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ABSTRACT In the absence of depth-centric sensors, 3D object detection using only conventional cameras
becomes ill-posed and inaccurate due to the lack of depth information in the RGB image. We propose a
multi-camera perception solution to predict the 3D properties of the vehicle obtained from the aggregated
information from multiple static infrastructure-installed cameras. While a multi-bin regression loss has been
adopted to predict the orientation of a 3D bounding box using a convolutional neural network, combining it
with the geometrical constraints of a 2D bounding box to form a 3D bounding box is not accurate enough
for all the driving scenarios and orientations. This paper leverages a vision transformer that overcomes the
drawbacks of convolutional neural networkswhen there are no external LiDARor pseudo-LiDARpre-trained
datasets available for depth map estimation, particularly in occluded regions. By combining the predicted
3D boxes from various cameras using an average weighted score algorithm, we determine the best bounding
box with the highest confidence score. Comprehensive simulations for performance analysis are shown from
the results obtained by utilizing the KITTI standard data generated from the CARLA simulator.

INDEX TERMS Autonomous vehicles, deep learning, object detection, vision transformer.

I. INTRODUCTION
Recently, there has been a significant evolution in automotive
technology, including driver assistants and automated driv-
ing systems, due to their ability to improve human life by
emphasizing higher safety and convenience, boosting mobil-
ity, and reducing travel time, particularly in dense urban
environments [1]. Thanks to the rapid advancement of deep
learning and artificial intelligence in computer vision and
robotics, autonomous vehicles are no longer science fiction
since they can leverage the impressive outcomes of imple-
menting deep learning. However, as the degree of autonomy
increases, extensive testing and training are required [2] in
order to be safer than human-controlled cars in perception,
planning, and control subtasks [3], [4]. The visual percep-
tion of autonomous cars to detect the presence of other
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vehicles, pedestrians, and other entities, is highly dependent
on 3D object detection and pose estimation techniques. Light
Detection andRanging (LiDAR)-based solutions [5] and their
point cloud outputs are usually utilized to detect objects in
many autonomous vehicle projects [6], [7], [8]. However, the
collected data from LiDAR has to undergo several filtering
processes, which include noise removal, downsampling, and
transformation, before being applied to real-time models.
These extensive processes make the involvement of LiDAR
data very expensive. There exist some point cloud multi-view
3D object detection techniques that can also predict the 3D
bounding boxes by fusing LiDAR and RGB images [9], [10].
On the other hand, using single-view RGB images can
reduce sensor requirements and therefore be less expensive
in real-world applications [11], [12]. Considering multi-view
RGB images promises the potential for more accuracy in
detection than the efforts based on single-view data. This
aggregated perceptive information from multiple cameras
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placed at different locations can be helpful in sensing the
overall activity and behavior of the environment, which in
turn will be beneficial to detect an accurate model compared
to the single camera scenario [13].

To accurately detect and localize the vehicle, and depend-
ing on the application and environment, the sensor’s pro-
cessing and decision-making units [14] may be installed on
the vehicle, on a roadside unit, or as a combination of both.
In terms of cost, roadside unit installation is the best choice
since it can provide the surroundings from a static observer
point of view and remove the requirement for the camera
and other sensors to be installed on the car, given that there
are some vehicles that do not support this technology. While
well-developed 2D object detection algorithms are capable
of handling large variations in viewpoint and clutter, reliable
and accurate 3D object detection remains an open problem
despite some promising recent work in this domain [15].
Monocular depth estimation and 3D bounding box generation
are among the most crucial challenges in autonomous driving
when it comes to detecting the environment. In the absence
of depth-centric sensors such as radar, LiDAR, or bird’s
eye view sensors, object detection using only conventional
cameras become ill-posed and inaccurate due to the lack of
depth information in the RGB image and hence, localizing
the vehicle and generating a 3D bounding box becomes
challenging in the 3D space. Furthermore, the geometrical
relations between 2D and 3D make it challenging to regress
directly using a single-view image. Although LiDAR-based
solutions can fill the performance gap between 2D and 3D
detections [16], however, it is a challenging task to recover a
7-DoF pose from a 4-DoF image without using any LiDAR
sensor. Previous state-of-the-art methods utilize either some
external depth estimation networks [17] or assume the prior
information is available [18]. Moreover, occlusion can dra-
matically reduce the camera’s ability to detect an object
successfully by relying on the local information obtained
from the convolutional filters. The only effective way to
understand the occluded images due to dark or bad-weather
conditions is by inspecting the entire image with a self-
attentive mechanism. Considering the challenges faced by
the camera’s failure to detect occlusion, transformer [19] has
been proved as a de facto standard model to detect occlusion
successfully. Transformers are robust to occlusion as they are
equipped with a multi-head self-attention module to encode
the images into patches where each attentive weights help to
guide the network to perceive the interested region of interest.

In this paper, we propose a multi-camera solution where
we detect and estimate 3D bounding boxes for a vehicle
from multiple static, fixed cameras and utilize a weighted
box selection algorithm to fuse the detected bounding boxes
generated from different cameras. The key contributions of
this work are as follows:

• We utilize a unique approach by employing a deep Con-
volutional Neural Network (CNN) specifically designed
to map 2D bounding boxes to their 3D counterparts, pro-
viding a clear understanding of the object’s orientation

and dimensions. This architecture is applied across four
distinct camera views, each casting a unique perspec-
tive on the same object, thereby creating independently
generated 3D bounding boxes for the four cameras.
We highlight the significant challenge of detecting
objects in occluded regions when relying solely on
camera-based systems. We utilize a weighted fusion
algorithm that depends on the confidence scores of the
individual bounding boxes for consolidating the four
independent 3D bounding boxes into a single, definitive
bounding box with the highest possible accuracy.

• We highlight the importance of integrating a transformer
model for accurately detecting occlusion and depth in
our scenario. To address these challenges, we leverage a
Vision Transformer (ViT) which specializes in generat-
ing a pre-trained depth dataset and evaluating occluded
images using a self-attentive module. The pre-trained
depth dataset, derived from the ViT network, serves as
the input for a subsequent depth-guided filtering module
which is responsible for increasing the precision of 3D
bounding box predictions, enhancing the robustness and
reliability of our object detection system.

• We perform comprehensive simulations after fusing the
results from multiple cameras and then provide a com-
parative analysis with the existing similar camera-based
techniques on the KITTI standard data generated by the
CARLA simulator for different scenarios.

The remainder of this paper is organized as follows.
In Sect. II, we discuss the related work and the current lit-
erature in the field. In Sect. III, we describe the problem and
propose the details of the solution. In Sect. IV, we present the
simulation results in the autonomous driving simulator and
the relevant comparisons. Finally, in Sect. V, we conclude the
paper and provide insight into our future research.

II. RELATED WORK
For many years, researchers have been studying 2D object
detection techniques to produce 4-DoF axis-aligned bound-
ing boxes with center coordinates and 2D size [20]. You Only
Look Once (YOLO) is shown as a popular one-stage object
detection model due to its ability to perform real-time object
detection based on their already learned weights [21], [22].
YOLOv3 [23] utilizes logistic regression and scoring for
each bounding box to achieve a better performance than
its previous versions. However, YOLOv4 [24] has a faster
training phase and is verified as an efficient tool for improv-
ing the accuracy of both the classifier and the detector.
YOLOv5 [25] is shown to achieve better performance in
detecting objects even from infrared images due to its
strong real-time processing capabilities with high precision
and faster convergence. YOLOv7 [26], [27], [28] is being
claimed as the best algorithm with the best performance
compared with the previous versions to overcome the prob-
lem of positioning accuracy. Considering multi-stage models,
Faster R-CNN [29] has a Region Proposal Network (RPN)

VOLUME 11, 2023 64609



A. Hazarika et al.: Multi-Camera 3D Object Detection for Autonomous Driving

which is trained to generate high quality region proposals for
simultaneously predicting object bounds and scores at each
location. A hybrid approach by combining Faster RCNN and
YOLOv5, known as EnsembleNet, has been shown in [30]
to improve the overall performance of vehicle detection in
dense traffic scenarios. Integration of convolution neural net-
works with 2D object detection algorithms in predicting 3D
bounding boxes are witnessing an immense improvement in
performance, leading to many advancements in autonomous
driving and robotics [31], [32], [33]. Authors in [34] claim
a high-accuracy 3D object detection model which utilizes a
multi-view 3D network with RGB images and LiDAR point
cloud as input for prediction of the 3D bounding boxes.
Authors in [34] propose an RGB-D-based solution in which
RGB-D images are input in 2.5-D region proposal, and CNN
for extracting the depth features in achieving an accurate
3D bounding box regression. Depth estimation is obtained
by lifting the input image to point cloud representation,
called pseudo-LiDAR, which is trained with a LiDAR-based
3D detection network [35]. A multimodal vehicle detection
system has been introduced in [36] that integrates the data
from a 3D-LiDAR and a color camera in a ConvNet-based
detector for improving vehicle detection. 3D object detec-
tion is performed with a single monocular image in [37]
for generating a class-specific object proposal network to
obtain high-quality detection by assuming prior ground-
plane information. In [38], a drone-assisted model has been
introduced for capturing images of the crowd by utilizing
a deep-learning model from Root Mean Square Propaga-
tion (RMSProp) training algorithm which is a derivative of
optimized ResNet architecture. A novel architecture compris-
ing newly developed derivatives of ResNet, DenseNet, and
CNN combined into one global classifier for remote ship
detection has been presented in [39]. The model introduced
in [39] is designed for solving complex detection tasks in
ships for several conditions which are trained accordingly.
Authors in [15] present a method for 3D object detection
and pose estimation from a single image by regressing 3D
object properties using a deep CNN and then combining
these estimates with geometric constraints provided by a 2D
object bounding box to produce a complete 3D bounding box.
Authors in [18] propose a 3D object detection framework
based on a single RGB image for extracting the underlying 3D
information in a 2D image and then determining the accurate
3D bounding box of the object without point cloud or stereo
data. Authors in [40] propose a two-stage 3D object detec-
tion method aimed at getting the optimal solution of object
location in 3D space by regressing two additional 3D object
properties by a deep CNN and combined with cascaded geo-
metric constraints between the 2D and 3D boxes. In [41], 3D
object detection is performed from a single monocular image
by first generating a set of class-specific object proposals,
which are then run through a standard CNN pipeline to obtain
high-quality object detection. In [42], the uncertainty issues
faced in an autonomous vehicle due to sensor measurements

FIGURE 1. Usage of CARLA in dataset generation and training with the
custom YOLOv3.

are shown and an end-to-end context-aware solution is pro-
posed by introducing the advantage of an Extended Kalman
Filter (EKF) and machine learning to estimate the sensor
uncertainty [43]. The authors in [44] present amultiple-object
tracking system whose design is based on multiple Kalman
filters dealing with observations from two different kinds of
physical sensors. In [45], a method is proposed known as
Deep Stereo Geometry Network (DSGN), which detects 3D
objects on a differentiable volumetric representation known
by 3D geometric volume, which effectively encodes 3D geo-
metric structure for 3D regular space. To detect objects using
a depth network in monocular images, depth-based estima-
tion architecture is shown in [46] which employs stacks of
Guided Upsampling Block (GUB) to build a cost-efficient
encoder for high-resolution depth map generation. In [47],
a set-based global loss has been introduced for bounding
box predictions via bipartite matching and a transformer
encoder-decoder architecture. Self-supervised depth estima-
tion is shown in [48], which involves a simplified transformer
for accurate depth estimation and an efficient source for
deployment on GPU platforms. In our proposed solution,
we extended the usage of CNN and transformer-generated
depth network for the prediction of 3D bounding boxes.

III. METHOD AND THE PROPOSED SOLUTION
In this section, we describe the challenges in 3D object
detection for autonomous vehicles. We present the deep
learning-based framework in Sect. III-A. In Sect. III-B,
we explain our approach to perform back-projection of
the predicted 3D bounding box using Deep Learning.
In Sect. III-C, we discuss the transformer-based solution for
depth estimation for the 3D bounding box detection in
occluded scenarios. Finally, in Sect. III-D, we introduce the
solution for fusing the detected object from multi-camera
views.

A. DEEP LEARNING-BASED FRAMEWORK
A deep learning-based approach can be considered in order to
achieve detection of the 3D bounding box in a multi-camera
scenario, where the cameras are mounted at different static
locations. We referred to the 3D detection-based method
in [15] for the generation of a 3D bounding box from a 2D
bounding box and the estimation of pose (r, t) using Deep
NN. To generate the 3D bounding box, the dimensions, and
rotation are obtained using L2 loss andmulti-bin architecture,
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FIGURE 2. The orientation of the vehicle with respect to the camera in a
multi-camera scenario. Here, θ is the global orientation of the vehicle and
θL is the local orientation with respect to the angle of the camera denoted
by θc .

respectively. The 2D object detector has been trained to
produce boxes that correspond to the bounding box of the
projected 3D box with center t = [tx , ty, tz]T , dimension
d = [dx , dy, dz], and orientation r(θ, χ, α), which is defined
by the Azimuth, Elevation, and Roll angles, respectively.
Given the pose of the camera coordinate frame (r, t) and the
camera intrinsic matrix K , the projection x obtained for a
3D point x0 = [x, y, z, 1]T is x = K [r t]x0. We assume
that the origin of the object coordinate frame is at the cen-
ter of the 3D bounding box and the object dimensions d
are known. The coordinates of the 3D bounding box ver-
tices can be described as x1 = [dx/2, dy/2, dz/2]T , x2 =

[−dx/2,dy/2,dz/2]T , . . . , x8 = [−dx/2,−dy/2,−dz/2]T .
The constraint requirement for the 3D bounding box is that
the 3D bounding box fits tightly into the 2D detectionwindow
such that each side of the 2D bounding box needs to be
touched by the projection of at least one of the 3D box
corners. The point-to-point correspondence constraint results
in the following equation:

xmin =

K [r t]

 dx/2
−dy/2
dz/2

 . (1)

We can derive xmax , ymin, ymax using a similar approach.
In this way, we obtain the sides of the 2D bounding box which
provides the four constraints on the 3D bounding box. The
rotationmatrix represents the orientation as a 3×3 orthogonal
rotational matrix R derived from Euler’s rotation theorem in
CARLA [49].

We describe the loss functions used by CNN for regressing
the dimension and orientation of the 3D bounding box in
this section. For regressing the dimension estimation, we use
the L2 loss which estimates the residual relative to the mean
parameter value computed over the training data set. The loss
for dimension estimation Ldim is denoted as:

Ldim =
1
N

∑
(d∗

− d − δ)2, (2)

where d∗ are the ground truth dimensions of a box in N
number of frame samples from CARLA, d are the mean
dimensions for objects of a certain category and δ is the
estimated residual obtained in comparison with the mean
predicted from the network.

Algorithm 1 Multi-Camera Deep Learning-Based 3D
Bounding Box Detection
Input: Set J Cameras with I images and the ground truth

values of parameters from CARLA simulator
Output: Final 3D bounding box coordinates (x, y, z)
1: Initialize cameras in CARLA for scenarios of varying

difficulty (easy, moderate, and hard)
2: for each camera j in 1 to J do
3: for each frame i in 1 to I do
4: Generate images Ii in all directions [back, front,

side-right, side-left]
5: Train Custom YOLO model using Ii; estimate

bounding box parameters t, d and r to generate labels
for ground truth data

6: if ri ≥ rth then
7: Add Ii to Trainingmoderate set
8: else
9: Add Ii to Trainingeasy set
10: end if
11: Compute the constraints, [xmin, ymin, xmax , ymax]

on the 3D bounding box based on d and r
12: Apply L2 loss function to refine the dimension d
13: Use a multi-bin architecture to estimate the ori-

entation angle θ

14: Formulate the 3D bounding box coordinates (xj,
yj, zj) for each camera j

15: end for
16: end for
17: Employ Weighted Box Fusion (WBF) to fuse the 3D

boxes using (12) and (13) for computing the final 3D box

As shown in Fig. 2, the local orientation θL varies with
respect to the camera while the global orientation θ remains
constant. Hence, multi-bin architecture regresses this θ by
estimating a confidence probability for each bin such that the
output angle lies inside the ith bin. We propose to regress
the orientation for the 3D bounding box using a multi-bin
architecture, shown in Fig. 3, where the orientation angle is
divided or discretized into n overlapping bins. The total loss
is calculated as:

Lmultibin = Lcon + wLloc, (3)

where w is the weight to be estimated, the confidence loss
Lcon gives the softmax loss of each bin, and the localiza-
tion loss Lloc tries to minimize the differences between the
estimated and ground truth angles in each of the bins. The
workflow of multi-camera deep learning-based 3D bounding
box detection is shown in Fig. 4. The high-level pseudo-code
describing the logic of the proposed framework is shown in
Algorithm 1.

B. DEPTH ESTIMATION VIA PERSPECTIVE PROJECTION
By retrieving distance information of the detected object
relative to the camera, depth estimation can unlock several
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FIGURE 3. Multibin architecture for estimation of orientation and
dimension from four cameras. For each camera, it has 3 branches which
are used to estimate dimensions, residual rotation (cosθi and sinθi of
each i th bin), and the confidence, respectively.

potentials in autonomous driving to perform multiple tasks
like perception, planning, and navigation. As we are not
employing any other sensors or injecting any depth maps
or pseudo-LiDAR points for depth estimation, we first try
to obtain the mapping of the predicted 3D bounding box in
the image plane in the form of pixels by using perspective
projection. Mapping the 3D object into the image plane helps
in determining the reliability and accuracy of object detection
using camera sensors.

We consider 3D coordinates of the predicted bounding box
as the world coordinate frame, denoted by xw. The camera
coordinate frame is the onewhich is predicted using CNN and
denoted by xc and p is the image coordinate frame, respec-
tively. The extrinsic calibration parameters are responsible for
the transformation from world to camera coordinates, which
is a standard 3D coordinate transformation as

xc = Mex[xwT , 1]T , (4)

whereMex is the extrinsic calibration matrix of the form

Mex =
(
R −Rd

)
, (5)

where R is the rotation matrix and d is the location in world
coordinates of the center of projection of the camera.

The perspective projection x̃c can now be applied to the 3D
point which is denoted as:

x̃c =
f
x3,c

xc =

x̃1,cx̃2,c
f

 , (6)

where f is the focal length of the camera.
The intrinsic calibration matrix, Min, is responsible for

transforming the 3D image position to pixel coordinates,
shown by p =

1
zMinx̃c. Using this approach, we aim to find

z by a perspective projection which represents the depth of
the static camera from the car. We formulate p to find z,
which shows the depth of the static camera from the car. The
drawback of regressing depth through the inverse projection
of the predicted 3D bounding boxes for every frame is its
time-consuming and ill-posed nature. As it will be shown in

the results, inaccuracy in-depth estimation. i.e., z-direction,
for consecutive frames in turning or intersection of a road
during inverse projection is a major source of error. More-
over, when there is an occlusion in an image, this method
fails in providing an acceptable result. Though inverse depth
parametrization obtained through perspective projection is
used for the 3D reconstruction of multiple images and simul-
taneous localization, the predicted depth is not unique due to
the occluded 3D scenes arising in hard scenarios that produce
the same pictures on the image plane. Considering these
drawbacks of perspective projection for depth estimation in
occluded scenarios, transformers can be utilized to improve
the quality of depth estimation by generating a depth network
for occluded regions or those regions which are hard to
identify the foreground objects from the background.We then
input the pre-trained depth network into a fully convolu-
tional single-stage 3D detection architecture [50] which is
explained in the next section. It does not require any addi-
tional pseudo-LiDAR pipelines [51] or any training datasets
such as per-pixel depth estimates, 2D bounding box, or a 3D
CAD model.

C. ATTENTION-BASED VISION TRANSFORMER AS
PRE-TRAINED DEPTH ESTIMATION
In the realm of monocular vehicle detection, a couple of chal-
lenges arise, particularly in areas characterized by occlusion
and low light conditions. These complexities highlight the
need for depth sensor technologies, such as LiDAR and radar.
However, in tackling these demanding scenarios, we propose
a novel approach that employs a self-attention-based Vision
Transformer (ViT) [52], [53] to create a pre-trained, depth-
aware network from single monocular images captured by
each camera. The incorporation of this transformer-based
depth network serves as an efficient surrogate for LiDAR
or radar sensors, facilitating the generation of 3D bound-
ing boxes for detected vehicles. Notably, this depth-aware
network is enhanced for depth estimation, a critical factor
in reconstructing the 3D bounding box, and offers signif-
icant advantages over traditional convolutional networks,
particularly in terms of robustness to severe occlusion.
This groundbreaking research utilizing the Vision Trans-
former offers substantial contributions to the field, providing
cost-effective and highly precise solutions. These advance-
ments have far-reaching implications and could potentially
revolutionize a wide array of applications, spanning from
autonomous vehicles to sophisticated remote sensing sys-
tems. Vision-based transformers rely on a self-attention
mechanism that utilizes their representation as an encoder
in the prediction of the depth map. The encoder of the
transformer divides the entire image into non-overlapping
patches of size h and the features are extracted from those
patches in the form of tokens. The relationship between the
tokens is derived from self-attention by the application of
sequential blocks of multi-headed self-attention (MHSA).
The encoder extracts the embeddings of the patches from
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FIGURE 4. Workflow of deep learning based 3D bounding box detection from 4 different cameras with fusion using WBF. The figure shows
that the 3D bounding box is generated for each of the four cameras from their estimated 2D bounding box through the Deep-CNN layer by
the regression of dimension and orientation. The four bounding boxes will be fused through a weighted algorithm to produce the final
bounding box with the highest confidence.

FIGURE 5. The proposed transformer-based depth-guided network for 3D bounding box generation.

the image which are non-overlapping in nature by processing
them with a size of h2 from the image. The extraction is
done by applying a ResNet for using the pixel features of
the resulting map in the form of tokens. We add a learnable
layer to the image embeddings to gain information from their
representation. The decoder of the transformer is responsible
for receiving all the outputs from the transformer blocks in
the encoder by assembling the tokens into image-like repre-
sentations at various resolutions. ViT shows more accuracy
in the monocular depth estimation when being compared
with a convolutional network which is shown in Table 1.
We apply a scale and shift-invariant trimmed loss operating
on an inverse depth prediction. ImageNet [54] pretrained
weights are used for the initialization of the encoder, but the
decoder is initialized randomly. Multi-objective optimization
and Adam are being used together with a learning rate of 1e-
5 for the backbone and 1e-4 for the decoder. There are three
output heads used for reducing the feature dimension in half

and for upsampling the predictions to the input resolutions.
The depth maps generated from each ViT transformer act as
a guided source for learning the local dynamic depth-wise
dilated kernels from each of the camera images without
the usage of any depth-based sensors. As shown in Fig. 5,
the estimated depth network obtained by ViT is the input
to a depth-guided filtering module introduced in [50]. This
module is a two-branch network consisting of a feature
generation network and a filter generation network. ResNet-
50 [55] is the backbone of the feature extraction network,
and we have pretrained them on our custom Carla-generated
dataset. The first three blocks of the ResNet-50 are in the
filter generation network so as to reduce computational costs.
Depth-wise local convolution (DLCN) [50] is utilized by
the filtering module, which possesses a set of global feature
volume filters for operating at its corresponding channels
of the ViT-generated depth map. The feature volume filters
are then converted into location-specific filters for applying
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the depth-wise and local convolutions to the feature maps.
To overcome the huge intra-class and inter-class differences,
a dilation rate has been utilized to obtain different sizes of
receptive fields by an adaptive function. To solve the issue
of the scale-sensitive and meaningless local structure of 2D
convolutions, the depth-filtering module has assigned differ-
ent kernels for different pixels and adaptive receptive fields
on different channels. The losses used in this network are a
classification loss, a 2D regression loss, a 3D regression loss,
and a 2D-3D corner loss. The loss is defined by:

L = (1 − st )γ (Lclass + L2d + L3d + Lcorner ), (7)

where st is the classification score and γ is the focus parame-
ter. Lclass, L2d , L3d , and Lcorner are the classification loss, 2D
regression loss, 3D regression loss, and 2D-3D corner loss,
respectively. Smooth L1 regression losses have been used for
2D/3D regression.

D. WEIGHTED FUSION OF THE DETECTED BOXES: THE
MULTI-CAMERA PERSPECTIVE
In our proposed work, we consider the fusion of the bounding
boxes obtained from multiple static cameras to ensure that
the object is detected in an accurate way, with an aim to
overcome the problems faced due to incomplete observations,
recurring detection of the same object, or errors in detection.
Fusion can help in identifying those cameras that are able to
detect the vehicle accurately. The less the error in the x, y,
and z directions of the bounding box, the more accuracy in
detection is achieved by the cameras.

For our multi-camera work, we utilize the Weighted Box
Fusion (WBF) algorithm, initially introduced in [56]. There
are several steps which will be discussed in this section.
The first step is to select samples of predicted bounding
boxes from four cameras and sort them in decreasing order
of their confidence scores for each camera. For each frame,
the predicted bounding boxes from four different cameras are
matched accordingly under the condition (IoU ≥ THR) in
an iterative manner so as to capture the maximum overlap-
ping between the predicted bounding boxes, and the match
produces an optimal output in the form of a fused bounding
box for every frame. Here, THR denotes the threshold set for
each camera, and we consider our THR to be 0.7. We need
to recalculate the confidence score and coordinates of that
bounding box from a camera for a particular frame when it
fails to match with the corresponding boxes from the three
different cameras using the following formulas given as:

c =

∑m
i ci
m

, (8)

x1,2 =

∑m
i ci ∗ x1,2i∑m

i ci
, (9)

y1,2 =

∑m
i ci ∗ y1,2i∑m

i ci
, (10)

z1,2 =

∑m
i ci ∗ z1,2i∑m

i ci
. (11)

FIGURE 6. (a) Camera is placed on a pole in front of the car at 180◦.
(b) The camera is placed at the back of the car. (c) The side camera is at
90◦ angle. (d) The fourth camera (at 90◦) on the side captures the car.

Here, (8) denotes the new confidence score of the bounding
boxes obtained by setting the confidence score for the fused
box as the average confidence of all boxes from m = 4 cam-
eras. Moreover, (9), (10), and (11) show the new coordinates
of the unmatched bounding box from a particular camera.
Then, we need to re-scale the confidence scores of the four
bounding boxes so as to give weight to more prominent boxes
using (12) or (13) where n is the number of models.

c = c ∗
min(m, n)

n
, (12)

c = c ∗
m
n

. (13)

Then, we generate the fused box from the weighted sums
of the coordinates of the bounding boxes from four different
cameras, where the weights are equivalent to the confidence
scores for the corresponding boxes. Thus, the fused box has
the major contribution of that bounding box of a particular
camera with a larger confidence.

IV. EVALUATION AND RESULTS
In this section, we discuss the generation of datasets and
the evaluation techniques used for analyzing the results for
different scenarios. In Sect. IV-A, we focus on the utilization
of CARLA in preparing the custom datasets. In Sect. IV-B,
we describe the methods used for the generation of 2D and
3D bounding boxes. Finally, in Sect. IV-C, we present our
simulation results and provide the corresponding discussions.

A. DATA GENERATION
We utilize CARLA to generate our custom dataset required
for training in 3D bounding box generation. Car Learn-
ing to Act (CARLA), an open-source autonomous driving
simulator [49] was built to serve as a modular and flexi-
ble API for addressing a large range of tasks involved in
the problem of autonomous driving. It consists of a scal-
able client-server architecture that is in charge of almost
everything related to the simulation itself, including sen-
sor rendering, physics computation, world-state and actor
updates, and much more. With the aim of providing realis-
tic results, the best fit would be running the server with a
dedicated GPU, especially when dealing with tasks related
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FIGURE 7. a) Capturing the back of the car at one of the turnings. b)
Capturing the front of the car at another turning angle. c) Capturing back
of the car after a turn. d) Capturing the front of the car at the turning.

to machine learning. The client side is made up of client
modules that are in charge of controlling the logic of actors
on the scene and setting world conditions. The dataset has
been generated using the Unreal Engine and CARLA, and the
labeling of the CARLA-generated dataset is done in KITTI
format. As shown in Fig. 1, we utilize CARLA to generate
a dataset for our training and testing purposes. The datasets
have different camera configurations and they were divided
into three different categories based on the different camera
placement strategies. Given that our dataset is generated using
the CARLA simulator, we have set the image resolution to
an optimal size of 1284 × 384 to ensure the production of
high-quality frames, which is crucial for effective 3D object
detection. The high resolution assists in capturing intricate
details within the simulated environment, thereby enhancing
the precision and reliability of our detection model. We train
the Carla-generated dataset with YOLOv3 to produce 2D
bounding boxes. These bounding boxes are then regressed
into 3D bounding boxes. The dataset is generated under three
distinct scenarios, each characterized by varying levels of
truncation and occlusion: (i) zero-angle rotations (easy), (ii)
smooth or sharp turns (moderate), and (iii) dark or occluded
regions (hard). To generate tightly fitting bounding boxes for
these diverse scenarios, we utilize unique training strategies
suitable to each scenario’s specific challenges. For the easy
and moderate scenarios, we consider the truncation level of
the bounding boxes, which is determined by examining their
rotation angle. The threshold of the rotation value, denoted
by rth, representing the vehicle’s rotation around the Y-axis
relative to the camera coordinate system is used to distin-
guish between the easy and moderate scenarios. rth guides
the simulation process, helping to categorize the generated
data into appropriate scenarios. Once categorized, this data
is saved and subsequently used for both training and test-
ing purposes. This approach ensures a robust and adaptive
training process that can effectively handle a wide range of
driving scenarios. For the hard scenario, we utilize a ViT
transformer for generating a pre-trained depth network which
acts as an input to a depth-guided filtering module along with
the existing CARLA-generated dark or occluded datasets for
detecting the vehicles using only multi-cameras. We utilize

the ViT transformer in a hard scenario (see Fig. 5) because
this transformer helps to overcome the major flaw of CNN’s
pooling layers for occluded regions, which fails to extract
valuable information by ignoring the relationship between
the occluded part of images and the whole. The CARLA
uses Unreal Engine coordinates to get the vehicle location
and then transforms them into 2D-plane coordinates. How-
ever, the generation of 3D bounding boxes in the CARLA
simulator can be a computationally intensive task, especially
when dealing with large datasets or high-resolution images.
This may result in an increase in processing time andmemory
usage, affecting the overall performance and efficiency of the
system. To optimize the processing time and memory usage,
we have utilized a computationally powerful GPU consisting
of GPU acceleration libraries such as CUDA for boosting up
the processing time in bounding boxes generation. Our pro-
posed approaches consist of several robust layers to reduce
overfitting and computation complexity in order to improve
the accuracy of the bounding box detection.

B. MULTI-CAMERA BOUNDING BOX GENERATION
Usually the detection of the 3D bounding box is done for the
cars from a moving vehicle where the camera is not static
with reference to the detected objects and the angles to all
the cars remains constant [15]. However, in our proposed
solution, we extend this for the prediction of 3D bounding
boxes by placing four different cameras in fixed positions
under two different angular conditions as shown in Fig. 6 and
Fig. 7. For easy and moderate scenarios, the 2D bounding
box is generated in real-time by training the YOLOv3 model
on our custom CARLA-generated dataset. With the usage of
transfer learning, we made modifications in the convolution
layers of the YOLOv3.cfg file by changing the number of
classes in the YOLO layer and filters in the convolution layer.
We then trained this custom model using darknet53.conv.74
weights (initial YOLO weights) and annotations are obtained
in YOLOv3 format based on the labelling of one class (i.e
car). YOLOv3 utilizes a total of 106 layers fully convo-
lutional (FC) network to perform the detection of the 2D
bounding box by additionally stacking another 53 FC layer
network for detection task with the initial 53 FC layer of a
network trained in our custom datasets. For the hard scenario,
the 2D dimensions of the bounding box are predicted from the
regression head of the single-stage detector with prior-based
2D-3D anchor boxes [21], [57]. These anchor boxes are first
defined on the 2D space as defined in [57], and then it uses the
corresponding priors to calculate the part of it in 3D space.

We utilize a VGG16 CNN in easy and moderate scenarios
to generate a 3D bounding box by regressing the orientation
and dimension using the multi-bin approach and L2 loss
respectively [15]. Neural-net takes input images of size 224×

224 and predicts the orientation and relative dimension of
that object to the class average. We perform training with
over 100 images for the four cameras and the network is
trained at a learning rate of 0.0001. The 3D bounding box is

VOLUME 11, 2023 64615



A. Hazarika et al.: Multi-Camera 3D Object Detection for Autonomous Driving

FIGURE 8. Results showing the detected 2D and 3D bounding box for no
turning (easy) scenarios.

then predicted from those estimated YOLOv3-generated 2D
bounding boxes when their IoU scores exceed a threshold of
0.7. For the hard scenario, the 3D predicted bounding box is
an outcome of 2D-3D anchor-based transformation obtained
from the feature generation network of the depth-guided fil-
tering module introduced in [50]. Figs. 8, 9, and 10 show the
2D and 3D bounding box of the detected vehicle obtained
during simulations for easy, moderate, and hard scenarios.
In this paper, we employ two optimal camera configurations
to provide a comprehensive 360◦ view of the vehicle. These
configurations are outlined as follows: (i) In the first scenario,
depicted in Fig. 6, we strategically position cameras in four
distinct directions to track the vehicle’s movement. These
cameras are aligned in such a way that they simultaneously
capture the front, back, and sides of the same car. They are
mounted with the front and back cameras angled directly
towards the car at 0◦, while the side cameras observe the car
from a 90◦ angle. (ii) In the second scenario, as illustrated in
Fig. 7, we install the four cameras at four different arrange-
ments to capture the vehicle’s front and back as it makes a
turn. Specifically, two cameras are positioned to record the
car’s front and back before the turn, while the remaining two
cameras capture the vehicle’s front and back as it navigates
the intersection turn.

C. SIMULATION RESULTS AND DISCUSSIONS
In this section, we present the simulation results and the
corresponding discussions. We have computed the results
for three scenarios, i.e., easy, moderate, and hard, based
on different circumstances in driving. In order to generate
a dataset using CARLA and train the neural networks on
them in our proposed DNN-based and ViT transformer-based
approaches, it is essential to meet the following requirements:
(i) System Compatibility. CARLA is compatible with both
Windows and Linux operating systems and it is built from
the Unreal Engine, which supports cross-platform develop-
ment. (ii) Adequate GPU. A minimum of 6 GB GPU is
required to run CARLA and to perform their training and

FIGURE 9. Results showing the detected 2D and 3D bounding box for
smooth or sharp turning (moderate) scenarios.

FIGURE 10. Results showing the detected 2D and 3D bounding box for
dark or occluded regions (hard) scenarios.

FIGURE 11. Loss vs epoch for the four cameras.

testing for realistic simulations. However, it is recommended
to have an 8 GB dedicated GPU for machine learning pur-
poses. (iii) Sufficient Disk Space. The installation of CARLA
requires approximately 20 GB of disk space. (iv) Processing
time. These hardware and software specifications contribute
directly to the processing time due to the large network
architecture of our proposed approaches by enabling at least
30 frames per second (fps) or more for real-time performance.
The training loss of the four different cameras is shown
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FIGURE 12. Comparison of training loss for several occluded scenarios
utilizing the ViT transformer.

FIGURE 13. 2D-3D mapping for consecutive sample frames via inverse
projection for the depth estimation process.

w.r.t to their epochs in Fig. 11. The loss curves of the four
cameras are shown to undergo a steep decrease from their
4th-5th epoch, implying that the model performs better on
our CARLA-generated custom training datasets. In Fig. 12,
we leverage Carla’s simulation settings to generate 3D detec-
tion data for challenging scenarios - fog, rain, and night.
We train the Vision Transformer (ViT) models on this data to
assess their performance. Figure 12 offers valuable insights
by showing better capabilities of this model in detecting dark
regions compared to rainy and foggy weather conditions.
Figure 13 shows the 2D-3D mapping of the predicted bound-
ing box for consecutive frames in a turning or intersection
scenario. Utilizing the inverse projection method outlined
in Section III-B and illustrated in Fig. 13, we determine
the optimal distance for different frames where the distance
exhibits fluctuations, ranging between 0.9 to 2 m. Due to
the non-linearity of the depth w.r.t the static camera, the
depth estimation by inverse projection is not applicable for
all scenarios. It can be seen in Fig. 13 that the z-dimensions
(denoting the depth w.r.t the camera) obtained during map-
ping are not the same for every frame from the same
static camera. The linearity of depth for every frame is being
inconsistent as the z-dimension in 2nd frame varies by 0.9 and
the z-dimension varies by 1.7 for 3rd frame. Fig. 14 shows the

FIGURE 14. Precision vs recall for easy, moderate, and hard scenarios.

FIGURE 15. RMSE for easy, moderate, and hard scenarios.

TABLE 1. Comparative results on camera-based techniques for 3D object
detection.

relationship between the accuracy and precision of the easy,
moderate and hard approaches. In Fig. 14, it shows a 95%
precision for a 40% recall for easy approach, a precision of
37% for a 40% recall for moderate approach, and a precision
of 48% for a 40% recall for hard approach. Fig. 15 shows
the Root Mean Squared Error (RMSE) between the predicted
and the ground truth of the 3D bounding box of some con-
tinuous samples of frames for the three different mentioned
approaches. We consider RMSE, a widely used metric in
statistics and machine learning to evaluate the quantitative
predictions of our proposed approaches by calculating the
square root of the mean of the squared differences between
the predicted and actual dimensions of our proposed 3D
bounding box.

RMSE =

√∑n
i=1(bi − b̂i)2

n
, (14)

where, bi ∈ {xi, yi, zi} is the dimension of the ground truth
value of the 3D bounding-box for the ith frame, n is the
total number of frames in the dataset, and b̂i ∈ {x̂i, ŷi, ẑi}
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is the predicted 3D bounding-box dimension of ith frame.
Average Precision (AP) is another popular evaluation metric
for comparison between different monocular approaches to
identify the average level of accuracy in the prediction of
a tight bounding box from the overall detected bounding
box. This metric is usually applied to situations where we
need to represent the identified objects within an image
with a bounding box. As machine learning models do not
always generate perfect bounding boxes, there may be many
bounding boxes detected for each object which are not tight
enough to include areas containing the object. Considering
these limitations, we utilize Precision to find the proportion of
true positives (correctly identified objects) among all positive
detections. To compute Average Precision, we first generate
a precision-recall curve where the curve is created by plotting
precision values (y-axis) against recall values (x-axis) at vari-
ous thresholds. Recall, or sensitivity measures the proportion
of actual positives that are correctly identified. After creating
the precision-recall curve, the AP is calculated as the area
under this curve (AUC). A higher AP score defines a model’s
ability to accurately detect objects within images. The three
different approaches were evaluated using the AP shown in
Table 1 at an Intersection-over-Union (IoU) value equal to
1.7. Table 1 shows that our proposed approaches outperform
the existing monocular techniques by a range of 10% to 24%.

V. CONCLUSION AND FUTURE WORK
In this work, we presented a robust solution for an
infrastructure-mounted multi-camera object detection system
for detecting an autonomous vehicle in different scenarios.
In order to create an environment-friendly ecosystem for
LiDAR-free driving, we used the fixed location of multiple
cameras to predict the dimensions and orientation of the
3D bounding box of the detected vehicle. The fusion of
3D bounding boxes was performed via a weighted fusion
algorithm. Given the challenges of camera-based object
detection arising due to their lack of depth information
and the presence of occlusion, we utilized a ViT trans-
former to generate a pre-trained network to be fed into a
depth-guided filtering module for the prediction of a 3D
bounding box in difficult scenarios. This application can be
used in autonomous vehicles in areas such as indoor garages
or any other GPS-denied environment. Simulations and anal-
ysis were performed to show the efficiency of both models in
different scenarios. However, the high computational require-
ments while training and deploying these models lead to
additional expensive costs for fulfilling the demands for sig-
nificant computational resources. So, we aim to introduce a
cost-efficient strategy in our future work by enabling optimal
sensor placement for maximum coverage from the combined
field of view projected by each of the sensors with accurately
high-object detection. This novel frameworkwill be proposed
for optimal sensor configuration through the selection of
highly optimized locations and orientations of each sensor
with the utilization of a minimal number of camera sensors.
In the future, as we focus on real-time vehicle tracking,

we will enable instant joining and leaving of the cameras
for full coverage due to the uncertainty in the movement
of the vehicle. Furthermore, our future aspirations include
making contributions towards the development of a resilient
3D object detection model specifically designed to enhance
accuracy amidst challenging conditions such as fog, rain, and
darkness. The main goal of this detection model will be to
refine the detection precision, ensuring reliable operation in
diverse and adverse weather scenarios.
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