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ABSTRACT This work introduces an alternative solution to costly conventional approaches for large-scale
travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data.
Through our case study of Chiang Mai University campus as a city, we developed a framework for inferring
and visualizing Wi-Fi data-based travel behavior by demonstrating how a Wi-Fi probe data can be analyzed
to infer trips and origin-destination flows. Specifically, our contributions include algorithms developed for
inferring spatial presence, residence, stay, trip, and trip distribution among places in the campus, as well as
campus inflow and outflow. Moreover, to handle the Wi-Fi access point data for the analysis, and visualize
the inferred trips and flows, an online visual analytics tool called Wi-Flow is developed as part of this work.
Our framework differs from the other studies with our residence and trip detection algorithms that produce
the result at the individual level as opposed to the overall network. The experimental results are intuitive and
insightful, providing useful information for area management. Our research underscores the significance
of utilizing Wi-Fi probe data in mobility modeling. Additionally, it introduces an opportunistic sensing
approach for estimating mobility flows, which not only contributes to our understanding of transportation
dynamics but also holds significance in comprehending the implications for carbon capture efforts.

INDEX TERMS Human mobility, origin-destination flow, travel behavior, trip inference, urban informatics,
visual analytics tool, Wi-Fi probe data.

I. INTRODUCTION
Human mobility has become a focus of urban planning
as urbanization accelerates. Movement of human beings in
space and time reflects the spatial-temporal characteristics
of how urban areas are utilized, which inherently describes
travel behavior and demand of the region. Information about
travel behavior is thus important for transport travel demand
modeling. Traditionally, household survey, roadside inter-
view, and traffic count have been used to collect travel
behavior data in a region or traffic analysis zone (TAZ).
Travel demand is then quantified based on these travel
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surveys. Typically, each subject recruited for a household
survey is asked to complete a diary of activities and travel on
a given day or week. The cost of a complete household survey
ranges between $150 and $300 per household, depending
upon administration and technology used. Due to its highly
laborious and costly effort, such household travel surveys are
conducted once every 10 years in most countries. The sur-
veyed data becomes as an input for transport demand models
that is typically used to predict future travel behavior and
demand, which have played an essential role in in managing
and planning for urban transportation systems [1], [2], [3].

Unfortunately, the data collected from a roadside interview
and a traffic count only provides a snapshot of travel demand,
while a household survey is costly and time-consuming as

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 63351

https://orcid.org/0000-0002-5716-9363
https://orcid.org/0000-0001-8218-7195


T. Jundee et al.: Inferring Trips and Origin-Destination Flows From Wi-Fi Probe Data

well as erroneous due inaccurate response from the survey
participants that relies on recall of their past journey details.
A recent alternative approach to travel data collection is to
make use of information and communication technologies
(ICTs) such as ubiquitous technology like global position-
ing system (GPS) sensors, which have been used in travel
surveys [4]. However, due to the privacy concerns and reg-
ulations for revealing such locational information to third
parties can pose user privacy violation issues as stipulated
by GDPR [5] and HIPAA [6], collecting GPS-based travel
behavior data at large scale thus becomes difficult and chal-
lenging. Recent attempts in GPS-based travel behavior data
collection have been limited to specific type of tracked indi-
viduals, such as university students [7] and customers of a
particular service provider where the data was obtained in
exchange of some incentives [8]. Privacy concerns largely
prevent this type of detailed mobility data to be available and
utilized extensively.

Opportunistic sensing data has become a valuable alter-
native source of travel behavior data. As opposed to the
active sensing paradigm where data is purposely or explicitly
collected for a very specific purpose, such as a patient data
is collected for a clinical diagnosis, an opportunistic sensing
data is the data that is exploited beyond its primary purpose
of collection. An example of an opportunistic sensing data
is call detail record (CDR) data, i.e., communication logs of
individual mobile device, that is collected for billing purposes
by a service provider i.e., telecom operator, but it can also
be analyzed to study people’s social behavior [9]. Locational
information of mobile users is collected whenever they con-
nect to the cellular network for a service, such as making or
receiving a call, surfing the Internet, or using SMS – i.e., the
connected cell tower location, rearrested to the mobile user is
recorded. Being a massive dataset in both cross-sectional and
longitudinal perspectives allows the CDR data to draw lots of
attention from the travel behavior research community. It has
been used in human mobility studies such as trip end detec-
tion [10], [11], trip distribution modeling [12], [13], transport
mode inference [14], [15], and route choice assignment [16].
The main advantage that opportunistic sensing data has over
its counterpart is its relatively low cost, which is nearly no
cost because it’s already been collected for its main pur-
pose. However, CDR’s availability is rather rare. Most CDR
datasets are only available for those with a non-disclosure
agreement (NDA). Publicly available datasets such as Nokia
Mobile Data Challenge dataset [17] and Orange Telecom
Data for Development Challenge (D4D) [18], [19] are becom-
ing dated, while privacy regulations are preventing a new
dataset from being available.

Here we explore another alternative opportunistic sens-
ing data source that is more accessible than the CDR,
while being able to provide such detailed locational infor-
mation. Wi-Fi probe data is a collection of user connectivity
logs of different access points (AP) across the network.
A mobile device is by default configured to steadily scan
and connect to an available Wi-Fi AP. As such, a series of

connected AP locations and corresponding timestamps of the
Wi-Fi users produce locational traces of individuals, which
can then be used for mobility analysis both at individual
and aggregate levels, reflecting travel behavior in different
aspects.

An early study by Sevsuk et al. [20] analyzed a Wi-Fi user
logging data from 3,000 APs in buildings across MIT campus
to describe occupancy and movement patterns of the users
in order to understand space usage and users of the space.
Understanding space usage can help with space planning
and designation, such as computational frameworks called
Eigenplaces [21] and Xplaces [22] that applied eigendecom-
position and clustering algorithms on campus Wi-Fi network
data to understand how space is utilized and how it can be
segmented accordingly. With using a university’s campus
environment as a testbed, Wi-Fi locational data across two
campuses from 550 APs over six months has been used
to highlight relationship between space environment and
movement of the users across different buildings and cam-
puses [23]. SinceWi-Fi network ismostly provided for indoor
usage, it thus becomes a good source for extracting indoor
mobility information. So, Trivedi et al. [24] used Wi-Fi logs
of a university’s campus network of 2,500 users over two
months to construct a multi-modal embedding transformer
to predict indoor mobility with analyzed mobility features
such as building type, user type (e.g., student, academic,
staff). On the other hand, the outdoor mobility has also been
explored with the Wi-Fi data. As human mobility is highly
predictable as we often repeat our travel patterns by revisiting
the same set of places over and over again [25], Wi-Fi data
has also been used to discover such significant places in
typical daily routines as well as usual locations of 191 mobile
users during 18 months in Lausanne, Switzerland [26]. Wi-Fi
probe data has been used to estimate population in a city
by different categories e.g., workers, residents, and visitors,
from 53 APs in lower Manhattan in New York City [27].
The same New York City dataset has also been explored to
analyze humanmobility [28] by using hourly aggregate popu-
lation count and applying a spatial network analysis with edge
frequency and direction representing mobility flows, which
are then mapped onto a road network by assigning APs to
nearest road segment.

This study is an attempt to recognize the potential usability
of Wi-Fi probe data in travel behavior research by demon-
strating how it can be analyzed to infer trips and flows in
a case study of campus network, realizing the vision of
smart city whose area uses different types of electronic data
collection sensors to supply information which is utilized in
managing assets and resources efficiently – i.e., transporta-
tion system in our case. Mobility estimation has a direct
impact on carbon capture efforts. By accurately estimating
mobility patterns, such as the movement of vehicles and
people, we can better understand the sources and levels of car-
bon emissions. This information is crucial for implementing
effective carbon capture strategies and targeting areas with
high emissions.
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FIGURE 1. System overview of trip/flow inference and visualization.

Our contributions include new algorithms for inferring
individual trips and Origin-Destination (O-D) flows based on
Wi-Fi probe data, as well as a web-based visual analytics
tool for handling, visualizing, and analyzing Wi-Fi probe
data. Our work differs from the previous studies with our
proposed method for inferring outdoor mobility in the notion
of O-D flows (i.e., the amount of trips made from an origin
to a destination) based on our newly developed residence
detection, and our proposed trip detection method that is at
the individual level as opposed to overall flows in a spatial
network. Moreover, we propose a new and different approach
to road network-based trajectory detection, which provides
another feasible alternative.

Note that the O-D flow is a term used in this study to reflect
on the quantitative aspect of movement flowing between
areas (origin-destination pairs) as described by anO-Dmatrix
that is used to assess the demand for transportation i.e., the
higher number of trips in the O-D matrix cell the more this
route is in demand.

II. METHODOLOGY
This section describes the data used in this study and our
methodology for selecting subjects for the analysis, detecting
presence, residence, and stay location, as well as inferring
inflow/outflow trips, and the development of our visual ana-
lytics tool. System overview of our methodology is depicted
in Fig. 1. Subject selection is done to ensure granular mobility
details. Presence detection process is developed to identify
the subject’s appearance as a series of visited places. Resi-
dence detection is for determining the main origin of each
device i.e., campus dorm. Stay detection is to identify loca-
tions at which the subject spent a substantial amount of time
i.e., making a stop for some activity such as reading at a
library, eating at a canteen, and so on. Once stay locations
are determined, a trip can be inferred as going from one stay
location (i.e., origin) to another (i.e., destination), between
which there may be intermediate locations or waypoints.
Consequently, inflow and outflow can then be inferred based
on the origins and destinations of aggregate trips. To visualize
these trips and inflows/outflows, a visual analytics tool is
design and developed.

A. WI-FI PROBE DATA
In this study, we used Wi-Fi connectivity data collected
from a Wi-Fi network of Chiang Mai University (CMU)’s
main campus. There were 3,116 access points (APs) in total,
serving an area of 2.93 km2 that houses the university’s
administrative center, 17 faculties, graduate school, dormi-
tories, campus resource facilities and services, as well as

FIGURE 2. Locations of 5,872 Wi-Fi access points across the CMU’s main
campus (enclosed in blue lines), where color differentiates groups of APs
based on their classified places such as building, office, parking lot, and
footpath. Main gates located in the north, east, and south sides of the
campus are labelled with markers.

sports facilities. The data was collected at 5-minute sampling
rate from each access point (AP) across the network. Each
record includes the AP’sMAC address, AP’s geo-coordinates
(latitude, longitude), AP’s classified place ID, connected
device ID (hashed MAC address), received signal strength
indicator (RSSI) between the connected device and the AP,
and timestamp. APs were grouped based on their locations
and classified into different place IDs, such as building, sports
ground, parking lot, and footpath. A (student, staff, or guest)
CMU account is only required for each device to begin its
connection with the Wi-Fi network for the first time. Then,
the device can auto-join the network. Since the network uses
a mesh topology, so each device continues to stay connected
to the network through APs with a strongest signal as the
user’s roaming location to location within the campus with
available 2.4-GHz and 5.0-GHz wireless bands. AP locations
within the CMU’s main campus (enclosed in blue lines) are
shown in Fig. 2, where color is used to differentiate groups of
APs based on their classified places. The APs located inside
buildings were strategically placed by the campus network
engineers for best service coverage.

Wi-Fi connectivity logs were collected for 26 days for this
study, from 9th January – 3rd February 2020, which consti-
tutes ∼40 GB of data including 133,754,260 records from
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3,116 unique APs classified into 74 places that altogether
served 291,124 different devices. Note that each user account
was allowed to register up to five devices.

B. SUBJECT SELECTION
Our interest was to extract trips made by users within the net-
work fromWi-Fi logs. We also would like to select users who
lived in the campus dorms to assemble detailed trajectories.
So, we selected device IDs that satisfy the following criteria
(during the study period).

1. Device connected to the network from more than
one place ID.

2. Device made an overnight connection from a cam-
pus dorm (10 p.m. – 6 a.m. next morning). Addition-
ally, the device must establish a connection at least
once every hour during this period.

3. Criterion #2 must be satisfied for all weekdays.
Note that the period from 10 p.m. – 6 a.m. is a night-time

curfew during which no entering or exiting dorm is allowed.
While not being used, a device switches to ‘sleep’ mode
in which its connection to the Wi-Fi network becomes less
frequent than when it’s in use. Observing a connection once
an hour is to ensure the device’s presence in the dorm – hence,
carried by a user who resides in the dorm. After applying
these criteria, we retained 4,803 device IDs for our analysis.

C. PRESENCE DETECTION
The next process was to determine the presence of each
subject as a series of places visited. To do so, consecutive
Wi-Fi connections of each subject were grouped together
based on the place IDs and a duration threshold (ε). Each
presence includes a starting timestamp, presence duration,
and place ID. Let Xj denote a set of all Wi-Fi connection logs
of subject j, such that Xj = {xj (1) , xj (2) , xj (3) , . . . xj

(
nj

)
},

where nj is the total number of connections and xj (i) is the
ith log defined as a set xj (i) = {apij, place

i
j, t

i
j} containing

information about its connected AP’s ID (apij), place ID

(placeij), and connection timestamp (t ij ). So, the subject j’s

presence can be defined as sj (i) =

{
τ ij , d

i
j , place

i
j

}
, where

τ ij is the starting time at the visited place placeij and d
i
j is

the visit duration. Methodologically, the presence detection
is described by the Algorithm 1.

The output is a series of visited places by the subject j (Sj)
or the presence of the subject j, where each sj (i) includes
the information on starting timestamp, presence duration, and
place ID. The threshold ε was relaxed to one hour during the
night-time curfew as the device may switch into sleep mode.
This threshold value may vary from case to case, depending
upon the network and device configurations. An optimal
threshold value is worth a future exploration.

D. RESIDENCE DETECTION
The place of residence is the main origin of each sub-
ject’s commuting trip, which collectively constitutes the most

Algorithm 1 Presence Detection

Input: a set of Wi-Fi connection logs of subject j
(
Xj

)
Output: a set of sequential places that subject j has visited

(
Sj

)
1 c = 0
2 for i = 1 to nj − 1 do
3 if t i+1

j − t ij > ε or placei+1
j ̸= placeij

4 d ij = t ij − tcj
5 sj (i) =

{
tcj , d

i
j , place

i
j

}
6 c = i+ 1
7 end if
8 end for
9 Sj =

{
sj (1) , sj (2) , . . . , sj(nsj )

}
10 return Sj

Algorithm 2 Residence Detection
Input: a set of residential places that subject j has visited(
Sresj

)
Output: residence of subject j

(
Resj

)
1 for i = 1 to msj do
2 rj (i) =

∑
k (d

k
j |place

k
j ∈ residential placei)

3 end for
4 Rj =

{
rj (1) , rj (2) , . . . , rj

(
msj

)}
5 Resj = argmax

i

(
rj (i)

)
?

6 return Resj

common trips in the road network in general [29]. In addition,
most trips are circular – i.e., a journey that begins and ends
at the same location, forming a circular route. This type of
trip can involve visiting multiple destinations along the way
and returning to the starting point without retracing the exact
same path. In our case, students who reside in a dorm travel
to places and eventually return to their dorm – i.e., the main
origin. So, it’s important to be able to identify the main origin
for each subject. This main origin will then serve an origin for
destinations defined by other significant place IDs such as
faculties, offices, and other dorms, which collectively forms
an O-D matrix describing the amount of trips flowing across
the campus i.e., O-D flow. As we had gathered subjects
who were campus dorm residents, so in this step we further
determined which dorm each subject was likely to live in.
We utilized the detected ‘presence’ of the subjects from the
Algorithm 1, especially during the night-time curfew i.e.,
10 p.m. – 6 a.m. The residence is determined as the place
visited and spent most time in during the curfew period. Let
Rj = {rj (1) , rj (2) , . . . , rj

(
msj

)
} denote a set of time spent

by the subject j in residential places. There were 15 places
that were classified as residential in our case, including five
male and 10 female dorms. Residence detection is described
methodologically in Algorithm 2.

Dorm residents were detected using the Algorithm 2.
The result is depicted in Fig. 3, where Fig. 3(a) shows a
bar chart comparing the number of detected residents in
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FIGURE 3. Residence detection result validation: (a) number of detected
residents compared against the actual number of dorm residents,
(b) correlation between the number of detected and actual numbers of
dorm residents.

Algorithm 3 Stay Detection
Input: Sj
Output: a set of subject j’s stays (Stayj)
1 c = 0
2 for i = 1 to nsj do
3 if d ij ≥ ε do
4 σ (c) = sj(i)
5 c = c+ 1
6 end if
10 end for
11 Stayj = {σ (1) , σ (2) , . . .}

each dorm against the actual number of residents reported
by the University, while Fig. 3(b) shows a linear correla-
tion between the two. The coefficient of determination or
R2-value is 0.787 and R-value is 0.887, which indicates a high
correlation and hence, our residence detection is reasonable.

E. STAY DETECTION
Since a trip is a journey made from one location to another,
thus it necessitates identification of potential locations for the
trip’s origin and destination, which are likely the place where
the traveler spends a considerable amount of time in or stays
while engaging in some activity. In this step, stay locations
of each subject are determined from which classification of
individual trip origins and destinations will be performed in
the next step (Section II-F).

By adopting our previous approach described in [30], the
place in which the subject’s presence lasts at least ε minutes
is considered as a location that the subject makes a ‘stay’,
otherwise the place is considered as a ‘waypoint’. In addition
to the origin and destination, a trip is also composed of
intermediate points or waypoints that provides a detail about
trajectory of the trip. So, a trip is a series of waypoints that
starts with an origin followed by intermediate points and
ended with a destination. Algorithm 3 describes our stay
detection methodologically.

F. TRIP INFERENCE
Each trip starts with an origin and ends with a destination,
while intermediate places collectively add a trajectory detail

FIGURE 4. Examples of inferred trips: (a) a few examples of complete and
incomplete trips represented with a solid and dash lines, respectively
with markers indicating an origin (O), destination (D), and waypoint (w)
of each trip; (b) all trips generated by subjects who are residents of a
female dorm.

into the trip as waypoints. So, an individual trip is a sequence
of visited places, i.e., subject’s presence, each classified into
origin, destination, or waypoint. A waypoint is defined as a
place inwhich the subject spends considerably a short amount
of time, i.e., presence duration is less than ε, as opposed
to the stay location (described in the Algorithm 3). The
stay location, on the other hand, can be identified as an
origin or destination or both. A set of each subject’s stays
obtained from the Algorithm 3 is used to guide our trip
reconstruction.

The basic idea is to reconstruct a trip based on continuity
of the subject’s presence (ε is used as a threshold). A trip can
be classified as complete or incomplete. A complete trip is a
trip that can be reconstructed with all three components i.e.,
an origin, waypoint(s), and a destination, or at least an origin
and destination, while an incomplete trip is a trip without
either its origin or destination or both. Trip inference method
is described in the Algorithm 4. In terms of the notations,
any trip c of subject j (tripj (c)) is defined as a set that can

contain an origin (origcj ), destination (destcj ), and a set of
waypoints (wcj ), i.e., tripj (c) = {origcj ,w

c
j , dest

c
j }, where

set wcj may contain intermediate waypoints of the trip, i.e.,

wcj = {wcj (1) ,wcj (2) , . . . ,wcj
(
ncj

)
}.

As a result of the Algorithm 4, a total of 440,997 trips were
inferred, including 357,287 complete trips and 83,710 incom-
plete trips. Examples of inferred trips are shown in Fig. 4,
where Fig. 4(a) shows a couple of examples of complete and
incomplete trips, and Fig. 4(b) shows all trips generated by
residents of a female dorm. Building footprint of the female
dorm is highlighted in blue, based on which its centroid is
used as a representative geo-coordinate.

In Fig. 4(a), trip #1 is a complete east-to-west trip with
three waypoints, while trip #2 is an incomplete trip (without
detected destination) and its origin shares a common location
with the trip #1’s destination. Trip #3 is an example of an
incomplete trip without its origin detected, while trip #4 is
a complete trip traveling from a male dorm situated near
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Algorithm 4 Trip Inference
Input: Sj and Stayj
Output: a set of subject j’s trips (Tripj)
1 orig, dest = 0, c = 1,w = ∅

2 for i = 1 to
∣∣Sj∣∣ − 1 do

3 if ti(i+ 1) − [t j (i) + d j (i)] < ε do
4 if sj (i) ∈ Stayj do
5 if orig ̸= 0 or w ̸= ∅ do
6 dest = sj(i)
7 tripj (c) = {orig,w, dest}
8 dest = 0,w = ∅, c= c+ 1,

orig = sj(i)
9 else
10 orig = sj(i)
11 endif
12 else
13 w.append(sj (i))
14 endif
15 else
16 if orig ̸= 0 or w ̸= ∅ or dest ̸= 0 do
17 if sj (i) ∈ Stayj do
18 if orig ̸= 0 or w ̸= ∅ do
19 dest = sj(i)
20 else
21 orig = sj(i)
22 endif
23 else
24 w.append(sj (i))
25 endif
26 tripj (c) = {orig,w, dest}
27 c = c+ 1
28 endif
29 orig, dest = 0,w = ∅

30 endif
31 end for
32 Tripj =

{
tripj (1) , tripj (2) , . . .

}

the center of the campus to a bank in the north direction.
In Fig. 4(b), most trips are intuitively generated from the
dorm as the primary origin. A relatively large number of
trips are made to nearby places in the west side of the dorm,
which are the areas where other female dorms are situated.
These presumably are friend visit trips or going for food in
other female dorms’ canteens. At CMU, student dorms are
restricted to gender-exclusive housing policy, including both
stay and guest visit. Although students are allowed to eat at
any dorm’s canteen, female students have a tendency to eat at
their female dorms unlike the male students. There are also
trips to different faculties, which are presumably going to
lectures.

G. INFLOW AND OUTFLOW INFERENCE
A set of inferred trips from the Algorithm 4 allows us to
further examine trip distribution – i.e., the number of trips

Algorithm 5 Inflow and Outflow Inference

Input: a set of subject j’s incomplete trips (Tripincj ), and G
Output: a set subject j’s inflow and outflow trips
(inflowj, outflowj)
1 inflowj, outflowj = ∅

2 for i = 1 to
∣∣∣Tripincj ∣∣∣ do

3 if tripincj (i) : dest ij exist and w
c
j (1) ∈ G do

4 inflowj.append(tripincj (i))

5 else if tripincj (i) : origij exist and w
c
j

(
ncj

)
∈ G do

6 outflowj.append(tripincj )
7 end if
8 end for
9 return inflowj, outflowj

that occur between each origin and each destination zone
(or place). The complete trips can be used to explore trip
distribution between places on campus, while the incomplete
trips can be further processed and utilized to discern the
incoming and outgoing movement of the whole campus’s
population.

Trips that are originated from outside of the campus are
considered incoming trips. So, to infer about campus inflow,
incomplete trips are taken into consideration, especially those
with no origins. A trip is inferred as an incoming trip if it is an
incomplete trip that has no origin and its first waypoint is one
of the places nearby the campus gates. Likewise, a trip can be
inferred as an outgoing trip if it is an incomplete trip that has
no destination and its last waypoint is one of the places nearby
the gates. Algorithm 5 describes our method for inferring the
campus inflow and outflow, where G denotes a set of places
that are in vicinity of the campus gates. These places that are
considered near the gates and used for inferring the campus
inflow and outflow are shown in Fig. 5. There is a total of
238 APs that belong to 13 places and outdoor facilities are
used as the gatekeepers.

H. VISUAL ANALYTICS TOOL
To carry out this study, there was a need to visualize and
manage our geospatial data, which included AP geolocations,
trips, and flows. Conventional GIS tools, such as ArcGIS1

(closed source) and QGIS2 (open source), are capable of
visualizing and managing our data, however sharing results
across platforms and online capabilities are troublesome.
An online tool like Kepler.gl3 is a better option for our study
with its open-source and online solutions, but data labeling
and grouping capabilities are lacking. So, we developed our
own web-based tool that can visualize and manage geospatial
data in an interactive way, calledWi-Flow.

1https://www.arcgis.com
2https://qgis.org
3https://kepler.gl
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FIGURE 5. Places (highlighted) that are used as the gatekeeps include:
(a) three places and outdoor APs near the North gate composed
of 10 APs, (b) three places near the East gate consisting of 27 APs,
(c) three places near the road and South gate #1 consisting of 150 APs,
and (d) four places near the South gate #2 consisting of 51 APs.

Wi-Flow was developed with React.js,4 which is an
open-source JavaScript framework, widely used for build-
ing interactive user interfaces and web application. While
React.js was used for web development, we used Deck.gl5

to handle 2D and 3D data visualization as it is a widely
used WebGL6-powered library for visualizing large spatial
datasets on the fly and with minimal complexity. Deck.gl
utilizes WebGL library that provides access to the GPU on
the user’s computer asynchronously, so it is able to handle
millions of data points fast. As such, Deck.gl is very suit-
able for rendering a large number of markers, such as AP
locations, on a map. In addition, Deck.gl provides a set of
view layers such as scatter plot, heatmap, and 3D renderer
that serve our purpose. Furthermore, Deck.gl works perfectly
with Nebula.gl7 that allows us to use Selection Layer for the
data point selection with mouse for our AP labeling – i.e.,
selecting multiple APs on the map by dragging the mouse.
This capability allowed us to label and group all APs into
places (as described in Section II-A).

A screenshot of our developed tool, Wi-Flow is shown
in Fig. 6, where Mapbox Dark8 is used as the background

4https://reactjs.org
5https://deck.gl
6https://get.webgl.org
7https://nebula.gl
8https://www.mapbox.com/maps/dark

FIGURE 6. Snapshot of our developed visual analytics tool namely,
Wi-Flow while the user is in the data labelling mode.

map. The user can interact with the tool with mouse to select
different options. In the upper right area of the tool, the top bar
(#1) is the area where the user can choose between labeling
or O-D modes. In the labelling mode as shown in Fig. 6, the
second lower bar pointed by #2 marker is where the user can
choose to import an AP geolocation data (can be either CSV
or JSON formats), export a resulting data in CSV format,
export a resulting data in JSON format, or select data points
for labelling task, from left to right icons, respectively. In #3
bar area there is an icon that allows the user to create a new
group (e.g., place ID) for selected data points e.g., grouping
new APs. Area pointed by #4 marker is the list of all place
IDs from which the user can select to assign, edit, or delete
AP labels by their place IDs. Marker #5 points at the main
graphics display.

In the O-Dmode (when the OD icon is clicked on), the user
can choose to display the individual trips or aggregate O-D
flows from any selected place of origin (i.e., dorms). In the
O-D mode, the user can choose the origin by its place ID,
subject by its device ID, and start/end times from which the
tool displays the result with 3D graphics as well as statistical
information regarding top destinations, as shown in Fig. 7.
When the user selects a particular subject by its device

ID, the tool then allows the user to choose to view the
selected subject’s trips in the forms of most likely routes
used, O-D flows, waypoints, and/or heatmap by clicking
on Routes, O-D, Waypoints, and Heatmap options, respec-
tively as shown in Fig. 8. The most likely route used was
estimated using the Google Directions API9 based on the
origin, destination, and waypoint geolocations (generated by
the Algorithm 4). For demonstration, a video clip showing
how Wi-Flow tool works is available at https://youtu.be/
K-k41aTmOPA. The actual Wi-Flow application is avail-
able at https://wiflow.citycontext.info. Note that there might
be some slight differences in the user interface and/or
results from what’s shown in this paper as the tool may
have progressed further in its development, such as extend-
ing its coverage beyond the main campus (there are three

9https://developers.google.com/maps/documentation/directions/overview
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FIGURE 7. Snapshot Wi-Flow while the user is using the O-D mode with
O-D flow option. This example shows outflow from a female dorm (place
ID: PINKD).

FIGURE 8. Snapshots of the O-D mode displaying both routes and O-D
flows: (a) an individual trip and (b) all trips made by a selected subject.

campuses: main, medical science, and agro-industry cam-
puses). For demonstration purposes, a processed result
has been loaded into the tool for the user to view the
result of the CMU Wi-Fi network. A sample file con-
taining locations of the CMU Wi-Fi APs is available at
https://wiflow.citycontext.info/sample if one wants to try its
labelling mode.

FIGURE 9. Experimental result of varying the threshold value (ε) from
which ε = 7 yields the highest result in terms of accuracy, recall,
precision, and F1 value.

III. RESULTS
To evaluate our developed trip inference, a set of ground truth
data was collected using our own developed mobile app that
can collect GPS trajectory of the user at a sampling rate of
one second. The user identified each trip through the app
i.e., the origin and destination were marked. This origin and
destination information was later labelled with the place ID
for our evaluation. A total of 54 labelled trips were collected
as a ground truth, which includes trips that were different
in average speed, travel distance, and transport mode. Four
transport modes were considered including walking, cycling,
motorcycling, and driving.

Our first experiment was to vary the duration threshold (ε)
to obtain a value that yields the best performance rates in
terms of the accuracy, recall, precision, and F1 value, based
on the number of exact matches of the actual and inferred trips
(i.e., origin and destination). The result is shown in Fig. 9,
where the threshold varies from 1 – 30 minutes, from which
the best performance (accuracy = 0.855, recall = 0.870, pre-
cision = 0.979, and F1 = 0.922) was found at ε = 7 minutes.
So, this ε was used for the rest of our experiment as well as
the implementation of our online tool, Wi-Flow.

To further investigate on what may affect the performance
of our approach, we examined the performance from the
point of view of trip speed, distance traveled, and transport
mode. When trips are separated by their average speed, it can
be observed that the performance increases with the speed,
as shown in Table 1. Intuitively, this may be due to the fact
that some places (i.e., faculty, facility, etc.) cover a large area
which consequently requires an extended period of time to
travel through – and in some cases, it surpasses the threshold
(ε) and so causes an incorrect inference of the stay location.
When the performance is considered from the perspective

of trip distance, Table 2 shows that the performance values
increase with the distance. Trips that were at least 1 km
can be detected perfectly. This may be due to the overlap-
ping of nearby places’ Wi-Fi coverage areas, as well as the
trip speed that is likely to be associated with the distance
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TABLE 1. Experimental result based on average trip speed.

TABLE 2. Experimental result based on trip distance.

TABLE 3. Experimental result based on transport mode.

traveled – i.e., a longer trip tends to trigger a higher travel
speed [31].

The most common modes of transportation in the CMU
campus are walking, cycling, motorcycling, and driving.
When trips are separated into these common modes, the per-
formance values gradually increase from walking to cycling
to motorcycling and eventually driving. This is in line with
the result observed in Table 1, as the trip speed is highly
determined by the transport mode used.

These results suggest that generally our trip inference
method performs reasonably well with an accuracy rate of
0.855 overall. It works particularly well with motorized
modes of transportation such as motorcycling and driving,
that can travel at least on average speed of 24 km/hour, which
is still under the campus speed limit of 40 km/hour.

So, we implemented our framework on the entire Wi-Fi
probe data, which then allows us to observe interesting and
useful insights concerning trips made on campus. As shown
in Fig. 10(a), when considering the number of trips generated
in each day of the week, the result shows that the lowest num-
ber of trips per weekday on average occurs on Wednesday
(15,050.33 trips/day), which is the day that holds 180-minute
lectures that are less offered than 60 or 90-minute lectures
on other weekdays, i.e., the 2-day pattern classes (Monday-
and-Friday (M-F) and Tuesday-and-Thursday (T-H) classes).
Tuesday and Thursday have the highest average numbers of
generated trips 20,480 trips/day and 21,244 trips/day, respec-
tively), which is likely due to T-H classes. As reflected by less

FIGURE 10. Average number of generated trips: (a) the amount of trips
observed per day in each day of the week, (b) the amount of trips
observed per hour in each hour of the day.

FIGURE 11. Average number of trips observed in each day of the week
and in each hour of the day.

crowded trips on Mondays and Fridays (17,346.25 trips/day
and 18,961.50 trips/day, respectively), the M-F classes were
seemingly less enrolled by the students. Intuitively, the week-
ends have much lower number of trips than the weekdays as
most classes are offered on weekdays. This also tells us that
most students tend to stay at their dorms and so don’t travel
much on weekends or when there isn’t a class.

Hourly, trips are observed mostly around noon (on aver-
age 1,980.54 trips), which is a lunch time. Second most
traffic hour is 9 a.m. period (1,595.42 trips), during which
many students are presumably rushing to classes. There were
expectedly very few trips made during the curfew period.

Overall, as summarized in Fig. 11, there is a heavy traffic
around 9 a.m. hour and noon on Tuesday and Thursday most
likely due to the T-H classes. Likewise, the M-F classes seem
to also create a similar traffic pattern for Monday and Friday.
Expectedly, a much low traffic is on the weekends than the
weekdays.

A. TRIP DISTRIBUTION (INTERNAL FLOWS)
Trip distribution is the second step in the four-step transport
planning process [32], which matches the origins with des-
tinations and subsequently models the number of trips that
occur between each origin zone and each destination zone
(or TAZ). A trip distribution model is then used to describes
how trips are distributed across TAZs and predict the spatial
pattern of trips or flows between them.

When dorms are considered as TAZs, Fig. 12(a) shows a
chord diagram illustrating how trips are distributed across
15 dorms (five male and 10 female dorms). Place IDs for
female dorms are LADY1 – LADY8, PINKD, and 40YD,
while five male dorms are GENT3 – GENT7. The result
shows that there is a high number of cycle trips i.e., trips
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FIGURE 12. Resulting trip distribution among 15 dorms: (a) chord chart
showing how trips are distributed among dorms, (b) statistical
relationship between travel distance and number of trips.

FIGURE 13. Chord charts showing how trips are distributed between
campus facilities each gender dorm type: (a) male and (b) female dorms.

begin and end at the same TAZ. The number of trips seems to
vary with distance between dorms. More trips are distributed
to dorms nearby than further away. As shown in Fig. 12(b),
the number of trips somewhat has a reverse proportional
relationship with the travel distance that can be described
by a negative exponential function, y = −269.823x0.186 +

993.417 with r2 = 0.547, which is in line with previous
studies in transportation research [33], [34]. The r2 value isn’t
as high as one may expect (though its correlation coefficient
value, r = 0.740 can already be considered high [35]). This
is due to the fact that there are also other influential factors for
how trips are generated and distributed, nonetheless the travel
distance that often requires a varying level of effort (mostly
time spent) as its cost remains one of the top factors.

Commuting is a common and recuring trip made between
one’s residence and workplace, which constitutes the major-
ity of trips made by individuals and hence is one of the
major causes of traffic congestion [29]. As our subjects are
most likely students who live in the campus dorms, which
can be considered as place of residence and subsequently
faculties where they study can be reasonably considered as
workplaces – as campus deemed as city.

Flow of trips between male dorms and different faculties
across the campus is shown in a chord chart in Fig. 13(a).
There are a lot of trips made to and frommale dorms and SCI,

FIGURE 14. Campus map with labelled places.

FIGURE 15. Top 10 (a) origins and (b) destinations.

which is the Faculty of Science, which offer most mandatory
introductory courses for all majors. Huge incoming and out-
going flows are also observed for REG, which is the place that
hosts the registration office as well as two 3-story buildings
that are used for multidisciplinary course lecturing. On the
other hand, Fig. 13(b) shows how female trips are distributed.
Similar observation with the male trips can be made here
where large flows are observed for both SCI and REG. The
main difference is the female trip volume is less thanmale one
to ENG, which the Faculty of Engineering where there are
many more male than female students. As a spatial reference,
Fig. 14 illustrates the campus map with labelled place IDs.
The top 10 places that generate most trips are SCI, REG,

40YD, LADY1, EDU, LADY4, HM, GENT6, LADY2, and
GENT3, respectively. Note that EDU is the Faculty of Edu-
cation, HM is the Faculty of Humanity. On the other hand,
the top 10 places that attract most trips are SCI, REG,
40YD, LADY1, EDU, HM, LADY4, GENT6, LADY2, and
GENT3, respectively. The number of trips generated and
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FIGURE 16. Residence detection result validation: (a) number of detected
residents compared against the actual number of dorm residents,
(b) correlation between the number of detected and actual numbers of
dorm residents.

attracted by these top places is shown in Fig. 15. Largest
flows are centered around SCI and REG in both directions.
Both lists contain the same places within slightly different
orders, which intuitively suggest that places that generate lots
of trips also attract a comparably large volume of trips as
well.

B. CAMPUS INFLOW AND OUTFLOW (EXTERNAL FLOWS)
Managing traffic in and out of the campus or a city area is
important for transport planning, which generally requires
traffic count information that is costly and laborious.With our
ubiquitous sensing approach using Wi-Fi probe data, campus
inflow and outflow can be reasonably estimated (with the
Algorithm 5). The amount of campus inflow and outflow
in terms of the average number of trips in each day of
the week is shown in Fig. 16(a), along with a correspond-
ing standard deviation bar. In general, the levels of inflow
and outflow are relatively comparable in each day – and
hence, intuitively exhibiting an expected balance of flows
in both directions. Larger flows are observed on weekends
than weekdays, which are likely due to the regular weekday-
only-class schedules of most students who then travel in and
out the campus more often on the weekends. The M-F, T-H,
and W class patterns also play a role in the inflow-outflow
travel behavior as the matching patterns also are observed
in the result. When flows are inspected hourly, as shown
Fig. 16(b), the inflow level is higher than the outflow during
the nighttime (late night to early morning periods i.e., 10 p.m.
– 5 a.m.), while the opposite trend is observed in the rest of
the hours of the day i.e., 6 a.m. – 9 p.m. There is a gradual
change from one trend to the other. Outflow has the highest
deficit at 6 p.m. period, while the inflow has its highest deficit
observed during 2 a.m. period. The results make sense as
students may go out of the campus for a dinner in the evening,
while late night inflow could be trips made by male students
whose dorms have no curfews.

Regarding the flows coming in and out through each gate,
Fig. 17 shows the average number of trips daily through each
of the four gates. South gate #2 has the highest flow level
closely followed by the North gate, then South gate #1, while
the East gate has the lowest flow level. There are several
street food vendors, restaurants, and shops near the North and
South gates located just outside the campus, so these shops
are much more accessible to students by using the North

FIGURE 17. Average number of trips through campus gates.

and South gates than the East gate, which is mainly used
for getting on a highway or traveling to the city center. This
result seemingly suggests that most inflow and outflow are
presumably associated with food and shopping. We’d like to
note that there are also other gates, but smaller than these four
main gates and with some restrictions such as opening hours
and allowed vehicle types. Inflow and outflow detected by
our algorithms are by no means all the trips coming in and out
from the campus. Speed of the vehicle can certainly play a big
role in the trip detection at the gates. Device connectability is
also among other factors for a gate-passing trip to be detected.
Nonetheless, the trends observed from the detected inflow
and outflow is intuitive and useful for themanagement’s point
of view.

IV. CONCLUSION
Conventional approaches to travel behavior data collec-
tion such as household survey, traffic count, and roadside
interview are costly, laborious, and time-consuming. With
today’s ubiquitous technology, the opportunistic sensing
approach has emerged as an exciting and promising alter-
native. A ubiquitous computing environment that aims to
seamlessly connect people and things anywhere such as
Wi-Fi network allows us to capitalize on the opportunistic
sensing data for gaining insights into spatial distribution of
human mobility. In this work, we developed a framework for
inferring and visualizing Wi-Fi data-based travel behavior
by demonstrating how a Wi-Fi probe data can be analyzed
to infer trips and O-D flows in a case study of campus
network. Particularly, we proposed algorithms for inferring
spatial presence, residence, stay, trip, and trip distribution
among places in the campus, as well as campus inflow and
outflow. In addition, tomanage theWi-Fi access point data for
the analysis, and visualize the inferred trips and O-D flows,
an online visual analytics tool called Wi-Flow was developed
with React.js for building our web application with an inter-
active user interface, along with Deck.gl for rendering a large
number of spatial data points (i.e., APs) on a map, as well as
providing other geospatial data visualization functionalities
such as scatter plot, heatmap, and 3D renderer.

The main difference between our work and other previous
studies is our proposed methodology for inferring outdoor
mobility in the notion of O-D flows, which is based on our
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residence detection and trip detection algorithms that produce
the result at the individual level as opposed to the overall flow
in a spatial network as previously described in the literature.
The residence detection result was validated against the actual
dumber of dorm residents with a relatively high correlation.
Based on a ground truth, our framework performs generally
well with a reasonably high accuracy. Particularly, it performs
well for trips with an average trip speed of at least 24 km/hour.
Based on our framework, the amount of trips detected in dif-
ferent days of the week and hours of the day show the intuitive
trends that are in line with the campus teaching schedules.
Our internal trip distribution result is in line with the trans-
port modeling principle, where the relationship between the
travel distance and the number of trips is described well by
a negative exponential function. The internal trip distribution
statistically informs us of places with large and small flow
magnitudes, so that a better area utilization can be considered.
Lastly, the results of the campus inflow and outflow uncover
insightful trends temporally on how trips are made in and out
of the campus, as well as spatially on how each campus gate is
used, which could potentially lead to a more in-depth analysis
of trip purpose and activity-based mobility.

There are, nonetheless, some limitations of our work that
can be further invested in the future, such as issues that could
undesirably affect our trip detection like network connection
and device connectability that may cause disconnections and
hence information loss in theWi-Fi logs, and issueswith users
carrying multiple devices while traveling that may cause over
detected trips.

Network disconnection can unpleasantly cause some errors
in trip inference in two main scenarios; (1) disconnection
occurs at stay location and (2) disconnection occurs at way-
point location(s).

In the Scenario 1, there are two situations – firstly when the
disconnection time< ε, and secondly when the disconnection
time ≥ ε. First situation doesn’t affect the trip inference.
However, the second situation may affect the stay duration
and consequently may have an impact on the trip inference in
two possible cases.

Firstly, Case 1.1 is when there is a partial loss of stay
presence. This won’t affect the trip inference if the remain-
ing stay presence lasts at least ε. Otherwise, this will cause
the stay to become misinterpreted waypoint(s). One of the
possible approaches to mitigate these incorrect waypoints is
to make use of the person’s past trips to seek for repeated
patterns and consider its likelihood that the person repeats
the same trip, such as eating at the canteen during the lunch
time or having a class in the lecture hall, for instance. Yet,
this issue is interesting and challenging, and hence worth a
future investigation on systematic approaches to mitigate or
even avoid this kind of erroneous waypoints.

Secondly, Case 1.2 is when there is an entire loss of
stay presence. This case will cause an incomplete trip (as
described in Section II-F). Depending upon the disconnection
time, if the adjacent (nearest) waypoint is still present, then
the stay location may be estimated from the trip’s direction

i.e., heading toward a particular place (considered a desti-
nation) or leaving from a particular place (considered an
origin). However, if the disconnection time is extensive, then
the recovery becomes much more challenging and hence it’s
worth a future investigation. One of the possible approaches
could be using the individual historical trip patterns and
its likelihood of repeating the same journey. Nevertheless,
a related issue is to first recognize that there’s actually a loss
of entire stay presence and its adjacent waypoints.

In the Scenario 2, there are two situations to be considered.
First one is when the disconnection time < ε, which will
not affect the trip inference. In the second situation, however,
when the disconnection time ≥ ε, this will undesirably affect
the trip inference in two cases.

The first case, Case 2.1 is when there is a loss of some
waypoints of the trip. There will be a need to reconstruct the
trip. So, it’d be an interesting future investigation into how to
reconstruct the lost waypoints and recomplete the trip. One of
the plausible approaches is to interpolate the trip’s waypoints
by implementing a trajectory data interpolation method such
as Spline, Neural Neighbor, and Local regression (LOESS).
This could be complemented by the road network informa-
tion (e.g., road direction, road type, etc.) as well as taking
consideration of other trips’ waypoints.

The second case, Case 2.2 is when there is a loss of all
waypoints of the trip. In this case, there will be a need for
constructing the whole trip’s waypoints, which is also worth
exploring as a future study. One of the possible solutions
could be taking probabilistic approach by utilizing other trips’
waypoints along with the road network’s spatial data that
could provide a good guideline.

In a real-world city environment where there are challeng-
ing areas such as tunnels, hills, and regions with precarious
connections, these connectivity issues could arise. On the
bright side, these issues open up unique opportunities for
research and intriguing directions for future development of
related topics around trajectory data mining.

Furthermore, collecting a large-scale group truth data is
one of the main challenges for the opportunistic sensing
approach particularly for a large-scale travel behavior data
collection. It is still an open question of how to sufficiently
validate results obtained from such data. Recent studies have
employed intermediate result validations, such as comparing
an intermediate result against publicly available data like cen-
sus data (as we did in Section II-D), matching the result with
the known principles and theories (as we did in Section III-A),
and using a small-scale ground truth (as we did in Section III).
We hope that these limitations motivate future studies and
development of better solutions.

This study introduces an alternative approach to travel
behavior data collection in a more convenient, cost efficient,
and sustainable way than the conventional approaches. As a
campus is like a miniature city (with high-resolution spatial
information) that is self-contained community with a variety
of buildings, facilities, and amenities that serve the needs of
the people who live, work, and study there, so this work is
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an attempt to realizing the vision of smart city where differ-
ent types of electronic data collection sensors are employed
to supply information which is used to manage assets and
resources efficiently – i.e., transportation system in our
case.

Accurate mobility estimation also allows us to identify
traffic congestion hotspots and areaswith high transportation-
related carbon emissions. This knowledge enables us to
prioritize the deployment of carbon capture technologies
in these areas, effectively capturing and mitigating emis-
sions at the source. Furthermore, mobility estimation helps
in evaluating the effectiveness of carbon capture initia-
tives. By monitoring changes in mobility patterns over time,
we can assess the impact of various interventions, such as the
introduction of electric vehicles or improvements in public
transportation infrastructure. This data allows us to optimize
carbon capture strategies and make informed decisions to
reduce overall carbon emissions.

In the future, such Wi-Fi probe data might be able help us
understand semantics attached to trips such as what people
are doing through their Wi-Fi activity. Other opportunistic
sensing data sources could also be exploited in the future,
such as GPS traces from a running app like Strava or Nike
Run, which are also increasing available. We hope that this
work helps pave the way for cities as well as miniature cities
like university campuses to better understand people’s behav-
ior and life, especially after the COVID that has changed the
way we live and work.
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