9]. In this approach, the real and
predetermined counterfeit data are concealed in various sub-
groups of a composite order group.

A different notion of deniability was recently proposed by
Canetti et. al. [10]: they presented a method that enables both
the sender and receiver to make different claims. An exter-
nal coercer cannot tell who is lying, using this strategy.
The principles underlying encryption and authentication are
sometimes the same, but deniable authentication is entirely
distinct from deniable encryption. Deniable authentication
is a technology that enables the sender and the receiver
to authenticate one another and the ability to persuade a
third party. The central concept of this technology is Zero-
Knowledge Proof, which was developed by Dwork and
Naor [11]. Meanwhile, numerous presented deniable authen-
tication systems have been presented. Naor [12] provided
ring signatures, together with a deniable ring authentica-
tion. Zhu et al. [13] suggested two deniable authentication
systems, based on the discrete logarithm problem and the
factoring problem. Fiat and Naor [14] first brought up the
idea of broadcast encryption, an encryption technology that
allows a portion of a universe of users to receive a message
clandestinely. Attribute-based encryption (ABE) is a type of
broadcast encryption. The security of personal information is
frequently protected with ABE.

For outsourced decryption, Li et al. [15] suggested an
ABE technique with full verifiability that can simultane-
ously verify the accuracy of transformed ciphertext belonging
to authorised and unauthorised users. The standard model
demonstrates that the proposed ABE technique with verifi-
able outsourced decryption is selectively chosen plain text
attack (CPA-secure). Li et al. [16] provided a formal defi-
nition and security model for continuous leakage-resistant
hierarchical attribute-based encryption (HABE). For usage
with cloud storage systems, Li et. al. [17] offer a ciphertext-
policy attribute-based encryption (CP-ABE) scheme with
effective user revocation. The concept of the user group
is introduced to address user revocation effectively. The
idea is to transfer heavy computation loads to cloud service

providers, without disclosing sensitive information and secret
keys. Additionally, the system canwithstand collusion attacks
when banned users work with active users. Li et. al. [17] in
the samework, has demonstrated that the suggested technique
is secure under the Diffie-Hellman assumption of divisible
computation, and local devices can compute with relatively
little expense. To protect user privacy, Reddy et. al. [18] have
provided a concept for a new cloud storage encryption system
that enables cloud storage providers to produce unsuspicious
fake user secrets. The cloud storage provider makes sure that
user privacy is still securely maintained, because coercers are
unable to determine whether the secrets they have obtained
are real or fake.

The danger of the adversary detecting the fake message as
such, in a scheme that uses only a single algorithm for honest
and dishonest encryptions, was first addressed in [4]. They
gave two examples of schemes of public-key bit encryption
schemes. Complementary to this, we present a symmetric
scheme whose security is based on entropy-considerations,
but shares the same features by using (i) a single algorithm for
fake and real messages, and (ii) addressing the fake detection
problem by a formalization of plausible deniability. This,
at the same time, addresses another issue that [4] brought
up as the lack of formal proofs towards plausible deniabil-
ity. We present a first one in this direction, showing that
security remains accomplishable if we drop the otherwise
usual assumption, that the attacker will recognize the correct
message from a list of possible plaintexts [3].

Closely related to deniable- is also non-committing
encryption, which differs from deniable encryption in letting
the generation of (random) fake ciphertexts and correspond-
ing randomizer such that these are indistinguishable from
a legitimate encryption of the (true) information. Deniable
encryption differs from this in enabling the user to create the
randomness (in our case a key) that is suitable to decrypt the
desired fake message. Deniable encryption, thus, also leads
to non-committing encryption, but not conversely (see [1] for
a respective example).

In the area of symmetric encryption, ambiguous
multi-symmetric cryptography has been proposed [19]
with goals similar to ours. They provide a discussion of
various attack scenarios, including known-plaintext, chosen-
ciphertext and others, all boiling down to the argument that
this leaves the adversarywith a linear system of equations that
is under-determined. In basing their construction on number-
theoretic arguments, they nonetheless rely on computational
intractability (of finding factorizations or primes, though
not via a usual reductionist argument). The computational
complexity of this prior construction is governed by Chinese
remaindering. Our scheme improves over this in requiring
only linear efforts (a number of field operations that is
proportional to the number of inner plaintexts).

An interesting additional security consideration is
resilience against leakage of information from access pat-
terns. In a series of papers [20], [21], [22], the focus of

VOLUME 11, 2023 62551

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

plausible deniability constructions was shifted to hiding
access patterns, as well as leveraging properties of the phys-
ical storage devices, using oblivious RAM among other
techniques. Our discussion is agnostic of such physical fea-
tures and does not hide access patterns as such, since the
adversary model used here is only concerned with attacks
on a static snapshot of the ciphertext, but allows partial
side-information to be available to the adversary (similar as
what access patterns could leak).

Extensions towards also preventing attacks via access pat-
tern analysis are imaginable by means of oblivious RAM
(ORAM) or private information retrieval. These techniques
are also successfully employed by [23] to protect hidden
volumes (like in the former TrueCrypt project, for which a
detection of hidden volumes was demonstrable [24]). The
work of [25] extends the possible adversaries to indexers and
intermediate nodes for content delivery, which is not in scope
of much other work on plausible deniability. Their approach
is to prevent customer profiling by making access patterns
themselves deniable. A similar shift of the adversarial per-
spective towards simultaneous compromise of the sender and
the receiver in a deniably encrypted data transmission is
adopted by [10], who rely on indistinguishability obfuscation
and one-way functions. This work provides strong computa-
tional security.

Our formalization of security is information-theoretic,
and based on residual uncertainty and the (assumed) ability
to generate fake and real messages from the same (ran-
dom) source. Techniques like generative adversarial networks
(GANs) are natural to mention, but a particularly interesting
work to support our assumptions is [26]: this reference is
concerned with measuring the privacy risk when releasing
sensitive data for public analysis. That is, with an attacker
having unknown background information, [26] demonstrate
the construction of ‘‘sanitized’’ information with quantifi-
able probability of data from individuals to be uniquely
identifiable.

The authors of [6] improve on the early constructions of
plausible deniability by Canetti et. al. [2] and discuss inter-
esting additional possibilities like covert channels based on
deniable encryption, and show how to enhance even standard
encryptions like ElGamal with deniability (although not plau-
sible deniability).

Generally, schemes can be divided into plan-ahead and
ad hoc [6], [7], where for plan-ahead schemes, the user has
to choose the fake messages in advance, whereas for ad hoc
schemes, the fake messages can be generated at the moment
when the honest party is put under adversarial pressure. Our
distinction of deniability from plausible deniability in terms
of statistical distributions put our construction into both cat-
egories: it is plan-ahead if we wish to open a plausible fake
plaintext, but ad hoc if we only need deniability in the sense
of opening any plaintext different from the real message (for
example, if the encryption is for a session key that is just a
random number).

FIGURE 1. Conceptual comparison of Deniable encryption to
False-Bottom encryption.

A. OUR CONTRIBUTION
This work offers the following novelties:

• We provide an information-theoretic security concept
and a symmetric plausibly deniable cipher being secure
without intractability assumptions (thus making the
scheme post-quantum secure).

• We devise a scheme that is ‘‘editable’’ in the sense of
letting us add, remove and change plaintexts within a
ciphertext over time

• We provide a formal distinction and definition of denia-
bility and plausible deniability, and generalize classical
models (unicity distance) to prove these properties in
light of background knowledge. This addresses an issue
commonly defined with plausible deniability mecha-
nisms in past implementations (like the now defunct
TrueCrypt), which are considered as technical mecha-
nisms without formal fundamental.

We show the construction of a symmetric and plausibly
deniable encryption scheme from secret sharing called False-
Bottom Encryption. The name ‘‘False-Bottom’’ alludes to
well-known equipment of stage magicians, who have boxes
that can be opened to appear empty or with something inside,
hidden under a false bottom. Our scheme is designed for the
same effect, hence the name. False-Bottom lets an encrypted
data set (a ciphertext) be stored at some remote location, e.g.,
a cloud, with the secret key being with the user. If the user
is coerced to reveal the encrypted data, the user can run the
decryption algorithm with respectively modified versions of
the secret key, such that the ciphertext c may decrypt into
the real message m under a secret key sk , but also into a
set of fake plaintexts m1,m2, . . . under respectively different
keys sk1, sk2, As shown in Fig. 1, if we use key sk to
decrypt the ciphertext, it will give a message m, and the same
ciphertext, when decrypted using sk ′ ∈ {sk1, sk2, . . .}, will
provide a different message m′ ∈ {m1,m2, . . .}.
We hereto distinguish the notion of ‘‘deniability’’ from

‘‘plausible deniability’’, where the latter accounts for possible
background knowledge of the adversary, while the former is

62552 VOLUME 11, 2023

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

TABLE 1. Comparison of our scheme to other encryption concepts.

only about several possibilities of plaintext, but disregards
their individual likelihood of being correct. For example,
if the ciphertext c is from an enterprise in the car industry, then
the expected plaintext m would relate to car manufacturing.
If, a forced decryption of c (i.e. through coercion) results
in another meaningful plaintext m′ (which can be either
m1,m2, . . .), for example, cookie recipes, the adversary will
see it as a strong sign that m′ is not the real plaintext, and will
hence keep up the force to decipher c into something else.
We remark that normally, cryptographers are not concerned
with the question of whether the attacker can recognize its
results as correct; rather, a cryptanalysis is considered as
successful, if the plaintext shows up (somewhere) in a list of
deciphered information items, nontrivially narrowing down
the list of all possible plaintexts [3].

We discuss how to formalize such background knowledge
in terms of probability distributions and entropy, and adapt
the (old) concept of unicity distance as a measure of how
much background knowledge can be assumed until the deni-
ability property deteriorates. Our use of unicity distance is
motivated by the fact that our encryption, as constructed
from information-theoretically secure mechanisms, is itself
not hinging on computational intractability. Thus, its security
will be formalized and proven in Shannon and Hellman’s
random cipher model and with entropies [27].

Cryptography, in many cases, defines security by compu-
tational indistinguishability, intuitively meaning that there is
no polynomial-time algorithm that could classify a cipher-
text to have been created from one or the other plaintext.
This notion is equivalently called semantic security [28],
and is the very basic security requirement imposed on any
(probabilistic public-key) encryption. Our scheme, however,
belongs to symmetric cryptography, to which semantic secu-
rity generally does not apply as a security concept. We refrain
from going into further details, except for highlighting how
indistinguishability is understood as ‘‘equal probability dis-
tributions’’ is important in our setting. An encryption is

‘‘secure’’ if the outputs of an encryption function applied
to two plaintexts m ̸= m′ have computationally indistin-
guishable distributions, denoted by the ≈IND relation in Fig. 1
between c and c′. We seek the same property to hold for
the outputs of decryptions, since our attacker forces us to
decrypt. The easiest protection against this is imposing a fixed
distribution on all plaintexts that are encrypted, denoted by
≈
IND relation betweenm andm′ in Fig. 1, so as to make correct
and false decryptions indistinguishable.

This leads to a criterion for plausible deniability that asks
how much background or context information would need
to be known to the attacker, to single out the real plaintext
among several ones extracted, all of which are meaningful,
but not equally plausible. We will go into details about this in
section VI-A4.

III. IDEA AND GENERAL OUTLINE
False-Bottom Encryption will hide a secret inside a set of
existing data blocks. Let us assume that the secret that we
wish to protect is a binary string. A ‘‘very large’’ such string
will, if necessary, be split into smaller blocks, which we
can (invertibly) map to elements from some finite field F.
Without loss of generality, we may thus assume our secret to
be an element m ∈ F. We will represent m as a weighted sum
m = r1 · α1 + r2 · α2 + . . . + rn · αn. Such a representation
is trivial to find by choosing all random values r1, . . . , rn
and α1, . . . , αn−1, and solving the equation for the remaining
value αn. This representation is nothing else than a multivari-
ate polynomial secret sharing, if we consider the r-values to
be all constant. Applying this assumption, let us fix the set
of r-values, and call it our ‘‘key-base’’ in the following. Rep-
resenting m as a linear combination is, on its own, wasteful,
since it expands a secret of the size of a field element into an
n-fold (actually 2n-fold) set of values; however, these values
very well lend themselves to representing more (additional)
secrets than m. For example, consider another secret m′ to
be represented likewise as m, but this time, we will re-use

VOLUME 11, 2023 62553

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

r- and α-values from m’s representation to write out m′ =
r ′1 ·α

′

1+r
′

2 ·α
′

2+. . .+rn′ ·αn′ , with the convention that the same
values, only in different order and number were used. That
is, the r- and α-sets overlap

{
r ′1, r

′

2, . . . , r
′
n
}
⊆ {r1, . . . , rn}

and
{
α′1, . . . , α

′

n−1

}
⊆ {α1, . . . , αn}, leaving only αn′ to be

computed afresh for m′. In making re-use of the variables for
the representation ofm′, its inclusion expands the data by only
a single new element, namely αn′ . And this is already the core
of the overall construction. The ciphertext is then defined as
the set of α-values, which is (α1, . . . , αn, αn′), in which all but
the last values are relevant for both m and m′, and only αn′ is
exclusively computed form′. Without knowledge of which r-
and α values are to be used to recoverm orm′, both messages
remain perfectly concealed. The ‘‘secret decryption key’’ is
hence the information about (i) which and howmany r-values
are needed, plus (ii) which α-values are needed, and (iii) in
which order they are to be multiplied and finally summed up
to give the desired message. Further messages can be added
in the same way, expanding the data by 1 element per new
message (thus, the initial overhead becomes relatively less
and less). Upon coercion, we can open up any fake message
m′ instead of the real message m, which delivers a form
of symmetric deniable encryption. We make this intuition
rigorous in the following.

IV. PRELIMINARIES AND NOTATIONS
In the following, we will let lower-case letters like t and
k denote scalars, and bold printed letters like c and r be
vectors. Typewriter font letters like m will represent strings.
Uppercase letters in normal font denote sets and random
variables. We will write x ∈R M to mean a uniformly
random draw of x from the finite setM . Likewise, the symbol
X ⊂R M denotes a choice of a subset of M , such that each
x ∈ X is sampled independently and uniformly distributed
from M . If M is replaced by a vector, we analogously mean
a choice of coordinates (treating the vector as an ordered
set). The symbol |M | will mean the size (cardinality) of a
finite set, and we let dim(c) be the number of coordinates (the
dimension) of a vector c. Following the typical array-notation
of (many) programming languages, we write c[i] to mean the
i-th element of the vector c.

The symbol F will denote an (arbitrary but fixed) finite
field, with F∗ being the subgroup of multiplicative units
(being F∗ = F \ {0}).
The symbol X ∼ F will hereafter mean a random variable

X to have the distribution F . We write H (X) to mean the
Shannon-entropy of the random source X .

A. BASICS OF SECRET SHARING
Our work is an application of secret sharing. Secret sharing
is the process of giving away a secret value m ‘‘in pieces’’,
called shares, to several peers, called players, such that
(i) no player can by itself infer the value of m based on
the information in their possession, and (ii) a certain set of
players is required to collaborate to reconstruct m by pooling
their shares together. Shamir’s scheme [29] uses polynomial

interpolation, by choosing a random polynomial p(x) of
degree n with random coefficients, but such that p(0) = m.
The shares that the players 1, 2, . . . , n + 1 receive are the
values p(1), p(2), . . . , p(n + 1), and it is easy to see that the
polynomial p(x) is uniquely determined by n + 1 or more
values of it, but undetermined if≤ n players put together their
knowledge. In that case, the interpolation problem comes
to an underdetermined system of equations p(i) = m +
r1i + r2i2 + . . . + rnin for i = 1, 2, . . . , t < n, leaving
an attacker to determine n + 1 unknowns from ≤ n linear
equations. Blakley’s [30] secret sharing is quite similar, yet
gives a single linear equation in n variables to each player,
which thereby possesses the description of an n-dimensional
hyperplane. Like with the interpolation problem, if t < n
players pool their knowledge, they will jointly set up a system
of t equations with n > t unknowns, which is again under-
determined, and therefore will not allow the reconstruction
of the secret m as the unique intersection of n hyperplanes
in Rn. Both schemes boil down to the idea of protecting the
secret by leaving it to an underdetermined (linear) system of
equations, unless there is enough information to make the
system uniquely solvable. This is exactly the mechanism that
wewill utilize to protect the secrets in our deniable encryption
scheme: the ‘‘degrees of freedom’’ that make the unknowns
unambiguously determined, will be our secret decryption
keys.

B. ENCRYPTION
An encryption scheme is a triple of algorithms (KeyGen,Enc,
Dec), in which KeyGen is a probabilistic algorithm that
takes one or more security parameters to initialize structures
and algorithms accordingly, typically controlling bitlengths
of blocks and keys. Additionally, it outputs a pair (sk, sk ′)
as an encryption and decryption key. Since we will be
concerned with symmetric schemes only, we may assume
sk = sk ′ hereafter, and speak about a ‘‘secret key’’ only
(to distinguish our wording from public-key cryptography,
where we would have public/private keys accordingly). The
(possibly probabilistic) algorithm Enc(m, sk) = c maps a
given message m under a secret key sk to a ciphertext c, with
the (generally deterministic) algorithm Dec(c, sk) defined
such that Pr(Dec(Enc(m, sk), sk) = m) = 1 holds.
Definition 1 (False-Bottom Encryption): A False-Bottom

Encryption is a tuple (Init,Enc,Dec)

• Init takes one ormore security parameters and outputs all
relevant system parameters, including initialization of
algebraic structures and functions. In addition, it outputs
an ‘‘empty’’ ciphertext c.

• Enc(c,m) is an algorithm that takes a ‘‘message m and
current ciphertext c’’ as input, and returns an updated
ciphertext c′ and a (new) decryption key skm to later
decipher m from a c′.

• Dec(c, skm) is a decryption algorithm that takes the cur-
rent ciphertext c and a secret key skm, and returns the
message m (to which skm corresponds).

62554 VOLUME 11, 2023

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

The main difference between a False-Bottom Encryption
and a traditional setting of encryption is thus the generation
of ciphertexts and keys at different times, as Fig. 1 illustrates.
While a (standard) encryption scheme has an Init algorithm to
produce the encryption keys uses Enc to generate ciphertexts
under a given key, our scheme starts with an empty ciphertext
instead of a key, and uses Enc to ‘‘insert’’ a message into
the ciphertext, and also produces a respective decryption key
along the process.

Besides the simple use of putting information into a cipher-
text, we may also have practical use for manipulating the
ciphertext; of course, contingent upon the knowledge of one
(or more) secret keys. The usual practical method is using a
(fully) homomorphic encryption; a simple example of which
is [31], which also allows to decipher a string into several
different plaintexts using different extraction secrets, but does
not allow changing any content. Our construction is, however,
essentially different from this, since the ability of putting new
messages into a ciphertext c also lets us replace messages
arbitrarily, provided that we have the respective decryption
key.
Definition 2 (Editable False-Bottom Encryption): AFalse-

Bottom Encryption (Init,Enc,Dec) is called editable, if it
is an extended tuple (Init,Enc,Dec,Update,Del), with the
following algorithms added:

• Update(c, i, sk1, sk2, . . . , skℓ,m′): Assuming that we
have ℓ plaintexts in c with corresponding secret keys
sk1, . . . , skℓ, this algorithm takes the message index i
and all secret keys sk1, . . . , skℓ to replace the existing
mi bym′i, returning a ciphertext c

′ such that (later)m′←
Dec(c′, ski). The purpose of using i as an index here is
to distinguish among the various messages as if i =
1 represents m1; likewise, i = 2 represents m2 and so
on.

• Del(c, i, sk1, . . . , skℓ): this function removes a plain-
text m (as would be returned by Dec(c, sk)) from c,
given its decryption key sk , and returns an updated
ciphertext c′. The new ciphertext c′ is such that
Dec(c′, sk) ̸= m.

The following will be a construction of an editable
False-Bottom Encryption as defined above.

V. THE CONSTRUCTION
We let t ∈ N be a parameter that determines the block size
of our cipher, and let another parameter n be the number of
blocks to initialize the ciphertext. A third parameter k ∈ N
will determine the common size of the secret key sk for the
message m. We will use an index to distinguish message
symbols and relate them to their respective encryption and
decryption keys. The values t, k and n are chosen indepen-
dently of one another, but of individually reasonable sizes for
efficiency, i.e., the value t will be large, while the values of n
and k may be small initially.

A. SYSTEM INITIALIZATION (c, r)← Init(t, n, k)
Given the security parameters t and n, we construct a finite
field F = Zp[X]/(f (X)), where p is a prime, and f is an
irreducible polynomial of degree d ∈ N, chosen such that
⌈log2(p)⌉ · d ≥ t . In this way, an element x ∈ Zp can
act as a single block, and a whole string m ∈ {0, 1}n can
be split up into blocks m = (m1, . . . ,md) ∈ Zdp of up to
log2(p) bits, each of which fits into the field Zp. Hence, the
whole message m can be encoded into an element from F.
We hereafter use different font faces to distinguish when m is
a string (denoted by typewriter letters m), or a vector (bold-
printed m) or a field element (normal font m). Note that the
number of bits to encode an element m ∈ F is at most t ,
so that we can associate any string m ∈ {0, 1}t invertibly with
a field element m ∈ F. The key base (or root-key) is chosen
as a set of nonzero values {r1, . . . , rk} ⊂R F∗ that we store
in an arbitrary but fixed order in a vector r = (r1, . . . , rk).
This ordered set will remain constant over time, andwill serve
as a basis to draw elements when adding new plaintexts to a
(growing) ciphertext set.
Remark 1: For messages of practical size in the range of

kilobytes, megabytes or larger, we can hardly expect Galois
fields of feasible size to take up a whole message, so we
will assume that large messages are split into respectively
smaller blocks (according to electronic codebook mode or
more advanced block cipher modes), each of which becomes
another message to be added.

Finally, we initialize an ‘‘empty’’ ciphertext as a sequence
of k random values, stored in fixed order in a vector c =
(α1, . . . , αk) ∈R Fk .

To ease notation, we hereafter assume that all system
parameters are available to all functions, and subject to the
usual security requirements, which are authenticity and non-
malleability, not including confidentiality inmost cases, since
we assume a cryptanalyst to know all system parameters,
algorithm details, but not the secrets. The latter are hence
handled as input and output parameters of the respective
algorithms.

B. ADDING MESSAGES TO THE (EXISTING) CIPHERTEXT
(c′, sk1, . . . , skℓ, skNEW)← Enc(c, m, sk1, . . . , skℓ)
Since we are anticipating to add several messages
m1,m2,m3, . . . to the ciphertext c = (α1, . . . , αdim(c)) over
time, we hereafter let each message carry an index i (like
an identity), which uniquely associates it with the set of
decryption keys to be generated here. Therefore, let us
assume that we want to add the message mi ∈ {0, 1}t to
the (initially empty) ciphertext c by calling Enc(c,mi) with
a yet empty list of secret keys. This triggers the following
steps: We pick a number ni ∈R {2, . . . , k} and sample
ni−1 indices (ji,1, . . . , ji,ni−1) ∈R {1, . . . , dim(c)}ni−1, which
set the values αi,j ← c[j] for all j ∈

{
ji,1, . . . , ji,ni−1

}
. Then,

we draw another independent set of ni values at random
indices ρi,1, . . . , ρi,ni within the key space, and set up a

VOLUME 11, 2023 62555

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

linear equation to represent mi with ri,j ← r[ρi,j] for j =
1, 2, . . . , ni as

mi=αi,1 · ri,1 + αi,2 · ri,2 + . . .+ αi,ni−1 · ri,ni−1 + α · ri,ni ,

(1)

in which α is the only unknown and (easily) computable to
make (1) hold. The updated ciphertext is then returned as
c′ ← c∥α, where ∥ means that we straightforwardly append
the just computed value to the list of values in c.
The secret key returned to recover mi from c′ is simply

the information on which indices in the vector (list) c′ and
which elements of the key base r were used to represent
mi. That is, we return the secret key as the list of pairs
sknew := ((ji,1, ρi,1), . . . , (ji,ni−1, ρi,ni−1), (dim(c)+1, ρi,ni)).
The last index in the ciphertext is herein always the length
of the ciphertext +1, since we just append the value to c.
Note, however, that after adding further messages to c, before
it comes to a possibly forced decryption, this currently last
index will later no longer be the last element.

Since we explicitly encode indices and not the actual val-
ues, the size of the key is at most logarithmic in the size
of the current ciphertext, and grows at a practically feasible
rate: we have no more than k terms involved in (1), each ρ-
value taking up O(1) bits (since the size of r is fixed), and
each entry in c occupying O(1) bits, since it is an element of
the fixed finite field F. The overall key size thus comes to
O(k · log dim c) = O(log dim(c)) bits, since the index range
will become larger as new plaintexts are added.

C. DECRYPTION OF THE i-TH MESSAGE mi ← Dec(c, ski)
Let c be the ‘‘current’’ ciphertext (e.g., from a previous call
to Enc; see above). To decrypt the i-th message, we extract
the respective indices from ski and recover mi via equation
(1). The correctness is trivial, but the security deserves a
closer look. Before that, however, let us additionally discuss
possibilities to modify and delete messages from c.

D. CHANGING PLAINTEXTS INSIDE c
c′ ← Update(c, m, sk1, . . . , skℓ, m′)
Since we are frequently re-using parts of the ciphertext to
represent new plaintexts, any modification of the ciphertext
towards updating some specificmi will inevitably affect (pos-
sibly many) other plaintexts as well. Hence, the process of
changing a previously encrypted message is tied to the way in
which we select the elements of c to represent it. To formalize
this, it is convenient to reshape the list of pairs that make
up a secret key ski for the message mi as a matrix with two
rows, where the upper row, denoted as sk(1)i contains indices
pointing into the vector c, and the lower row, denoted as sk(2)i
giving the indices related to the key-base r, i.e., write

ski =

(
sk(1)i
sk(2)i

)
=

(
ji,1 ji,2 . . . ji,ni
ρi,1 ρi,2 . . . ρi,ni

)
We include the indication of i here to distinguish different

keys for distinct messages.

If ski is such that it contains an element from c that is
used for mi, but for no other message mj ̸= mi, then we
can directly alter mi by changing the respective part of the
ciphertext accordingly. A sufficient condition for editability
thus comes to the requirement that:

for all i we need to have sk(1)i \
⋃
j̸=i

sk(1)j ̸= ∅, (2)

possibly allowing for more than one element in c to be
used for mi only. The next lemma answers the question
of whether (2) is accomplishable within the scheme set
up so far (i.e., it is an invariant if Enc is respectively
implemented):
Lemma 1: For putting a new plaintextm into c, it is always

possible to select n ∈R {2, . . . , k} elements from c such that
condition (2) holds for all previous messages, and the new
message.

Proof: The proof is by induction over the number ℓ of
messages in c. At ℓ = 1, i.e., for the first messagem1, matters
are trivial, since no other message exists that could share
parts with m1. Furthermore, note that the empty ciphertext
initially has size k , and grows to size k + 1, by adding a
new element to represent m1. Our first claim (hence already
established in the induction start) is that dim(c) ≥ 1 + k .
We hereafter need to prove two things, namely that (2) holds,
and – to accomplish this without changes to the scheme as
described – the selection of a random number of at least
2 and no more than k elements is doable without violating
condition (2).

For the inductions step, let mℓ+1 be the message to be
added, and assume that we have (i) already added ℓ mes-
sages, and (ii) the size of the ciphertext is dim(c) ≥ ℓ +

k . It is easy to directly see the latter condition to hold,
since upon each message, the length of c grows by 1 and
starts from size k , so that the latter condition already holds
(by induction).

From (2) as our induction hypothesis, we can, for each ele-
ment m1,m2, . . . ,mℓ select a (uniquely associated) element
c1, . . . , cℓ ∈ c. We collect these elements in a set F and con-
sider them as ‘‘forbidden’’ in the selection of new elements
to represent mℓ+1. This assures that (2) continues to hold.
Since Enc is stateful, it is a simple matter of bookkeeping
(done by inputting and outputting all the secret keys to the
procedure when we add new plaintexts) to remember these
‘‘forbidden’’ elements, so that we can let the inner random
choice of Enc be on the set c \ F , i.e., it can choose from
all elements in c, except those that are forbidden (the set
F). The size of the pool to choose elements from is thus
dim(c) ≥ ℓ + k − |F | = ℓ + k − ℓ = k , thus leaving the
desired choice of up to k elements possible. This completes
the induction step. □
Changing a messagemi intom′i is hence easy: by condition

(2), we can find an element α∗i ∈ c that only appears in the
representation of mi via (1). Setting up the equation to yield
m′i and solving for the respective new α to replace the existing
part in c accomplishes the update mi← m′i.

62556 VOLUME 11, 2023

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

E. DELETING MESSAGES FROM
c′ ← Del(c, i, sk1, . . . , skℓ)
There are several options to delete the i-th plaintext mi from
c, and we discuss them with deniability in mind:
• simply delete the decryption key for mi. This is the
discouraged method, since it leavesmi to exist further in
c, and will still appear in a list of brute-force decrypted
results.

• identification of some α ∈ c that only mi uses in
its representation, and deleting it from c. This requires
according updates to all decryption keys (as the indices
past α ∈ c accordingly shift), and makes c smaller.
While this irrecoverably removes mi from c, the shrink-
ing of c is at the same time an indication that the
deletion was done. Hence, if the adversary observes that
c becomes shorter, we cannot deny the deletion as such,
although we still can deny any plaintext that has been
recovered.

• overwriting mi with random data by ‘‘editing’’ it like
described above. This also permanently removes mi
from c, andmakes the delete-operation indistinguishable
from the edit-operation. Furthermore, it leaves all keys
skj for j ̸= i intact, as the price of letting c never becomes
smaller.

The deletion is thus merely the following procedure:
choose a random element m∗ ∈R F and overwrite the i-th
message with it by calling c′ ← Del(c, i, sk1, . . . , skℓ) =
Update(c, i, sk1, . . . , skℓ,m∗). Additionally, remove ski from
the list of secret keys that the data owner maintains (securely).

F. A NUMERIC EXAMPLE
The programming is done on the Python 3 Jupyter Note-
book.1 To simplify matters (cf. Remark 1), we consider only
one plaintext block as a message in the following.

We have initialized the ciphertext c of size (dimen-
sion) dim(c) = k = 5 and the values of ciphertext
c = (α1, . . . , αk) = (6255, 2736, 6974, 7804, 2675).
The key space of size k = 5 is initialized with val-
ues r = (454, 409, 1814, 1167, 2906). Let the message
m1 = 100, picking n1 = 3 and assigning the indices
(ρ1,1, ρ1,2, . . . , ρ1,n1=3) = (1, 2, 4) and their respective val-
ues are (r1,1, r1,2, . . . , r1,n1) = (409, 1814, 2906). Choosing
(n1 − 1) random values (α1,1, . . . , α1,j) = (7804, 6974), we
can compute the new α to be

α = r−11,n1
·

m1 −

n1−1∑
j=1

α1,jr1,j

 = 7459

Therefore theα-values to representm1 are (α1,1, . . . , α1,n1) =
(7804, 6974, 7459). Now we will update the ciphertext and
output c′ = (6255, 2736, 6974, 7804, 2675, 7459). For the
decryption of m1, the ciphertext indices (j1,1, . . . , j1,n1) =

1We remark that in the following, index values will be zero-based (due to
our use of the Python language), as opposed to the 1-based indexing used in
the textual mathematical description.

(3, 2, 5) and the key indices (ρ1,1, ρ1,2, . . . , ρ1,n1) = (1, 2, 4)
forms the decryption key sk1 = ((3, 1), (2, 2), (5, 4)). Putting
the values of sk1 in equation (1) we recover the message
m1 = 100.
Now, let us add another message to the ciphertext being

m2 = 200. We pick n2 = 3 and assign the indices of
(ρ2,1, ρ2,2, ρ2,3) = (0, 2, 3) and respective keyspace values
are (r2,1, r2,2, r2,3) = (454, 1814, 1167). Choosing n2 −
1 random values (2675, 7804) from c = (α1, . . . , αN) =
(6255, 2736, 6974, 7804, 2675, 7459), putting these values
in

α = r−12,3 ·

m2 −

n2−1∑
j=1

α2,jr2,j


and computing the value of α = α2,N+1 = 5587. There-
fore, the α-values to represent m2 are (α2,1, . . . , α2,n2) =
(2675, 7804, 5587). Now we will update the ciphertext again
to output c′ = (6255, 2736, 6974, 7804, 2675, 7459, 5587).
For the decryption of m2, the ciphertext indices (j2,1, . . . ,
j2,n2) = (4, 3, 6) and the key indices (ρ2,1, ρ2,2, ρ2,3) =
(0, 2, 3) forms the decryption key sk2 = ((4, 0), (3, 2), (6, 3)).
Putting the values of sk2 in equation (1) we get our desired
message m2 = 200.

VI. EFFICIENCY AND SECURITY ANALYSIS
Hereafter, we use asymptotic Landau symbols only for conve-
nience, to avoid having to deal with redundancy information
used, or parsing ciphertexts or keys. The constants inside the
O notation will be due to separator symbols and encodings,
to enable an extraction of the elements of vectors or lists, and
as such, can be expected to be small.

By construction, the empty ciphertext has length k , and
grows by 1 element per new plaintext being added. For ℓ

plaintexts in total, we thus have dim(c) ∈ O(k + ℓ) =
O(ℓ). Editing and deleting messages from c does not change
this length (it only possibly reduces it), leaving the bound
unchanged.

For the relative overhead of the ciphertext size versus the
plaintext size, we assume a block size of n bits per message,
and the ciphertext as a vector of length O(ℓ) over a field F
has thus a length of O(n · ℓ) bits, whereas a set of ℓ plaintexts
comes to ℓ · n bits in total. Letting η be the constant in the
O(n · ℓ), the relative overhead is thus size of ciphertext

total size of all plaintexts ≤
η·ℓ·n
ℓ·n = η ∈ O(1), so the scheme is asymptotically efficient
(indeed, the constant overhead is bounded by the size of the
empty ciphertext to be k elements from F).
The size of secret key material is, for ℓ messages in total,

upper bounded by O(ℓ · log ℓ) for the indices pointing into
c, and O(ℓ log k) for the indices pointing into r. Since k is a
constant, we have a space complexity ofO(ℓ · log ℓ) to encode
all secret keys sk1, . . . , skℓ.

A. SECURITY ANALYSIS
We distinguish different scenarios under which we analyze
security. We start with an attacker knowing only the cipher-

VOLUME 11, 2023 62557

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

text, but being able to ‘‘force’’ the legitimate user to use a
decryption key to reveal what is inside the ciphertext c. Next,
we analyze an offline attack, assuming the adversary has
infinite computational power, and in the third case, we add
some background knowledge to this (unlimited) attacker.

We describe the respective security models and definitions
in each case separately, introducing the respective attacker
model and security definition along with the scenario.

1) FORCED DECRYPTIONS
In this situation, the attacker cannot access the secret key, but
it can make the user provide a key to decipher the message.
Let m1, . . . ,mℓ be all of Alice’s messages, among which
m∗ ∈ {m1, . . . ,mℓ} is the real secret, and all mi ̸= m∗ are the
fake secrets to be revealed if necessary for deception. We will
model the honest user as an algorithm with secret internal
variables (in the jargon of object-oriented programming, one
may think of a class with private members) that are the secret
keys. Force brought upon the user by the attacker is modeled
by letting the attacker be an algorithmwith oracle access toU .
Definition 3 (Adversary and Security Model for Forced

Decryptions): Let c be a ciphertext encapsulating a real
message m∗ and ℓ ≥ 1 fake messages m1, . . . ,mℓ. Let
sk∗, sk1, . . . , skℓ be the decryption keys that the honest user
knows but which are unknown to the attacker. Let the honest
user be an algorithm defined as follows:

procedure U (c)
1: sk ∈R {sk1, . . . , skℓ} ▷ sk ̸= sk∗

2: return Dec(c, sk)

The attacker putting force on the user is an algorithm AU
F

with oracle access to (the user) U , and we define the residual
uncertainty about m∗ as our security measure, i.e., we define

AU
F (c) := H (m∗ | m← U (c)), (3)

where H (· | ·) is the conditional Shannon-entropy.
We call an encryption secure against forced decryptions,

if AU
F (c) > 0 for all c.

Theorem 1: The encryption scheme from Section V is
secure in the sense of Definition 3.

Proof: Assume that the attacker forces Alice to reveal
several messages until the theoretical maximum possible
number. How many messages can the attacker expect to be
hidden inside c, when c is arbitrary? From the construction,
it knows that each newmessage expands the ciphertext vector
by one new element, and the initial length was somewhere
in the range 2, 3, . . . , k . Therefore, the total number of mes-
sages hidden in c is deniable by Alice, claiming to any
number 2 ≤ n1 < ℓ ≤ k of messages to be hidden inside
c.

With the algorithmU secretly choosing sk from the set of at
ℓ ≥ 1 decoy keys, the attacker receives m← U (c), and since
m is stochastically independent of m∗, we have H (m∗ | m) =
H (m∗) > 0, since m∗ is unknown to the attacker. □
This attack assumes force to be put only once on the user,

but not multiple times. Equation (3) could be generalized

FIGURE 2. Forced decryptions.

to allow a number of > 1 messages retrieved from U .
The argument from the proof of Theorem 1 remains intact
up to the point where all ℓ + 1 messages (i.e., all fake
messages and the real message m∗) were obtained from U
and considering H (m∗ | m1 ← U (c),m2 ← U (c), . . .)
(remember that U is a randomized algorithm), in which case
eventually H (m∗ | m1,m2, . . . ,m∗) = 0, provided that the
adversary reliably recognizes m∗ as the real message among
{m1,m2, . . . ,m∗}.
The ultimate success of this attack will therefore depend

on whether or not the attacker can be convinced that any
of the fake messages that Alice provides through her keys
is ‘‘plausible’’ as shown in Fig. 2. This will depend on the
background knowledge of what the adversary expects to see
as a plaintext, and will be formalized in Section VI-A4.
Generally, security against brute forcing thus holds only for
a single action of force, or in case of fake messages being
(practically) indistinguishable from the real message. Other-
wise, the security in the sense of Def. 3 deteriorates.

2) OFFLINE BRUTE-FORCE ATTACKS
Now, assume that the attacker has access to the ciphertext and
attempts a brute-force trial decryption of some message mi,
but in absence of Alice, so she cannot be forced to participate.
Similar as before, we will formalize this attack by the residual
uncertainty of the attacker, conditional on all information
obtained by running through the entire key space.
Our goal is to show that the number of guesses is larger

than the brute-force complexity to guess the decryption key,
as given by
Proposition 1: The brute-force complexity of decrypting

all messages from c is given by

k · pd +
k∑

ni=2

(
k
ni

)
·

dim(c)!
(dim(c)− ni)!

∈ 2(kdim(c)) (4)

Proof: Given the vector c of length N = dim(c),
it knows that mi is composed from a random selection of
ni ∈ {2, 3, . . . , k} many elements from c, weighted with a
selection of the same number of random values r1, . . . , rk ∈

62558 VOLUME 11, 2023

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

FIGURE 3. Offline Brute-Force attacks.

F. The number of choices from c is a selection of ni out
of N , without replacement and with order, which is N !

(N−ni)!
.

Additionally, we have ni = 2, 3, . . . , k as possible choices,
and a fixed lot of k ·|F| = k ·pd additional independent bits to
guess for the coefficients in r. Since r is fixed, let us assume
that the attacker, for efficiency, first guesses the entire r, and
is then only left with a choice about the indices from r for the
message mi, which is

(k
ni

)
many choices. The complexity of

guessing r, plus the guessing of ni and the subset of c gives the
number as claimed above, where the summation comes from
the attacker’s uncertainty about howmany terms (at least 2 but
up to k) are required to reconstruct the message. It is a matter
of straightforward calculations to see that the total count is
within 2(kdim(c)), in which only the dimension, i.e., length,
dim(c) is variable over time, and k (and all other variables)
are constants. □

Proposition 1 shows that the brute-force complexity of
exhaustive key search is growing exponentially with the size
of the ciphertext and thus beyond polynomial time-bounds if
we assume a polynomially bounded adversary. Formalizing
security in terms of residual entropies and without assumed
bounds on the computational power, we can introduce the
following security model and definition:
Definition 4 (Security against Offline Brute Forcing): Let

c be a ciphertext of dimension dim(c), encapsulating a real
message m∗ ∼ F and ℓ decoy messages m1, . . . ,mℓ ∼ F , all
sampled from the same (plaintext) source distribution F . Let
K be the key space for the encryption. Let the adversary be a
computationally unbounded algorithm and define

ABF (c) := H (m∗ | {msk ← Dec(c, sk)}sk∈K).

We call an encryption secure against offline brute-force,
if AOBF (c) > 0, if despite all information extractable by trial
encryptions, there remains residual uncertainty about the real
message m∗.

Against this definition, we can prove the following:
Theorem 2: The encryption scheme from Section V is

secure in the sense of Definition 4.
Proof: Once the attacker has made the number (4) of

guesses and corresponding trial decryptions, it has a list of
m1, . . . ,mℓ messages that Alice has encoded into c. In a
traditional setting, the attacker would be considered suc-
cessful if Alice’s real secret m∗ is in this list, which it
definitely is. However, since we are after deniability in this
work, we need to consider the adversary’s residual uncer-
tainty about which of the m1, . . . ,mℓ, among which there
is m∗, is Alice’s real secret. This is an additional choice of
H (m∗ | {msk ← Dec(c, sk)}sk∈K) = AOBF (c) = ⌈log2 ℓ⌉

bits to guess, since allmsk (amongwhichm∗ is) have identical
and hence indistinguishable distributions (irrespectively of
computational power). This residual uncertainty establishes
security in the sense of Definition 4, since it adds to the
attacker’s workload, and hence exceeding the brute-force
complexity accordingly as shown in Fig. 3. □
Similarly as before, the security is computational in the

sense that there is a finite number of keys to try, if the
attacker can recognize the correct real message m∗ among
whatever it obtains to this end. Against unbounded attackers,
we must additionally assume indistinguishable fake and real
messages, which we formalize and study in Section VI-A4.
It is possible to assume (only) computational indistinguisha-
bility here, in which case the security again falls back to
computational.

This assurance remains, however, crude in the sense that
the attacker may have background knowledge upon which it
can rule out some (up to ℓ−1) messages as implausible, so as
to single out m∗ without much additional effort. We dedicate
section VI-A4 to a closer look at what the availability of
background information can change here, looking first at how
information about the ciphertext itself can help.

3) ATTACKER WITH KNOWLEDGE ABOUT THE HISTORY OF c
Suppose that the attacker is able to track changes to the
ciphertext c over time, e.g., if the file system to store c has a
journaling function activated, or if the adversary acquires two
backup versions of the cloud storage. Forensic investigations
of the data may bring up such knowledge. Tracking the
change, the attacker may thus know about some particular
α-values in c that have definitely been used in a recent file
that was stored inside c. The question studied now is how
much this information may help, in the sense of reducing the
attacker’s uncertainty about the hidden plaintext.

The change track of c provides the adversary with partial
information on which α-values are relevant for the i-th mes-
sage that went into c, where the adversary can easily track
how many messages were added. Furthermore, it can recog-
nize manipulations of existing messages in c, although (if the
deletion is done by overwriting), the attacker cannot distin-
guish whether Alice has edited or deleted a message. Overall,
the information gained in this way reduces the brute-force

VOLUME 11, 2023 62559

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

complexity to break the ciphertext down to

k · pd +
k∑

ni=2

(
k
ni

)
·

(k + (ℓ− ν))!
(k + (ℓ− ν)− ni)!

(5)

where (k + ℓ) is the length of the ciphertext c, and ν is the
number of blocks that the attacker knows to have changed and
hence have been used to put new messages inside, therefore
the dimension of the ciphertext is reduced to (k + (ℓ − ν)).
However, we have ni = 2, 3, . . . , k as possible choices and
k · pd independent bits to guess for the coefficients in r. This
makes the system resistant to brute force attacks because it is
difficult for the attacker to guess, even having the knowledge
about the history of c.
The background knowledge thus reduces the size |K | of

the key space to search, but the number (5) remains finite and
positive, so Theorem 2 applies likewise.

4) ATTACKER WITH BACKGROUND KNOWLEDGE (INFINITE
COMPUTATIONAL POWER)
Let us assume that the attacker has infinite computational
power, and can thereby disclose all mi that went into c.
Whether or not it will be possible to determine which of the
mi’s has been the real message now depends on the attacker’s
background information about the unknown message m∗.
Definition 5 (Deniability, Plausible Deniability (generic

definition)):We say that an encryption scheme is:
• deniable, if for every given ciphertext c, there are keys
sk1, sk2 such that c = Enc(m1, sk1) = Enc(m2, sk2)
for meaningful messages m1 ̸= m2 (the messages may
herein come from different random sources).

• plausibly deniable, if it is deniable, and the messages
m1,m2 are sampled from the same probability distribu-
tion F , i.e., m1,m2 are samples from a common random
variable M ∼ F , so that meaningful and meaningless
messages are indistinguishable.

The above definition is intentionally ‘‘generic’’ in the sense
of not being explicit on an encryption scheme to be specified
as a triple or larger tuple of algorithms, so it can be con-
cretized for different forms of encryption (conventional, but
also extended, as we study in this work). Also, the notion of
‘‘indistinguishability’’ may be instantiated more concretely
to be computational, statistical or perfect, where the latter is
here understood as ‘‘having the same distribution’’. We will,
in the following, consider the latter variant, and not resort to
computational or statistical (approximate equality) indistin-
guishability. To formalize and analyze the degree to which
our scheme can satisfy Definition 5, we adapt the concept of
the unicity distance [32]. It will be instructive for the analysis
to review the ideas of unicity distance and the random cipher
model for our purposes accordingly. To this end, let us, for
the moment, introduce and consider the random variables
K ,M andC , fromwhich the secret keys, secret plaintexts and
resulting ciphertexts are sampled (resp. computed). Unicity
distance, in the way Claude Shannon [27] introduced it, mea-
sures the amount of ciphertext that is required to pin down the

FIGURE 4. Attacker with background knowledge.

decryption key uniquely. Intuitively, it is the minimum size of
the information C such that the conditional entropy H (K |C)
about the decryption key sk ∼ K vanishes. We have an
analogous problem here, since we may ask for the minimum
amount of information that the adversary needs to know about
the plaintext, so as to rule out other meaningful plaintexts
for implausibility by inconsistency with the attacker’s back-
ground information.

To approximate the unicity distance, we may let the
attacker do trial decryptions (hence the name ‘‘random cipher
model’’), and assume that the decryption function Dec(·, k),
using the trial key k , is such that the value Dec(c, k) for
the given ciphertext c is a random variable that is uniformly
distributed over the set of all (meaningful and meaningless)
plaintexts. The unicity distance is the smallest length of c (in
number of blocks) such that a computationally unbounded
attacker could recover the decryption key. For block ciphers
under known ciphertext attacks by random trial decryptions,
it is known [Fact 7.71] [27] that the expected unicity distance
is H (K)/D, where H (K) is the key entropy, and D is the
language’s redundancy. The argument to prove this nicely
lends itself to our purposes as well.

Let c be a ciphertext, and let a computationally unbounded
attacker have recovered possible meaningful plaintexts
m1,m2, . . . that could have been encrypted into c under dif-
ferent keys. The plausibility distance is the minimum amount
of information (in symbols) that the attacker needs to know
so as to single out the real plaintext among m1,m2,
We model the background information as a partitioning of

messages into sets that are plausible as plaintexts, or implau-
sible (for example, if the background information tells that
the plaintext is a natural language text, then all random strings
are implausible, while natural language strings are plausible).
We assume that both parties, the honest and the adversary
know this distinction, i.e., can distinguish plausible from
implausible messages. This is shared knowledge by both
parties as shown in Fig. 4.

62560 VOLUME 11, 2023

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

Definition 6 (Plausibility Distance): Let � = P ∪ I be
the set of all messages, partitioned into the disjoint sets of
plausible messages in P, and implausible messages in I . Let
the message source be a random variable Z ∼ F(�) with
some distribution F over the set of all messages �, with
entropy H (Z). Let H (Z |P) be the entropy conditional on that
a random message is also plausible, and let c be a ciphertext
encapsulating ℓ plaintexts sampled from the source Z . The
plausibility distance of c is

N (c) =
log2 ℓ

H (Z)− H (Z |P)
As with the unicity distance, the random cipher model can
help here to approximate respective values; the only differ-
ence to the historic notion is that our division of meaningful
and meaningless messages is here replaced by a distinction
of plausible from implausible plaintexts, depending on back-
ground knowledge of the attacker.
Proposition 2: Let c be a False-Bottom ciphertext encap-

sulating ℓ messages sampled from some random variable Z .
Among these, let us single out m∗ as real, opposed to all
other messages being for deception (fake). Let N0 be the
ciphertext’s plausibility distance, according to Def. 6.

Then, if the adversary knows more than N0 symbols of the
real message m∗, it can unambiguously identify m∗ from the
list of recovered messages. In that case, the scheme is not
deniable anymore.

Proof: Let Z be the random message source, and let
Z |P ∼ FP be the conditional random variable saying that
the random message emitted by Z is also ‘‘plausible’’. The
respective entropies are H (Z) and H (Z |P).

For a guess about which among m1, . . . ,mℓ is Alice’s
actual secret m∗, we have

total number of plaintexts = 2H (Z)·ℓ (6)

number of plausible plaintexts = 2H (Z |P)·ℓ, (7)

The chances of a correct choice is thus

q =
good cases (7)
all cases (6)

= 2(H (Z |P)−H (Z))·ℓ
= 2−D·ℓ,

with the quantity D here playing the same role (but not being
the same) as the language’s redundancy in the historic notion
of unicity distance.

In the random cipher model, the attacker would then know
that among all keys, only one key gives the respective real
plaintextm∗, so that if some candidate messagem is meaning-
ful, the given ciphertext admits 2key-entropy−1 many incorrect
trial decryptions. We have a likewise argument here: the
attacker has recovered a set of keys, and is uncertain about
which is the right key pointing to the real message m∗. Let us
express this uncertainty as the message-entropy h, which is at
most h ≤ log2 ℓ, for a total of ℓ plaintexts in the adversary’s
possession. The number of incorrect ‘‘keys’’ is 2h, and the
expected number of incorrect guesses about the real plaintext
is N0 = (2h − 1) · q ≤ 2h · q = 2h−n·D. If h − n · D = 0,
then N0 ≤ 1, which brings down the incorrect guesses to

approximately zero (similarly to what the original unicity
distance means), which happens when we have more than

N0 =
h
D
≤

log2 ℓ

D
, (8)

symbols known as background knowledge. □
We stress that the converse implication does not follow

from our arguments, meaning that the scheme is not nec-
essarily plausibly deniable if the adversary knows less than
N0 symbols. If the attacker knows less than N0 symbols
about the real plaintext, it may still expect a unique and
correct recovery of the real plaintext m∗ from all recovered
ones, based on its background knowledge. However, the
scheme can remain deniable, since there may exist more than
one meaningful possible plaintext. Nonetheless, we may be
unable to convince the attacker to believe in a wrong plain-
text; hence the deniability is not plausible. However, if we
also let Alice draw her fake messages from the plausible set
P ⊆ � (or if � = P directly), then we have H (Z) = H (Z |P)
and therefore N0 = ∞. In that case, the scheme is plausibly
deniable:
Corollary 1: Let Alice have sampled her real secret m∗

from a source Z , and let her also have sampled the fake secrets
from the same source Z , with a non-degenerate distribution.
If Alice has added at least two messages to c, then any
brute-force decryption is plausibly deniable.

The practical difference between deniability and plausible
deniability becomes apparent if we re-consider our initial
setups of Alice storing information only for herself, or if
Alice and Bob store information at a common location, e.g.,
a cloud. If it is just Alice storing data on her own computer,
keeping decryption keys separate of it, then all messages m
that go into the ciphertext vector (file) c come from Alice as
a source, and hence have the same distribution. Hence, Alice
can accomplish plausible deniability in the sense of Def. 5.
On the contrary, if Alice and Bob both access and add

to the ciphertext (file) c stored at some common location
like a shared cloud space, then there are messages from two
(distinct) sources ZAlice (for Alice) and X (for Bob or any
other source) found in c, and the joint random source is

Z =

{
ZAlice with probability p (data from Alice)
X with probability 1− p (not from Alice)

if Alice has added a fraction of 0 ≤ p ≤ 1 and Bob has
added the residual fraction of (1 − p) to the file c. If the
adversary then forces Alice to reveal what she stored in the
cloud, she may just open one of Bob’s data items and claim
that it was hers. This fails if the adversary has sufficient
background knowledge, i.e., more than N0 = log ℓ/(H (Z)−
H (Z |Alice)) symbols, to recognize Alice’s messages based
on its prior information. Here, conditioning on ‘‘Alice’’ is
a shorthand notation to mean that the message came from
Alice, in a slight abuse of notation. Let us work out the
denominator in this expression explicitly: by definition of
Shannon entropy, we haveH (Z) = pH (ZAlice)+(1−p)H (X).
By definition of conditional entropy, we have H (Z |Alice) =

VOLUME 11, 2023 62561

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

−
∑

Pr(Z ,Alice) · log Pr(Z |Alice). From the conditional
probabilities we find the joint probability Pr(Z ,Alice) =
Pr(Z |Alice) · Pr(Alice), in which Pr(Z |Alice) = Pr(ZAlice),
as the random variable Z is defined to be ZAlice if Alice
emits themessage. Similarly, Pr(Alice) is the chance for Alice
to emit a message in first place, making Pr(Z ,Alice) =
p · Pr(ZAlice). Substituting these terms into the definition of
conditional entropy, we findH (Z |Alice) = −

∑
p·Pr(ZAlice)·

log Pr(ZAlice) = p · H (ZAlice), since p is a constant. Thus we
have H (Z) − H (Z |Alice) = H (ZAlice) − p · H (ZAlice) =
(1 − p) · H (ZAlice) The plausibility distance thus evaluates
to N0 =

log ℓ
(1−p)·H (ZAlice)

.

Let us discuss the two extreme cases p = 1 or H (ZAlice) =
0 for the last formula, either giving N0 = ∞. If p = 1, then
all messages in c were created by Alice, but as such, they
all came from the same source, making the real ciphertext
indistinguishable (statistically) from a ciphertext for a fake
message. Plausible deniability thus holds. If H (ZAlice) = 0,
then the attacker has zero uncertainty about what messages
were from sources other than Alice, and can filter out these
from the list of plaintexts discovered. The remaining plain-
texts, however, are again all from the same source (Alice)
and it cannot tell them further apart to single out the ‘‘real
plaintext’’.

The most general case is Alice having created plaintexts
that are plausible or implausible for her, in which case our
previous analysis would need to distinguish the conditional
entropies into not only ‘‘coming from Alice’’, but instead
‘‘comes from Alice and is plausible’’ versus ‘‘comes from
Alice and is implausible’’. This takes us back to the original
setting of Alice putting only her ownmessages into the False-
Bottom Encryption, at which she needs to take care that her
fake messages should not be distinguishable from her real
content. The bottom line is that:

• Background knowledge to distinguish messages by
Alice from those by Bob will retain plausible deniability
even in the extreme case, if Alice and Bob have both put
more than one message into the encryption.

• To further narrow down Alice’s real information to
defeat her denial, more refined background information
on Alice herself is needed, to tell her plausible messages
apart from her fake messages.

VII. DISCUSSION AND CONCLUSION
We have shown a conceptually simple method of concealing
information inside an existing sequence of strings, allow-
ing for deceptive decryption in case of forced revelation of
decryption keys. At a practical level, matters of storing or
remembering the decryption keys have not been discussed,
but the use of passwords, for example, is not difficult to imag-
ine here: suppose that whenever we require random values to
be chosen, we do so by invoking a pseudorandom number
generator (PRNG, e.g., the standardized password-based key
derivation function Argon2) that is seeded with a password
that the user chooses. In that way, the storage of the value-pair

list that constitutes the secret key ski for the message mi,
boils down to the choice of a password to open the message
mi, from which all random quantities in the process can be
recomputed with the password as a seed for a PRNG. The
implications to security are, in that sense, to be considered
carefully, as the overall entropy about the secret reduces to the
min-entropy of the password choice process that determines
the hardness of guessing the password, which is the Shannon
entropy.

Further generalizations may be the inclusion of a third
party to establish a four-eyes principle in the opening
of a message. That is, for example, one could substitute
ρi,1, . . . , ρi,ni by products ρ

(a)
i,1 · ρ

(b)
i,1 . . . , ρ

(a)
i,ni · ρ

(b)
i,ni , with the

individual factors coming from key-bases, respectively root-
keys, that two persons, Alice and Bob, are given. In that case,
an adversary forcing Alice to cooperate would also have to
convince Bob to cooperate, in order to discover a meaningful
message.

As yet another variant, note that the role of the factors from
root key r and from c is ‘‘symmetric’’, and hence one could
alternate the appending of parts to c with adding parts to the
r. Storing c in a remote location and keeping r on one’s own
local computer then creates the seeming appeal of putting new
information into cwithout actually letting c visibly grow. This
instance of the scheme is, however, not considered as useful
here, since it is nothing else than storing an encrypted version
of a message locally, and letting the key to this message be
stored remotely at a possibly untrusted location.

Practical room for improvement is in the scheme’s neces-
sity to remember and use all secret keys whenever there is a
need to modify messages after they went into the ciphertext c.
Abandoning this requirement, the key storage and manage-
ment requirements fall back to those of a conventional secret
key encryption with fixed key sizes. Hence, its ‘‘information-
theoretic’’ security guarantees are in any case bounded by
the size of the secret root key to be guessed, but the brute
force complexity is still larger than just guessing the secret
key, since the adversary may, except if there is so far only
1 message in c, still be uncertain about which parts of c may
have been used to represent the secret message. Therefore,
the concept of (plausible) deniability is the added value over
brute-force attack resilience.

Based on our review of literature on deniable encryption
schemes, the user can, in past schemes, come upwith only one
fake message as a counterpart to defend its secret. In contrast,
our scheme allows us to bring more than one fake message to
hide a secret. Also, this encryption scheme is editable in the
sense that at any instant in time, we can update our message
by changing only one element in the ciphertext or by changing
the key indices. Furthermore, the scheme gives us the freedom
to delete any message encrypted inside the ciphertext simply
by replacing at least one element from the ciphertext with a
random number. Deleting a message gives us the flexibility
to prevent the user who was earlier accessing that message
from doing it again. If the user wants to decrypt the ciphertext
with the older key, the outcome will undoubtedly dissatisfy

62562 VOLUME 11, 2023

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

him. Consequently, False-Bottom Encryption extends deni-
able encryption by the functionality of adding, editing and
deleting possibly several plaintexts inside the ciphertext.

Our security definition does not account for adversaries
profiling the access patterns of a user, which calls for addi-
tional techniques to either randomize or ‘‘equalize’’ all access
sequences. Future work will thus investigate extensions to
our scheme by means of private information retrieval or
other techniques (see the related work, in particular [22]),
to analyze if information-theoretic security remains accom-
plishable or deteriorates against attackers that profile the
(physical) device usage.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
for invaluable suggestions. Their input greatly improved the
readability and quality of the text.

REFERENCES
[1] R. Canetti, U. Feige, O. Goldreich, and M. Naor, ‘‘Adaptively secure

multi-party computation,’’ in Proc. 28th Annu. ACM Symp. Theory Com-
put., Philadelphia, PA, USA, 1996, pp. 639–648. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=237814.238015

[2] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky, ‘‘Deniable encryption,’’
in Proc. 17th Annu. Int. Cryptol. Conf. (Lecture Notes in Computer Sci-
ence), vol. 1294. Santa Barbara, CA, USA: Springer, 1997, pp. 90–104.

[3] A. Juels and T. Ristenpart, ‘‘Honey encryption: Security beyond the
brute-force bound,’’ in Advances in Cryptology—EUROCRYPT (Lec-
ture Notes in Computer Science), vol. 8441, D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, A. Kobsa, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, D. Terzopoulos, D. Tygar,
G.Weikum, P. Q. Nguyen, and E. Oswald, Eds. Berlin, Germany: Springer,
2014, pp. 293–310, doi: 10.1007/978-3-642-55220-5_17.

[4] M. Durmuth and D. M. Freeman, ‘‘Deniable encryption with negli-
gible detection probability: An interactive construction,’’ in Advances
in Cryptology—EUROCRYPT (Lecture Notes in Computer Science),
vol. 6632, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, and
K. G. Paterson, Eds. Berlin, Germany: Springer, 2011, pp. 610–626, doi:
10.1007/978-3-642-20465-4_33.

[5] A. O’Neill, C. Peikert, and B. Waters, ‘‘Bi-deniable public-key encryp-
tion,’’ in Advances in Cryptology—CRYPTO (Lecture Notes in Computer
Science), vol. 6841, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. P. Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, and
P. Rogaway, Eds. Berlin, Germany: Springer, 2011, pp. 525–542, doi:
10.1007/978-3-642-22792-9_30.

[6] M. Klonowski, P. Kubiak, and M. Kutylowski, ‘‘Practical deniable encryp-
tion,’’ in SOFSEM 2008: Theory and Practice of Computer Science
(Lecture Notes in Computer Science), V. Geffert, J. Karhumäki, A. Bertoni,
B. Preneel, P. Návrat, and M. Bieliková, Eds. Berlin, Germany: Springer,
2008, pp. 599–609.

[7] P. Gasti, G. Ateniese, and M. Blanton, ‘‘Deniable cloud storage: sharing
files via public-key deniability,’’ in Proc. 9th Annu. ACM Workshop Pri-
vacy Electron. Soc., Chicago, IL, USA, 2010, p. 31. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1866919.1866925

[8] M. H. Ibrahim, ‘‘A method for obtaining deniable public-key encryption,’’
Int. J. Netw. Secur., vol. 8, no. 1, pp. 1–9, 2009.

[9] P. Chi and C. Lei, ‘‘Audit-free cloud storage via deniable attribute-
based encryption,’’ IEEE Trans. Cloud Comput., vol. 6, no. 2,
pp. 414–427, Apr. 2018. [Online]. Available: https://ieeexplore.ieee.
org/document/7090980/

[10] R. Canetti, S. Park, and O. Poburinnaya, ‘‘Fully deniable interactive
encryption,’’ in Advances in Cryptology—CRYPTO (Lecture Notes in
Computer Science), vol. 12170, D. Micciancio and T. Ristenpart, Eds.
Cham, Switzerland: Springer, 2020, pp. 807–835, doi: 10.1007/978-3-030-
56784-2_27.

[11] C. Dwork, M. Naor, and A. Sahai, ‘‘Concurrent zero-knowledge,’’ J. ACM,
vol. 51, no. 6, p. 851–898, Nov. 2004, doi: 10.1145/1039488.1039489.

[12] M. Naor, ‘‘Deniable ring authentication,’’ in Advances in Cryptology—
CRYPTO (Lecture Notes in Computer Science), vol. 2442, G. Goos,
J. Hartmanis, J. van Leeuwen, and M. Yung, Eds. Berlin, Germany:
Springer, 2002, pp. 481–498, doi: 10.1007/3-540-45708-9_31.

[13] R. W. Zhu, D. S. Wong, and C. H. Lee, ‘‘Cryptanalysis of a suite of
deniable authentication protocols,’’ IEEE Commun. Lett., vol. 10, no. 6,
pp. 504–506, Jun. 2006.

[14] A. Fiat and M. Naor, ‘‘Broadcast encryption,’’ in Proc. Annu. Int. Cryptol.
Conf., Jan. 1993, pp. 480–491.

[15] J. Li, Y. Wang, Y. Zhang, and J. Han, ‘‘Full verifiability for out-
sourced decryption in attribute based encryption,’’ IEEE Trans. Services
Comput., vol. 13, no. 3, pp. 478–487, May 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/7936626/

[16] J. Li, Q. Yu, and Y. Zhang, ‘‘Hierarchical attribute based
encryption with continuous leakage-resilience,’’ Inf. Sci., vol. 484,
pp. 113–134, May 2019. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0020025519300684

[17] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, ‘‘Flexible and fine-grained
attribute-based data storage in cloud computing,’’ IEEE Trans. Services
Comput., vol. 10, no. 5, pp. 785–796, Sep. 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7390098/

[18] S. Reddy, P. S. Reddy, and P. Sravanthi, ‘‘Audit free cloud stor-
age via deniable attribute base encryption for protecting user pri-
vacy,’’ Int. J. Sci. Eng. Technol. Res., vol. 5, no. 17, pp. 3449–3451,
2016.

[19] R. Bassous, R. Bassous, H. Fu, and Y. Zhu, ‘‘Ambiguous multi-symmetric
cryptography,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015,
pp. 7394–7399.

[20] A. Chakraborti, C. Chen, and R. Sion, ‘‘POSTER: DataLair: A
storage block device with plausible deniability,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 1757–1759.
[Online]. Available: https://dl.acm.org/doi/10.1145/2976749.
2989061

[21] C. Chen, A. Chakraborti, and R. Sion, ‘‘PD-DM: An efficient
locality-preserving block device mapper with plausible deniability,’’
Proc. Privacy Enhancing Technol., vol. 2019, no. 1, pp. 153–171,
Jan. 2019. [Online]. Available: https://petsymposium.org/popets/2019/
popets-2019-0009.php

[22] C. Chen, X. Liang, B. Carbunar, and R. Sion, ‘‘SoK: Plausibly deni-
able storage,’’ Proc. Privacy Enhancing Technol., vol. 2022, no. 2,
pp. 132–151, Apr. 2022. [Online]. Available: https://petsymposium.
org/popets/2022/popets-2022-0039.php

[23] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, ‘‘Toward
robust hidden volumes using write-only oblivious RAM,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur. New York, NY, USA:
Association for Computing Machinery, Nov. 2014, pp. 203–214, doi:
10.1145/2660267.2660313.

[24] C. Hargreaves and H. Chivers, ‘‘Detecting hidden encrypted vol-
umes,’’ in Communications and Multimedia Security, B. De Decker
and I. Schaumuller-Bichl, Eds. Berlin, Germany: Springer, 2010,
pp. 233–244.

[25] J. Vera-del-Campo, J. Pegueroles, J. Hernández-Serrano, and
M. Soriano, ‘‘DocCloud: A document recommender system on
cloud computing with plausible deniability,’’ Inf. Sci., vol. 258,
pp. 387–402, Feb. 2014. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0020025513002958

[26] D. Sidi and J. Bambauer, ‘‘Plausible deniability,’’ in Privacy in Sta-
tistical Databases (Lecture Notes in Computer Science), vol. 12276,
J. Domingo-Ferrer and K. Muralidhar, Eds. Cham, Switzerland: Springer,
2020, pp. 91–105, doi: 10.1007/978-3-030-57521-2_7.

[27] C. E. Shannon, ‘‘Communication theory of secrecy systems,’’ Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949. [Online]. Available:
https://ieeexplore.ieee.org/document/6769090

[28] O. Goldreich, Foundations of Cryptography, vol. 2. Cambridge, U.K.:
Cambridge Univ. Press, 2003.

[29] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM,
vol. 22, no. 11, pp. 612–613, Nov. 1979, doi: 10.1145/359168.
359176.

[30] G. R. Blakley, ‘‘Safeguarding cryptographic keys,’’ in Proc. Int. Work-
shop Manag. Requirements Knowl. (MARK), Jun. 1979, pp. 313–318, doi:
10.1109/MARK.1979.8817296.

VOLUME 11, 2023 62563

http://dx.doi.org/10.1007/978-3-642-55220-5_17
http://dx.doi.org/10.1007/978-3-642-20465-4_33
http://dx.doi.org/10.1007/978-3-642-22792-9_30
http://dx.doi.org/10.1007/978-3-030-56784-2_27
http://dx.doi.org/10.1007/978-3-030-56784-2_27
http://dx.doi.org/10.1145/1039488.1039489
http://dx.doi.org/10.1007/3-540-45708-9_31
http://dx.doi.org/10.1145/2660267.2660313
http://dx.doi.org/10.1007/978-3-030-57521-2_7
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/MARK.1979.8817296

S. Ahmad et al.: False-Bottom Encryption: Deniable Encryption From Secret Sharing

[31] M. S. Wamser, S. Rass, and P. Schartner, ‘‘Oblivious lookup-tables,’’ Tatra
Mountains Math. Publications, vol. 67, no. 1, pp. 191–203, Sep. 2016.
[Online]. Available: https://www.sciendo.com/article/10.1515/tmmp-
2016-0039

[32] A. J. Menezes, K. H. Rosen, P. C. V. Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography. Boca Raton, FL, USA: CRC Press,
May 2020.

SHAHZAD AHMAD received the bachelor’s
degree in electronics engineering from the Har-
court Butler Technological Institute, Kanpur,
India, in 2016, and the master’s degree in
electronics engineering with a communication
and information systems specialization from Ali-
garh Muslim University (AMU), Aligarh, India,
in 2021. He is currently pursuing the Ph.D.
degree in computer science with the LIT Secure
and Correct Systems Laboratory, Johannes Kepler

University Linz, Austria. His research interests include plausible deniability,
cloud security, and signal processing.

STEFAN RASS (Member, IEEE) received the
degree in mathematics and computer science from
Alpen-Adria-Universität Klagenfurt. He is cur-
rently a Full Professor with Johannes Kepler Uni-
versity Linz, Austria, where he is also a member
of the LIT Secure and Correct Systems Labo-
ratory. He participated in various nationally and
internationally funded research projects, as well
as being a contributing researcher in many EU
projects and offering consultancy services to the

industry. He has authored numerous papers related to practical security, secu-
rity infrastructures, robot security, applied statistics, and decision theory in
security. His research interests include decision theory and game-theory with
applications in system security, especially robotics security, and complexity
theory, statistics, and information-theoretic security.

PETER SCHARTNER received themaster’s degree
in telematics from the Technical University of
Graz, in 1997, with a focus on information secu-
rity, and the Ph.D. degree in computer science from
Alpen-Adria-Universität Klagenfurt, in 2001, with
a focus on security tokens. He is currently
an Associate Professor with the System Secu-
rity Research Group, Alpen-Adria-Universität
Klagenfurt, teaching courses on theoretical com-
puter science, algorithms, and data structures,

security, and cryptography, and a Lecturer with the Trier University of
Applied Sciences. He participated in various nationally and internationally
funded research projects. His research interests include applied system
security, key management, security infrastructures, and the applications for
security tokens, especially smartcards.

62564 VOLUME 11, 2023

