
Received 16 May 2023, accepted 14 June 2023, date of publication 21 June 2023, date of current version 28 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3288156

Nature-Based Prediction Model of Bug Reports
Based on Ensemble Machine Learning Model
SHATHA ABED ALSAEDI 1,2, AMIN YOUSEF NOAMAN1, AHMED A. A. GAD-ELRAB 1,
AND FATHY ELBOURAEY EASSA 1
1Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Computer Science, College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia

Corresponding author: Shatha Abed Alsaedi (saalsaedi@stu.kau.edu.sa)

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant
KEP-PHD-102-611-1443.

ABSTRACT In software development systems, the maintenance process of software systems attracted the
attention of researchers due to its importance in fixing the defects discovered in the software testing by using
bug reports (BRs) which include detailed information like description, status, reporter, assignee, priority, and
severity of the bug and other information. The main problem in this process is how to analyze these BRs to
discover all defects in the system, which is a tedious and time-consuming task if done manually because the
number of BRs increases dramatically. Thus, the automated solution is the best. Most of the current research
focuses on automating this process from different aspects, such as detecting the severity or priority of the
bug. However, they did not consider the nature of the bug, which is a multi-class classification problem.
This paper solves this problem by proposing a new prediction model to analyze BRs and predict the nature
of the bug. The proposed model constructs an ensemble machine learning algorithm using natural language
processing (NLP) and machine learning techniques. We simulate the proposed model by using a publicly
available dataset for two online software bug repositories (Mozilla and Eclipse), which includes six classes:
Program Anomaly, GUI, Network or Security, Configuration, Performance, and Test-Code. The simulation
results show that the proposed model can achieve better accuracy than most existing models, namely, 90.42%
without text augmentation and 96.72% with text augmentation.

INDEX TERMS Software maintenance, nature classification, ensemble machine learning algorithm, natural
language processing, bug reports, machine learning.

I. INTRODUCTION
In software engineering, testing is the evaluation process that
is performed to indicate whether a specific system meets the
requirements and concerns finding bugs or failures inmeeting
these requirements defined by the stakeholders [1]. As a result
of this process, the maintenance phase fixes defects discov-
ered after the termination of the testing phase. In addition,
as the complexity and size of the software increase, software
producers tend to release their software with defects [2],
and software projects have a higher probability of having
bugs. Therefore, users report these discovered defects and

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

bugs [2]. A bug is a fault, an error, a failure, or a flaw in
the software, which makes it behave incorrectly or generate
wrong outputs [3]. The feedback of the reporter is sent to
the bug tracking system (BTS) in the form of a bug report.
Figure 1 illustrates an example of a bug report in the Eclipse
repository.1 A bug report contains information related to the
discovered bug, such as bug ID, bug status (closed or opened),
bug description, component affected by the bug, information
about the software, how to reproduce the bug, bug reporter,
and the developer who fix this bug [4].

A bug report can be thought as the medium that transfers
and delivers the bug to the developers [5]. The process used by

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=220151

63916
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0006-0544-3427
https://orcid.org/0000-0001-7730-801X
https://orcid.org/0000-0003-3987-9051


S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

FIGURE 1. Eclipse bug report 220151.

FIGURE 2. Life cycle of the bug report [7].

the developer after the assignment of the bug report to resolve
it is the bug management process [6]. This process starts
when this report is submitted by users to the bug management
systemwhen they face an error in a released software product.

Then, this bug report is assigned to developers who work
to find the location of the bug. The bug is fixed by the
developer who finds the cause of the bug and its location
before other developers. After the bug resolution, the tester
checks the bug scenario, and if it does not reoccur, updates
the bug report status to Verified. Finally, the reporter receives
a notification [6].

A software bug has its own life cycle made of different
phases in its life. Therefore, Figure 2 illustrates the bug report
life cycle. This figure shows that the life cycle has three
phases, bug management, bug triage, and bug localization.
The bug management phase includes all activities which start

when users report the bug until the assignment of the devel-
oper. The next phase is bug triage when submitted reports
are prioritized and assigned to a suitable developer for repair.
Finally, the bug localization phase changes the bug status
from resolved to verified to closed [7].

In this life cycle, the main challenge is the dramati-
cally increasing number of bug reports, which are tedious,
cumbersome, and time-consuming to manage manually [8].
Researchers address this issue by analyzing and classifying
these reports according to three major categories, each with
its sub-categories [9], and extracting useful information to
accelerate and facilitate the maintenance phase. These cat-
egories of bug reports are classified by nature, priority, and
severity [9]. Most studies classify bug reports by severity or
priority.

The literature review in this research shows that various
classification algorithms classify bug reports from different
aspects, but there is a lack of nature-based bug classification
models with high accuracy.

Therefore, this paper intends to bridge this gap by introduc-
ing an ensemble machine learning algorithm for nature-based
bug prediction from bug reports.

This research aims to provide a solution to maintaining
software systems and contribute to this context by applying
natural language processing (NLP), machine learning (ML),
and text mining techniques to predict the bug types automati-
cally. Once themodel identifies the bug type, it accelerates the
maintenance phase with bug localization techniques rather
than doing this time-consuming task manually. Figure 3 illus-
trates an overview of the bug prediction process from a bug
report.

The proposed algorithm aims to enhance nature-based
bug prediction by using several machine learning (ML) base
classifiers and training them using a benchmark dataset.
Additionally, we suggest ensemble machine learning clas-
sifiers, using both hard and soft voting, to improve the

VOLUME 11, 2023 63917



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

FIGURE 3. Nature-based prediction.

performance of the proposed model. Moreover, we use a text
augmentation technique to boost the accuracy.

The main contributions of this paper are as follows:
• It presents an evaluation of some base machine learning
algorithms for an automatic nature-based bug report
classification.

• It proposes an automated ensemble machine learning-
based approach for nature-based bug prediction from
bug reports.

• It introduces a text augmentation technique in
nature-based bug prediction from bug reports in the
proposed model. To the best of our knowledge, it is
the first ensemble machine learning approach to predict
the nature of bugs in bug reports using a text augmenta-
tion technique.

• The evaluation results of the proposed approach on a
benchmark dataset suggest that the proposed ensemble
machine learning approach is accurate in nature-based
bug prediction from bug reports.

II. RELATED WORK
Several studies in the literature aim to apply natural language
processing, information retrieval, and artificial intelligence
in the context of bug report analysis. Each has a vital role
in software maintenance phase enhancements. Here is an
illustration of some recent studies based on bug report classi-
fication and bug report assignments.

A. BUG REPORTS CLASSIFICATION
In [3], the author proposed a tool to analyze a new bug report
and construct configuration options. This tool detects whether
this report is configurable or not. If it is related to a configu-
ration bug, it ranks the top possible configurations related to
this bug. However, the configuration identification phase has
its limitation in ranked configurations with varying words as
the tool chooses configuration with longer words even though
the configuration with shorter words is the correct one.

Kukkar and Mohana [10] combine text mining, natural
language processing, and machine learning techniques to
classify bug and non-bug reports to solve the problem of
misclassification of bug reports, which negatively affects the
overall performance of the prediction process. This model
uses bigram and TF-IDF in feature selection. However, the
performance of the KNN algorithm in this model changes
when the data-set changes.

In addition, as the number of software increases frequently,
the size of bug-tracking system repositories increases sig-
nificantly [8]. Therefore, it is urgent to fix the bugs which
have higher severity first. Since the number of bug reports is
very high, it is difficult to analyze them manually. Therefore,
much research has focused on automating bug report severity
detection. In [8], the authors proposed an algorithm based on
deep learning and random forest with boosting to assign a
severity level for each bug report. Their method has higher
accuracy than other methods that address the same problem
because the proposed method uses a convolutional neural
network (CNN) for the feature extraction, then uses random
forest with boosting for severity classification. The average
achieved accuracy was 96.34%.

Some researchers have different classifications for bug
reports. In [11], researchers use machine learning algorithms
to classify new bug reports as either corrective (defect fixing)
reports or perfective (major maintenance) reports by using
support vector machines (SVM), naive Bayes (NB), and ran-
dom trees (RT). The results show that SVM achieved the
highest accuracy, 93.1%.

To support the software engineering process, researchers
have introduced a well-known schema called Orthogonal
Defect Classification (ODC) [12]. ODC has eight orthog-
onal attributes to characterize software defects and several
analytical methods for test process analysis and software
development [51]. Extracting valuable information from
defects can be done by ODC, which provides insights and
helps diagnosis in software engineering processes [13]. The
authors in [13] use machine learning algorithms to classify
bug reports according to ODC. Their study uses 4096 ODC
annotated bug reports. However, they conclude that there is
difficulty in automating the ODC attributes using only bug
reports.

Hirsch and Hofer [14] classified each new bug according
to a bug report using three classes, concurrency, memory, and
semantic bugs. They used 369 bug reports, and the highest
mean precision and recall were 0.74 and 0.72, respectively.

Furthermore, bug prioritization is a crucial feature of bug
reports because users submit many bug reports for the devel-
oper to address [15]. Manually assigning a priority level for
each bug report is time-consuming and needs expertise, time,
and resources [16] because it is more likely to be assigned
incorrectly, which affects the maintenance phase. Therefore,
some studies focus on finding the priority of bug reports auto-
matically using machine learning algorithms [15]. In [16],
Bani-Salameh et al. proposed a method by using NLP and
deep learning-based algorithms in bug report triage. The
proposed model predicts and assigns a priority level in binary
classification (high or low) to each bug report using a five-
layer RNN-LSTM neural network to classify each bug report
as a high or a low priority. The proposed model was evaluated
by applying it to a dataset with more than 2000 bug reports
from the JIRA dataset. However, the authors express concern
about whether the performance of this model will be the same
when using other datasets from different resources.

63918 VOLUME 11, 2023



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

TABLE 1. Summary of previous studies on bug reports processing.

Moreover, the authors in [17] focused on analyzing
bilingual software bug reports and applied their proposed

algorithm to an industrial case study, which is a commer-
cial software system, and it contains bug reports in English

VOLUME 11, 2023 63919



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

and Turkish languages. The proposed algorithm integrates
machine learning, NLP, and text-mining techniques. Their
algorithm uses 504 bug reports and classifies them into four
classes: assignment/initialization, external interface, internal
interface, and other. Thismodel achieved 73.70%of accuracy.

B. BUG REPORTS ASSIGNMENTS
Numerous endeavors in the research sector have enhanced
the quality of maintenance and decreased bug-fixing time.
As manually assigning a bug fixer is time-consuming due to
the increasing number of submitted bug reports, researchers
recommend the developer, who is more suitable for fixing
the bug using multiple approaches. This process is called bug
assignment [18], and each approach has its significance and
contribution.

In [19], Jonsson et al. proposed a new model using an
ensemble machine learning classifier, namely Stacked Gener-
alization (SG), in the bug assignment process. The proposed
model uses at least 2000 bug reports in the training phase and
achieves from 50% to 89% accuracy in prediction.

Furthermore, Alkhazi et al. [18] used the commits of the
developers to enhance their profiling and designed an
approach using the integration of approaches from [20]
and [21] for adaptive ranking, which ranks the top developers
who are better for the bug fixing in the new bug report. They
evaluated their approach using about 22,000 bug reports.

Additionally, Devaiya [22] proposed a bug assignment
tool, namely Creation Assistant for Supporting Triage Rec-
ommenders (CASTR), to recommend the most suitable
developers for bug fixing. In other words, the author gives
the ability in configuring project-specific parameters when
establishing the recommender by using machine learning
algorithms in tool designing. These algorithms are SVM,
Naive Bayes, C4.5, and Rules. In the proposed tool, the
achieved accuracy is from 50% to 95%, from 20% to 80%,
and from 10% to 70% for top-1, top-3, and top-5 recommen-
dations, respectively.

Other researchers focus on using categorical features in
bug reports and use them in the recommendation system.
Alenezi et al. [23] used a classification algorithm in design-
ing a bug assignment algorithm and they used categorical
fields of the bug reports without a textual description. How-
ever, they achieve relatively low results. The best F-Score
achieved is 67%, which leads them to conclude that using
classification algorithms in bugs assignment is not the best
approach. Table 1 summarizes all the previously mentioned
studies.

III. THE PROPOSED NATURE-BASED ENSEMBLE
MACHINE LEARNING BUG PREDICTION MODEL
This section describes the basic idea of our model and the
suggested methodology to be applied to achieve the main
objective, which is nature-based prediction of bug report.

A. BASIC IDEA
To improve the process of nature-based classification of bug
reports, this paper proposes a new prediction model called

FIGURE 4. Overall architecture for proposed model.

Nature-Based EnsembleMachine Learning Bug Prediction
Model. The basic idea of the proposed model depends on
three issues: 1) using a feature extraction approach to extract
the most critical features that will affect the bug report pre-
diction, 2) training several base machine learning algorithms,
and 3) using a voting ensemble learning classifier by combin-
ing their prediction to improve the prediction accuracy.

B. METHODOLOGY
This section satisfies the basic idea of the proposed model
with a methodology of four phases: 1) Data pre-processing,

63920 VOLUME 11, 2023



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

2) Vectorization and feature extraction, 3) Training set of base
machine learning classifiers, and 4) Building a voting ensem-
ble machine learning classifier for nature-based prediction.
The overall model is illustrated in Figure 4. The following
subsections present a clear illustration of each step.

1) DATA PRE-PROCESSING
The pre-processing mechanism cleans and prepares the raw
data of the bug report for the machine learning algorithm
processing to extract valuable and interesting data and
knowledge from unstructured data [28]. Text pre-processing
eliminates unnecessary words and tokens and reduces the
feature set size to enhance the learning process [29]. In the
model, the following steps has been done in this phase:

• The bug reports have been read in comma-separated
values (CSV) format.

• The classification attribute has been selected which is
the ‘Category’ field in the CSV file.

• Textual attribute, which is the ‘Summary’ field, has been
selected as a textual feature.

• Text cleaning: removes unnecessary text, such as punc-
tuation, numbers, extra space, and emojis [30].

• Lowercase Transformation: It converts the input text to
lower case [30]. For example, ‘Fix’, ‘FIX’ and ‘fIX’ all
become ‘fix’ This phase is done because machine learn-
ing algorithms are case-sensitive [31]. The same word
in different cases will be treated differently by statistical
models [32] although they have the same meaning.

• Tokenization: This mechanism separates or splits the
words and sentences of the text into their smallest frag-
ments, which are called tokens [33]. These tokens cannot
divide further into smaller tokens [33].

• Stop words removal: This phase removes the stop words
from our text because they do not carry useful mean-
ing to the natural language processing [34]. These stop
words include articles, prepositions, conjunctions, pro-
nouns, adjectives, and adverbs.

• Lemmatization: In this phase, every word has been
reduced to its morphological form (lemma) [35]. For
instance, ‘write’, ‘wrote’, and ‘writing’ can be replaced
with ‘write’. Table 2 shows some text in the used bug
reports dataset and the effects of each pre-processing
activity on it.

• Text Augmentation: we use text augmentation to achieve
higher accuracy. Text augmentation is a technique that
artificially increases the training data size by producing
different versions of real datasets without actually col-
lecting the data [46]. Text augmentation can be applied
on various levels, such as character, word, phrase,
and document levels [46]. There are several methods
for text augmentation, such as synonym replacement,
replace words with similar word embeddings, lexical-
based replacement, back translation, and generative
models [47]. Our proposed model replaces words with
similar word embeddings. In this method, trained word

TABLE 2. Pre-processing activities and effects on a sample of text in the
dataset.

TABLE 3. Number of bug reports in each category in the used dataset.

embedding, such as fastText, Word2Vec, and GloVe,
can help identify the closest word vector to replace the
original sentence from latent space [47]. In more details,
contextual word embeddings augmenter has been used.

2) VECTORIZATION AND FEATURE EXTRACTION
Feature extraction transforms the content of bug reports into
a vector of feature (word) counts [36]. This process aids
in expanding the network by converting the content of bug
reports into multiple sets of n-gram data [36]. Therefore,
it provides a meaningful way to express the features [36].
The n-gram technique has been implemented to calculate
the frequency of the feature order and capture the semantic
relationship [36].

Words which are resulted after pre-processing are called
features [8]. The feature extraction phase represents the con-
tents of the bug report as a vector of words (features) counts
by transforming the contents of bug reports into several sets of
n-gram data that help expand the network [8]. Moreover, this
phase transforms the word frequency to give a score or iden-
tification [50]. For each token, the Term Frequency–Inverse
Document Frequency (TF-IDF) is used with a unigram score.
Equation (1) defines TF-IDF.Where in a document set, t is the

VOLUME 11, 2023 63921



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

FIGURE 5. Confusion matrices for two voting machine learning classifiers
(without text augmentation).

term of document d, n is the total number of documents in the
document set, and the document frequency of t is df(t) [36].

tf − idf(t, d) = tf(t, d) × idf(t) (1)

idf(t) = log[
n

df (t)
] + 1 (2)

3) TRAINING SET OF BASE MACHINE LEARNING
CLASSIFIERS
Before training the dataset using machine learning classifiers,
dataset needs to be splitting into training and testing sets.
We divide the dataset into 8:2 ratio for training and testing.

TABLE 4. An example of bug report summary which is related to each
category.

TABLE 5. Results comparison without text augmentation.

Our model uses four machine learning (ML) algorithms
to train the training dataset, Random Forest (RF), Logistic
Regression (LR), Multinomial Naïve Bayes, and Support
Vector Classifier (SVC) algorithms.

a: RANDOM FOREST (RF) CLASSIFIER
A random forest (RF)2 is a machine learning algorithm. This
algorithm is a meta-estimator that fits several decision tree
classifiers on many datasets subsamples [37]. Additionally,
it uses averaging to control over-fitting and improve predic-
tive accuracy [37].

b: LOGISTIC REGRESSION (LR) CLASSIFIER
Logistic regression (LR)3 algorithm is a machine learning
statistical algorithm. It builds a logistic model known as a

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LinearRegression.html

63922 VOLUME 11, 2023



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

FIGURE 6. Confusion matrices for base machine learning classifiers (without text augmentation).

logit model [38]. One advantage of this model is its ability
to be used for both class probability estimation and classi-
fication as it relates to the distribution of logistic data [38].
The LR model applies a nonlinear sigmoidal function to a
linear combination of features [38]. The base version of LR
is applied to binary classification problems, but it can be
extended into multi-classes classification problems (known
as multinomial logistic regression) [38].

c: MULTINOMIAL NAÏVE BAYES (MNB) CLASSIFIER
Naïve Bayes (NB)4 classifier is a machine learning algorithm
that applies the Bayes theorem [39]. This probabilistic
algorithm can be used in classification problems. Only a

4https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.
MultinomialNB.html

minimal training dataset is necessary to estimate the param-
eters for classification since this classifier assumes that all
variables are independent [39]. There are many types of NB
models, such as Gaussian Naïve Bayes, Multinomial Naïve
Bayes, and Bernoulli Naïve Bayes [40]. The proposed model
utilizes the Multinomial Naïve Bayes classifier, usually used
in document classification problems. The classifier uses the
feature of the frequency of the words that appear in the
document [40].

d: SUPPORT VECTOR CLASSIFIER (SVC) CLASSIFIER
The support vector machine (SVM) model is a powerful
and flexible supervised machine learning method for out-
liers detection, classification, and regression problems [41].
It is efficient in high-dimensional spaces, so it is helpful

VOLUME 11, 2023 63923



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

TABLE 6. Analysis of results of algorithms (without text augmentation).

63924 VOLUME 11, 2023



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

FIGURE 7. Confusion matrices ensemble voting machine learning
classifiers (with text augmentation).

for classification problems [41]. SVM is useful for binary
classification, and as the proposed model includes multiclass
classification, it uses the Support Vector Classifier (SVC)5

algorithm because it can perform multiclass classification.

4) BUILDING VOTING ENSEMBLE MACHINE LEARNING
CLASSIFIER
An ensemble learning system is a hybrid learning sys-
tem [43]. It trains several base learning algorithms as

5https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

ensemble members and combines their predictions into a sin-
gle output. This result performs better on average than other
ensemble members [42]. There are many types of ensemble
learning, such as bagging, boosting, and voting [44]. In voting
ensemble learning, voting (known as majority voting) can
be either hard or soft voting [45]. In classification problems
with hard voting, the votes for crisp class labels from other
models are summed, and then the class with the most votes is
predicted [45]. On the other hand, in soft voting, the predicted
probabilities for class labels are summed, and the class label
with the highest probability sum is predicted [45]. In the
experiment of the proposed model, we implemented hard
voting and soft voting,6 but the latter achieved the highest
accuracy, as illustrated in the results section.

IV. EVALUATION AND RESULTS
This section provides a detailed description of the implemen-
tation and evaluation process of the proposed model.

A. SIMULATION SETTINGS
The experiments in this research are implemented in Python.
The dataset is in comma-separated values (CSV) format.
Pandas package is used for dataset handling. Natural Lan-
guage Toolkit (NLTK) is used for the dataset pre-processing
phase, such as lemmatization and stop word removal.
Additionally, nlpaug library is used for text augmentation.
Scikit-learn is used because it contains many packages,
including feature representation, classification using base
ML classifier and ensemble ML algorithm, and evaluation
metrics.

B. DATASET DESCRIPTION
The dataset used in this research from two online bug repos-
itories, Mozilla7 and Eclipse,8 which are in the Bugzilla bug
tracking system and labeled by [24]. These authentic, open-
source bug repositories contain many bug reports [24]. The
category of each bug report is notmentioned in these reposito-
ries [24]. Therefore, authors in [24] randomly selected around
2000 bug reports and manually labeled them based on six
categories (bug nature). These bug reports were submitted to
the bug tracking system in the period between 2016 to 2019.

Each bug report consists of categorical and textual features.
The categorical features include Bug ID, product, compo-
nent, assignee, status, classification, priority, opened, and
category attributes. The textual feature includes the summary
attribute. The summary attribute is chosen as the textual fea-
ture because it contains a detailed description of the reported
bug.

The classification of bug reports depends on the nature
of the bug, therefore, this dataset was labeled using six
categories, Program Anomaly, GUI, Network or Security,

6https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
VotingClassifier.html

7https://bugzilla.mozilla.org/home
8https://bugs.eclipse.org/bugs/

VOLUME 11, 2023 63925



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

FIGURE 8. Confusion matrices for base machine learning classifiers (with text augmentation).

Configuration, Performance, and Test-Code. These cate-
gories are as follows:

1) Program Anomaly: This category involves bugs due to
source code problems [24]. Exceptions, syntax errors, logical
errors, and return value problems [25] are examples of pro-
gram anomaly problems. One example of a bug report in this
category is when the AST parser returns an error.

2) GUI: This category involves bugs that occur specifi-
cally during the design and handling of user interfaces [24].
An example of bugs from this category is when there is an
error in naming the ‘‘Workspace Unavailable’’ dialog.

3) Network or Security: This category involves security
issues or network problems [24]. An example of a bug related
to a network problem is when there is a failure to bind or

connect IPv6 sockets. An example of a bug related to a secu-
rity problem is when a user wants to access the windowUtils
property, and permission is denied [24].

4) Configuration: Bugs related to this category occur due
to the integration of configuration files. An example of a bug
from this category occurs due to a problem when updating an
application, which includes missing of shared configuration
area, after the application has been updated [24].

5) Performance: This category involves problems related
to memory, which include infinite loops that lead to hanging
up of memory, energy leaks, and extra memory usage [26].
One example of reported bug from this category is the issue
in Firefox when the website runs 100% of its CPU without
displaying a slow script warning.

63926 VOLUME 11, 2023



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

FIGURE 9. F1-scores for each class without text augmentation.

6) Test Code: Bugs in this category involve problems in
the test code [24]. In the dataset, test code bugs occur due to
i) intermittent tests, ii) test cases running, repairing, and
updating, and iii) the failure of tests that happen when search-
ing for de-localized bugs [27]. An example of a bug in this
category is the issue that appears due to the Junit test failing
on a Mac.

Tables 3 and 4 show the number of bug reports in each
category in the used dataset and an example of a bug report
summary related to each category, respectively.

C. EVALUATION METRICS
Generally, the accuracy and performance of classification
algorithms are evaluated using different performance evalua-
tion metrics, such as accuracy and recall [48]. Additionally,
for evaluation the performance of machine learning clas-
sifiers, a confusion matrix can be used. It gives results
about the actual and predicted classification achieved by
the classifier model [48]. In this research, we used four
well-known evaluationmetrics which are accuracy, precision,
recall, and F-measure. These evaluation metrics are obtained
using a confusion matrix [48]. The four values, which are
true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) are in the confusion matrix. The (TP)
counts the actual positive values predicted by the classifier.
The (TN) value means the actual negative values predicted
by the classifier. (FP) are the values which are negative
but were predicted as positive by the classifier, and (FN)
are positive values that were predicted as negative by the
classifier [48].

TABLE 7. Results comparison (with text augmentation on our work).

1) ACCURACY
Accuracy is the percentage of correctly predicted classi-
fication to the total number of data [16]. This ratio is
an important performance measure when using asymmetric
datasets, which can exist when false positives and false neg-
atives are the same value [49]. Accuracy can be calculated
using the following equation:

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

2) RECALL
Recall is the fraction of correctly predicted positive values to
the same class’s total observation [16]. It is calculated using
the following equation:

Recall =
TP

FN + TP
(4)

3) PRECISION
Precision is the ratio of correctly labeled positives to the total
values which are predicted positive [16]. Precision can be

VOLUME 11, 2023 63927



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

TABLE 8. Analysis of results of algorithms with text augmentation.

63928 VOLUME 11, 2023



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

calculated using the following formula:

Precision =
TP

FP + TP
(5)

4) F1-MEASURE
It is the average recall and accuracy considering FP and
FN [16]. This metric is more effective than accuracy, espe-
cially if the distribution is unbalanced [16]. It can be
measured using the following equation.

F1measure =
2 ∗ Precision + Recall
Precision + Recall

(6)

D. RESULTS AND ANALYSIS
This section shows the results of the proposed model and
its evaluation using the dataset. We evaluated the perfor-
mance of the proposed nature-based prediction model by two
experiments: 1) without text augmentation, in which the used
dataset has 2138 bug reports, and 2) with text augmentation,
in which the used dataset has 4276 bug reports after applying
text augmentation. In addition, four base machine learning
algorithms were chosen in the experiments to be used on the
dataset to predict the nature of bugs. These algorithms are
RF, MNB, SVC, and LR. The rest of this section presents the
results of two experiments.

1) WITHOUT TEXT AUGMENTATION
Table 5 presents the achieved accuracy of the proposed model
and the four benchmarkMLmodels. As illustrated in Table 5,
before applying text augmentation, the highest accuracy is
90.42%, achieved by the proposed ensemble machine learn-
ing classifier using soft voting. While the proposed model
reached 89.01% accuracy using hard voting, Figure 5 illus-
trates the confusion matrices for two voting machine learning
classifiers. Other baseML classifiers workedmoderately well
and achieved an accuracy of 83.64%, 88.08%, 88.55%, and
88.78% forMNB, LR, RF, and SVC, respectively. In Figure 6,
matrices a, b, c, and d illustrate confusion matrices for each
base ML classifier.

Additionally, results in this paper have been evaluated
using precision, recall, and F1-measure. Table 6 shows these
results for each class in all base ML algorithms and the
proposed voting ensemble algorithm without applying text
augmentation.

2) WITH TEXT AUGMENTATION
Text augmentation has been applied to the dataset to increase
the performance of the proposed model. Therefore, the accu-
racy of each classifier has improved. As shown in Table 7, the
highest value is achieved by applying a soft voting ensemble
machine learning classifier to reach 96.72%, followed by
96.14% by using SVC. Additionally, the accuracies achieved
by other algorithms have increased to achieve 95.32%,
94.50%, 93.57%, and 90.18% by a hard voting ensemble,
RF, LR, and MNB, respectively. Figures 7 and 8 show con-
fusion matrices for the proposed ensemble algorithms and

TABLE 9. Accuracy of algorithms with and without text augmentation.

base ML classifiers with text augmentation. Furthermore, the
text augmentation technique has affected the precision, recall,
and F1-measure values of every class. Table 8 presents these
values for all algorithms in this paper.

Moreover, Table 9 shows the effects of text augmen-
tation on every algorithm on the dataset. The text aug-
mentation technique has increased the accuracy of every
algorithm. Without text augmentation, the highest accuracy
has been achieved by a soft voting ensemblemachine learning
algorithm followed by a hard voting ensemble machine learn-
ing algorithm, then the SVC, RF, LR, and MNB classifiers.
However, with text augmentation, there is a difference in
which the highest accuracy has been achieved by soft voting
ensemble machine learning algorithm followed by SVC, then
hard voting ensemble machine learning algorithm, RF, LR,
and MNB classifiers.

Additionally, the F1 scores for each nature class are differ-
ent. However, without text augmentation, as Figure 9 shows,
these values are approximately similar in the Test Code class
and are higher than in other classes. This result could be
because this class has less diversity of words than other
classes. Moreover, the lowest F1 scores are in Network or
Security class because of the limited number of bug reports
in this class. The number of bug reports in this class without
text augmentation is 242, which makes this class the lowest
in terms of the size of its elements. Subsequently, less data is
accessible for training the algorithms, and this lack affects
the performance of the model in this class. Furthermore,
as illustrated in Tables 6 and 8, Network or Security class
has the highest precision values in most algorithms, which in
this class these algorithms return more relevant nature of bugs
than irrelevant ones.

V. DISCUSSION
This paper investigates the effect of machine learning algo-
rithms in nature-based prediction of bug reports. In detail,
a nature-based prediction model from bug reports based on
ensemble machine learning algorithm is proposed. Addi-
tionally, text augmentation technique is used to improve
prediction accuracy.

VOLUME 11, 2023 63929



S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

Four base machine learning algorithms have been used,
Random Forest (RF), Logistic Regression (LR), Multino-
mial Naïve Bayes, and Support Vector Classifier (SVC)
algorithms. Moreover, an ensemble machine learning model
is proposed using hard voting and soft voting. The model
achieves better accuracy thanmost existingmodels, using soft
voting, it achieves 90.42% without text augmentation, and
96.72% with text augmentation.

It observed that our proposed ensemble machine learning
model enhances the nature-based prediction accuracy than
base machine learning classifiers.

Furthermore, it observed that there is a significant impact
in prediction accuracy using text augmentation technique.
However, the effect of text augmentation technique is differ-
ent on each algorithm, as illustrated in table 9, without text
augmentation, the highest accuracy has been achieved by a
soft voting ensemble machine learning algorithm followed
by a hard voting ensemble machine learning algorithm, then
the SVC, RF, LR, and MNB classifiers. Whereas, with text
augmentation, the highest accuracy has been achieved by
soft voting ensemble machine learning algorithm followed by
SVC, then hard voting ensemble machine learning algorithm,
RF, LR, and MNB classifiers.

VI. CONCLUSION AND FUTURE WORK
This paper proposed a nature-based bug prediction com-
ponent using an ensemble machine learning algorithm that
consists of four base machine learning algorithms, Random
Forest, Support Vector Classification, Logistic Regression,
and Multinomial Naïve Bayes. The accuracy of the model
is 90.42%. Moreover, it utilizes a text augmentation tech-
nique to increase accuracy. Therefore, the highest accuracy
achieved by the proposed model increased to 96.72%. The
proposed model predicts the nature of the bug from six bug
categories, Program Anomaly, GUI, Network or Security,
Configuration, Performance, and Test-Code. Future work
will enhance this model by increasing the number of bug cat-
egories and recommending possible solutions for predicted
bugs to reduce the maintenance time.

ACKNOWLEDGMENT
Deanship of Scientific Research (DSR) at King Abdu-
laziz University (KAU), Jeddah, Saudi Arabia, has funded
this project, under grant no. (KEP-PhD-102-611-1443).
The authors, therefore, acknowledge DSR for the financial
support.

REFERENCES
[1] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, ‘‘Software testing

techniques: A literature review,’’ in Proc. 6th Int. Conf. Inf. Commun.
Technol. Muslim World (ICT4M), Nov. 2016, pp. 177–182.

[2] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi, ‘‘Deep neural
network-based severity prediction of bug reports,’’ IEEE Access, vol. 7,
pp. 46846–46857, 2019.

[3] W. Wen, ‘‘Using natural language processing and machine learning tech-
niques to characterize configuration bug reports: A study,’’ M.S. thesis,
College Eng., Univ. Kentucky, Lexington, KY, USA, 2017.

[4] J. Polpinij, ‘‘A method of non-bug report identification from bug report
repository,’’ Artif. Life Robot., vol. 26, no. 3, pp. 318–328, Aug. 2021.

[5] S. Adhikarla, ‘‘Automated bug classification.: Bug report routing,’’
M.S. thesis, Fac. Arts Sci., Dept. Comput. Inf. Sci., Linköping Univ.,
Linköping, Sweden, 2020.

[6] K. C. Youm, J. Ahn, and E. Lee, ‘‘Improved bug localization based on
code change histories and bug reports,’’ Inf. Softw. Technol., vol. 82,
pp. 177–192, Feb. 2017.

[7] N. Safdari, H. Alrubaye, W. Aljedaani, B. B. Baez, A. DiStasi, and
M. W. Mkaouer, ‘‘Learning to rank faulty source files for dependent bug
reports,’’ in Proc. SPIE, vol. 10989, 2019, Art. no. 109890B.

[8] A. Kukkar, R. Mohana, A. Nayyar, J. Kim, B.-G. Kang, and
N. Chilamkurti, ‘‘A novel deep-learning-based bug severity classification
technique using convolutional neural networks and random forest with
boosting,’’ Sensors, vol. 19, no. 13, p. 2964, Jul. 2019.

[9] A. Aggarwal. (May 2020). Types of Bugs in Software
Testing: 3 Classifications With Examples. [Online]. Available:
https://www.scnsoft.com/software-testing/types-of-bugs

[10] A. Kukkar and R. Mohana, ‘‘A supervised bug report classification with
incorporate and textual field knowledge,’’ Proc. Comput. Sci., vol. 132,
pp. 352–361, Jan. 2018.

[11] A. F. Otoom, S. Al-jdaeh, and M. Hammad, ‘‘Automated classification
of software bug reports,’’ in Proc. 9th Int. Conf. Inf. Commun. Manage.,
Aug. 2019, pp. 17–21.

[12] P. J. Morrison, R. Pandita, X. Xiao, R. Chillarege, and L. Williams, ‘‘Are
vulnerabilities discovered and resolved like other defects?’’ Empirical
Softw. Eng., vol. 23, no. 3, pp. 1383–1421, Jun. 2018.

[13] F. Lopes, J. Agnelo, C. A. Teixeira, N. Laranjeiro, and J. Bernardino,
‘‘Automating orthogonal defect classification usingmachine learning algo-
rithms,’’ Future Gener. Comput. Syst., vol. 102, pp. 932–947, Jan. 2020.

[14] T. Hirsch and B. Hofer, ‘‘Root cause prediction based on bug reports,’’ in
Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops (ISSREW), Oct. 2020,
pp. 171–176.

[15] Q. Umer, H. Liu, and I. Illahi, ‘‘CNN-based automatic prioritization of bug
reports,’’ IEEE Trans. Rel., vol. 69, no. 4, pp. 1341–1354, Dec. 2020.

[16] H. Bani-Salameh, M. Sallam, and B. Al Shboul, ‘‘A deep-learning-based
bug priority prediction using RNN-LSTM neural,’’ e-Inform. Softw. Eng.
J., vol. 15, no. 1, pp. 1–17, 2021.

[17] Ö. Köksal and B. Tekinerdogan, ‘‘Automated classification of unstructured
bilingual software bug reports: An industrial case study research,’’ Appl.
Sci., vol. 12, no. 1, p. 338, Dec. 2021.

[18] B. Alkhazi, A. DiStasi, W. Aljedaani, H. Alrubaye, X. Ye, and
M. W. Mkaouer, ‘‘Learning to rank developers for bug report assignment,’’
Appl. Soft Comput., vol. 95, Oct. 2020, Art. no. 106667.

[19] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson,
‘‘Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts,’’ Empirical Softw. Eng., vol. 21, no. 4,
pp. 1533–1578, Aug. 2016.

[20] X. Ye, R. Bunescu, and C. Liu, ‘‘Learning to rank relevant files for bug
reports using domain knowledge,’’ inProc. 22nd ACMSIGSOFT Int. Symp.
Found. Softw. Eng., Nov. 2014, pp. 689–699.

[21] Y. Tian, D. Wijedasa, D. Lo, and C. Le Goues, ‘‘Learning to rank for bug
report assignee recommendation,’’ in Proc. IEEE 24th Int. Conf. Program
Comprehension (ICPC), May 2016, pp. 1–10.

[22] D. Devaiya,Castr: A Web-Based Tool for Creating Bug Report Assignment
Recommenders. Lethbridge, AB, Canada: Univ. Lethbridge, 2019.

[23] M. Alenezi, S. Banitaan, and M. Zarour, ‘‘Using categorical fea-
tures in mining bug tracking systems to assign bug reports,’’ 2018,
arXiv:1804.07803.

[24] H. A. Ahmed, N. Z. Bawany, and J. A. Shamsi, ‘‘CaPBug-a framework for
automatic bug categorization and prioritization using NLP and machine
learning algorithms,’’ IEEE Access, vol. 9, pp. 50496–50512, 2021.

[25] R.-M. Karampatsis and C. Sutton, ‘‘How often do single-statement bugs
occur?: TheManySStuBs4J dataset,’’ inProc. 17th Int. Conf. Mining Softw.
Repositories, Jun. 2020, pp. 573–577, doi: 10.1145/3379597.3387491.

[26] X. Han, T. Yu, and D. Lo, ‘‘PerfLearner: Learning from bug reports
to understand and generate performance test frames,’’ in Proc. 33rd
IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2018, pp. 17–28.

[27] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal, and D. Sundmark,
‘‘Intermittently failing tests in the embedded systems domain,’’ in Proc.
29th ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2020, pp. 337–348,
doi: 10.1145/3395363.3397359.

63930 VOLUME 11, 2023

http://dx.doi.org/10.1145/3379597.3387491
http://dx.doi.org/10.1145/3395363.3397359


S. A. Alsaedi et al.: Nature-Based Prediction Model of BRs Based on Ensemble ML Model

[28] Ankit and N. Saleena, ‘‘An ensemble classification system for Twitter
sentiment analysis,’’ Proc. Comput. Sci., vol. 132, pp. 937–946, Jan. 2018.

[29] S. Kannan, V. Gurusamy, S. Vijayarani, J. Ilamathi, M. Nithya, S. Kannan,
and V. Gurusamy, ‘‘Preprocessing techniques for text mining,’’ Int. J.
Comput. Sci. Commun. Netw., vol. 5, no. 1, pp. 7–16, Oct. 2014.

[30] K. Rastogi. (Nov. 22, 2022). Text Cleaning Methods in NLP. Ana-
lytics Vidhya. Accessed: Jan. 23, 2023. [Online]. Available: https://
www.analyticsvidhya.com/blog/2022/01/text-cleaning-methods-in-nlp/

[31] B. Gaye, D. Zhang, and A. Wulamu, ‘‘A tweet sentiment classifica-
tion approach using a hybrid stacked ensemble technique,’’ Information,
vol. 12, no. 9, p. 374, Sep. 2021.

[32] S. Yang and H. Zhang, ‘‘Text mining of Twitter data using a latent Dirichlet
allocation topic model and sentiment analysis,’’ Int. J. Comput. Inf. Eng.,
vol. 12, pp. 525–529, Jun. 2018.

[33] A. Rai and S. Borah, ‘‘Study of various methods for tokenization,’’ in
Applications of Internet of Things. Singapore: Springer, 2021.

[34] Y. Tian, D. Lo, and C. Sun, ‘‘DRONE: Predicting priority of reported bugs
by multi-factor analysis,’’ in Proc. IEEE Int. Conf. Softw. Maintenance,
Sep. 2013, pp. 22–28.

[35] I. Akhmetov, A. Pak, I. Ualiyeva, and A. Gelbukh, ‘‘Highly language-
independent word lemmatization using a machine-learning classifier,’’
Computación y Sistemas, vol. 24, no. 3, pp. 1353–1364, Sep. 2020.

[36] Sklearn.feature_extraction.text.TfidfTransformer. Scikit. Accessed:
Jan. 24, 2023. [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.TfidfTransformer.html

[37] Sklearn.ensemble.randomforestclassifier. Scikit. Accessed: Jan. 24, 2023.
[Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html

[38] A. Bartosik and H. Whittingham, ‘‘Valuating safety and toxicity,’’ in ERA
of Artificial Intelligence and Machine Learning. New York, NY, USA:
Academic, 2021, pp. 119–137.

[39] S. G. F. M. De, C. A. Netto, M. A. H. D. Andrade, M. M. A. D. Carvalho,
and S. R. F. Da, ‘‘Engineering systems’ fault diagnosis methods,’’ in
Reliability Analysis and Asset Management of Engineering Systems. Ams-
terdam, The Netherlands: Elsevier, 2022, pp. 165–187.

[40] R. Gandhi. Naive Bayes Classifier. Medium. Accessed: Jan. 29, 2023.
[Online]. Available: https://towardsdatascience.com/naive-bayes-
classifier-81d512f50a7c

[41] Support Vector Machines. Scikit. Accessed: Jan. 29, 2023. [Online]. Avail-
able: https://scikit-learn.org/stable/modules/SVM.html

[42] Y. Yang, ‘‘Introduction,’’ in Temporal Data Mining Via Unsuper-
vised Ensemble Learning. Amsterdam, The Netherlands: Elsevier, 2017,
pp. 1–7.

[43] S. J. Simske, ‘‘Introduction, overview, and applications,’’ in Meta-
Analytics: Consensus Approaches and System Patterns for Data Analysis.
San Diego, CA, USA: Elsevier, 2019, pp. 1–98.

[44] C. Kim. Ensemble Learning-Voting and Bagging With Python.
Medium. Accessed: Jan. 30, 2023. [Online]. Available:
https://medium.com/@chyun55555/ensemble-learning-voting-and-
bagging-with-python-40de683b8ff0

[45] J. Brownlee. How to Develop Voting Ensembles With Python. Accessed:
Jan. 30, 2023. [Online]. Available: https://machinelearningmastery
.com/voting-ensembles-with-python/

[46] P. Tidke. Text Data Augmentation in Natural Language Process-
ing With Texattack. Analytics Vidhya. Accessed: Jan. 31, 2023.
[Online]. Available: https://www.analyticsvidhya.com/blog/2022/02/text-
data-augmentation-in-natural-language-processing-with-texattack/

[47] N. Umasankar. NLPAUG—A Python Library to Augment Your Text
Data. Analytics Vidhya. Accessed: Jan. 31, 2023. [Online]. Available:
https://www.analyticsvidhya.com/blog/2021/08/nlpaug-a-python-library-
to-augment-your-text-data/

[48] M. Shafiq, ‘‘Identifying an effective set of attributes for machine learning
based bug reports classification,’’ M.S. thesis, Fac. Comput., Dept. Com-
put. Sci., Capital Univ. Sci. Technol., Islamabad, Pakistan, 2021.

[49] Z. Imran, ‘‘Predicting bug severity in open-source software systems using
scalable machine learning techniques,’’ M.S. thesis, Dept. Comput. Inf.
Syst., Youngstown State Univ., Youngstown, OH, USA, 2016.

[50] N. Rahimi, F. Eassa, and L. Elrefaei, ‘‘An ensemble machine learning
technique for functional requirement classification,’’ Symmetry, vol. 12,
no. 10, p. 1601, Sep. 2020.

[51] R. Chillarege, ‘‘Orthogonal defect classification,’’ in Handbook of Soft-
ware Reliability Engineering, M. R. Lyu, Ed. Piscataway, NJ, USA: IEEE
Computer Society Press, 1996, pp. 359–399.

SHATHA ABED ALSAEDI received the B.Sc. degree in computer science
from UmmAlQura University, Makkah, Saudi Arabia, and the M.Sc. degree
in computer science fromTheUniversity of Queensland, Brisbane, Australia.
She is currently pursuing the Ph.D. degree in computer science with King
Abdulaziz University, Jeddah, Saudi Arabia. She is a Lecturer with Taibah
University, Yanbu, Saudi Arabia. Her current research interests include
software engineering, machine learning, and natural language processing.
In February 2017, she received the Dean’s Commendation for Academic
Excellence from the School of Information Technology and Electrical Engi-
neering, The University of Queensland.

AMIN YOUSEF NOAMAN received the B.A. degree in computer science
from the Faculty of Science, King Abdulaziz (KAU), Jeddah, Saudi Arabia,
the M.A. degree in computer science from McGill University, Montreal,
Canada, and the Ph.D. degree in computer science fromManitoba University,
Winnipeg, Canada. He was a consultant in many companies and took part
in founding several faculties and colleges with KAU. He was a Research
Assistant with the Research Institute of Montreal, Canada; and an Assistant
Professor, an Associate Professor, and a Professor with KAU. He occupied
many administrative positions with KAU, including a Secretary of the Com-
puter Sciences Council, Faculty of Computing and Information Technology;
the Vice-Dean of development and technology with the Community College,
the Deanship of Admission and Registration, the Deanship of Information
Technology; the Dean of Admission and Registration; and the Vice-President
of development with theDeputyMinistry of Education for Scholastic Affairs,
Saudi Arabia. Currently, he is the Vice President of graduate studies and
scientific research. His current research interests include big data, data
warehousing, data mining, bioinformatics, smart cities, and e-learning.

AHMED A. A. GAD-ELRAB received the B.S. degree in computer sci-
ence from the Faculty of Science, Alexandria University, Egypt, in 1999,
the M.S. degree in computer science from the Faculty of Science, Cairo
University, Egypt, in 2008, and the Ph.D. degree from the Nara Institute
of Science and Technology (NAIST), Japan, in 2012. Currently, he is an
Associate Professor with the Department of Computer Science, Faculty
of Computing and Information Technology, King Abdul-Aziz University,
Jeddah, Saudi Arabia. He is also an Associate Professor of ubiquitous and
mobile computing with the Department of Mathematics, Faculty of Science,
Al-Azhar University, Cairo, Egypt. His current research interests include
software engineering, cloud computing, mobile computing, the Internet of
Things applications, smart homes, data science, sensor networks, dynamic
distributed systems, big data, and mobile crowd sensing. He received the
NAIST Best Ph.D. Student Award, in March 2012; the Outperformance
Award from the Graduate School of Information Science, NAIST, in March
2012; and the 2011 IPSJ Yamashita Memorial Award (given to only one or
two papers among all papers presented in one year in each IPSJ SIG, Japan).

FATHY ELBOURAEY EASSA received the B.Sc. degree in electronics and
electrical communication engineering fromCairo University, Egypt, in 1978,
and the M.Sc. and Ph.D. degrees in computers and systems engineering
from Al-Azhar University, Cairo, Egypt, in 1984 and 1989, respectively,
joint supervision with the University of Colorado at Boulder, Boulder, CO,
USA. He is currently a Full Professor with the Department of Computer
Science, Faculty of Computing and Information Technology, KingAbdulaziz
University, Saudi Arabia. His current research interests include agent-based
software engineering, the IoT security, software engineering, big data man-
agement and security, distributed systems security, and exascale systems
testing.

VOLUME 11, 2023 63931


