
Received 1 May 2023, accepted 13 June 2023, date of publication 21 June 2023, date of current version 28 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3288282

Small-Signal Stability Analysis of Three-Phase
Four-Wire System Integrated With Single-Phase
PV Inverters Considering Phase to Phase
Coupling Effect Under Asymmetric Grid
YUMING LIAO, HENG NIAN , (Senior Member, IEEE),
YAOXIN WANG, (Student Member, IEEE), AND DAN SUN , (Senior Member, IEEE)
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding author: Heng Nian (nianheng@zju.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 51977194.

ABSTRACT With the rapid growth of renewable energy sources, single-phase rooftop photovoltaic inverters
connected to the distribution network have received widespread applications in recent years. In such
a distribution network, asymmetric fault problems are likely to occur, and small-signal stability during
asymmetric faults becomes important. The existing papers analyzed the sequence impedance and related
stability issues during asymmetric faults in a three-phase three-wire system. In contrast, the SIs connected
to three-phase four-wire systems requires consideration of the effect of zero-sequence components and the
phase to phase coupling effect. Because both the zero-sequence component and phase coupling effect will
affect the impedance characteristics of the inverter sub-system and thus the stability of the power system.
Therefore, this paper established the 3∗3 admittancemodel matrix for the inverter sub-system considering the
frequency coupling effect and phase coupling effect under asymmetric fault. Based on the admittance model
matrix, the main factors including phase-locked loop bandwidth and grid neutral inductance that affects the
phase to phase coupling effect are also analyzed. In addition, this paper studies the effect of phase-locked
loop bandwidth, short circuit fault degree, and short circuit location on system stability. The validity of
theoretical analysis is further verified through the experimental results.

INDEX TERMS Asymmetric fault, impedance-based stability theory, phase to phase coupling effect, single-
phase rooftop photovoltaic inverter, three-phase four-wire system.

I. INTRODUCTION
Distribution power systems are undergoing significant evolu-
tions in physical and technical features due to the large-scale
integration of rooftop solar photovoltaics driven by falling
prices and technological improvements [1], [2]. The configu-
ration shown in Figure 1 becomes a common scenario [3], [4],
[5], [6], [7], [8] in which single-phase rooftop photovoltaic
inverters (SIs) are divided into three phase groups and con-
nected to the three-phase four-wire distribution grid in star(Y)
configuration.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xueguang Zhang .

The interactions between the weak grid and convert-
ers may cause system instability [9], [10], [11]. And the
impedance-based stability analysis method is proved appli-
cable and useful to analyze the small signal stability of
the grid-connected system since the impedances of the grid
and inverters can be easily obtained from either the analyt-
ical impedance model [9], [10], [11], [12] or the measured
impedance with clear physical meanings [13], [14], [15].

Many efforts have been taken to develop impedance
models and small-signal stability analysis of single-phase
inverters in [12], [13], [14], [15], [16], [17], [18], [19],
and [20]. Reference [12] established an impedance model
of the single-phase PV inverter and proposed a method to
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FIGURE 1. Structure of SIs connected to the three-phase four-wire grid.

improve the system stability by introducing phase lead com-
pensation to the control structure. References [17], [18],
[19], and [20] analyzed the frequency- coupling effect in
the single-phase grid-connected inverter system, which indi-
cates that the frequency coupling effect (FCE) makes a
significant difference in system stability. Reference [18]
established a 3∗3 impedance model to capture the cou-
pling frequency components with improved accuracy. Ref-
erences [19] and [20] developed the single input single
output (SISO) impedance model of the single-phase inverter
considering FCE, which makes it intuitive to identify the
stability of the system. However, the relevant papers on
the stability analysis of single-phase inverters paid main
attention to the stability when the single-phase inverters are
connected to single-phase grids under normal operating situ-
ations without considering the stability issue during the fault
state.

Based on existing research, it has been found that
small-signal instability is more likely to occur in voltage
source converter (VSC) systems connected to weak grids
during fault steady state [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31]. Recent papers have examined the
small-signal stability of these systems during fault steady
state. For example, [22] establishes a dynamic model of
the VSC during low voltage ride through (LVRT) to ana-
lyze the effect of the phase-locked loop (PLL) on system
stability and proposes a control strategy to address stabil-
ity issues. References [23] and [24] analyze the stability of
renewable energy inverter systems connected to weak grids
during LVRT and indicate that stability is mainly influenced
by the interaction between the PLL and current control
loops.

The stability analysis of VSC-based converter systems
during asymmetric grid faults is more complicated due to
the presence of the negative sequence components compared
to the symmetric grid faults [25]. In [25], the analyti-
cal model of the VSC grid-connected system during an
asymmetric network has been established in synchronous
rotation frames of the sequence domain to explore the VSC
dynamic characteristics. In [26], the effects of various con-
trol coefficients on the stability during asymmetric faults
have been investigated. References [27], [28], [29], [30],
and [31] established analytical models and investigates the
effect of frequency-coupling effect on system stability dur-
ing asymmetric grid. According to the literatures [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], it can be
found that the investigations on impedance modeling and
stability analysis for three-phase three-wire grid-connected

system during grid fault state have achieved plentiful
investigations.

However, it should be noted that these findings are more
applicable to three-phase three-wire converters. In contrast,
the stability analysis of the scene that SIs connected to
the three-phase four-wire grid, shown in Figure 1, needs
to consider not only the effects of positive and negative
sequence components but also the influence of zero sequence
components. Because there is not only the coupling relation-
ship between the positive sequence (PS) component and the
negative sequence (NS) component, but also the coupling
relationship between the zero sequence (ZS) component and
the PS component as well as the NS component. In addition,
asymmetric short-circuit faults can also lead to changes in
grid-side impedance, further leading to the stronger coupling
between PS, NS and ZS impedances of the grid. This coupling
relationship further increases the coupling degree of the entire
system, thus also increasing the difficulty of system stability
analysis.

In addition, there is also a phase to phase coupling effect
(PPCE) between the three phases inverters since the output
currents and voltages of the phase-a, phase-b, and phase-c
converters will interact with each other through the neutral
line inductance [5], [6], [7], [8]. The interaction between
three phases results in significant differences in the small
signal disturbance loop of the SIs connected to the three-
phase four-wire grid system compared to the small signal
disturbance loop of the SI connected to the single-phase grid
system as shown in [12], [13], [14], [15], [16], [17], [18], [19],
and [20]. And the difference in the small signal disturbance
loop will lead to errors when the models without consider-
ing the PPCE are used to implement the stability analysis.
Additionally, the frequency coupling effect is also observed
in single-phase inverters. When the phase to phase coupling
effect and the frequency coupling effect are present in the
system at the same time, a small-signal model that can char-
acterize and analyze both effects is necessary and important.
However, the traditional small-signal loop analysis method
based on positive, negative, and zero sequence components
is too complicated to build such a small-signal model due
to the complex FCE inside the inverters and the complicated
coupling relationship between the inverters and asymmetrical
grid.

In summary, the stability issue of single-phase invert-
ers connected to single-phase grids and the instability of
three-phase three-wire converters under fault grids have
received extensive attention and research. However, the
stability analysis of a three-phase four-wire system inte-
grated with single-phase inverters considering phase to
phase coupling effect under an asymmetric grid has not
received much attention and sufficient investigation. And
relevant literatures are lacking. In order to fill this gap,
the paper integrates the effect of the PPCE and FCE into
impedance modeling through harmonics linearization and
analyzes the influence of dominant parameters on the system
stability.
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The contributions and main works of the paper could be
summarized as (1) The paper analyzes the PPCE due to the
interaction between different phase inverters, and reveals the
effect law of PLL parameters and neutral line inductance
on the PPCE; (2) The small-signal model and impedance
model of the inverter system considering the FCE, PPCE and
asymmetric grid is established, which provides an accurate
description to the small-signal perturbation components dur-
ing asymmetric short-circuit faults; (3) Based on the achieved
impedance model, small-signal stability analysis of the sys-
tem during asymmetric grid fault has been analyzed, which
reveals that the influence laws of the bandwidth of PLL, the
degree of short circuit fault and the location of short circuit
on the system stability.

And this paper is organized as follows: Section II shows the
configuration of the investigated SIs connected to the three-
phase four-wire weak grid during asymmetrical grid and the
mechanism of PPCE generation in the system. Section III
establishes and verifies the detailed impedance model of
the inverter sub-system considering FCE and PPCE under
asymmetric fault. Besides, the dominant parameters which
have an effect on the PPCE are also analyzed in Section III.
Section IV implements the system stability analysis as well
as investigates the effect of PLL bandwidth, short circuit fault
degree, and short circuit location on system stability. To verify
the developed impedancemodels and the accuracy of analysis
results, the experimental results are shown in Section V.
Finally, Section VI shows the conclusion of this paper.

II. CONFIGURATION AND CONTROL METHOD OF THE
INVESTIGATED SYSTEM
As mentioned in the introduction, the paper focuses on the
small-signal system stability of SIs connected to three-phase
four-wire week grid. The general configuration and control
strategy of SIs can be depicted in Figure 2. The SIs are
grouped into three phases, which are commonly connected
with star(Y) configuration as shown in Figure 2(a). SIa,
SIb, and SIc are the three SIs shown in Figure 2(b). The
inverter shown in Figure 2(b) is considered decoupled with
the photovoltaic source due to the large capacitors [29].
it is also practically reasonable when the bandwidth of
the DC voltage loop is relatively lower than the PLL
bandwidth [30].

The classical current control strategy of the inverter
depicted in Figure 2(c) is applied in this paper. In Figure 2(c),
Gf is the PCC voltage feedforward gain, which is selected
as 0.6 [33], [34] to improve the robustness of the sys-
tem. kc is the capacitor current feedforward gain. Gd is
the control delay, where Gd = e−1.5Ts. Ts is the con-
trol period. And Gc is the proportional-resonant (PR)
regulator.

In order to better present the PPCE, the output port of
SIa is injected with a harmonic voltage at 130 Hz. Figure 3
shows the experimental waveforms of inverters SIa, SIb and
SIc. Figure 3(a) and Figure 3(b) show the voltages, currents

FIGURE 2. Schematic and control strategy of the investigated system.
(a) Configurations of SIs connected to three-phase four-wire weak grid.
(b) Schematic of the SI connected to the weak grid. (c) The control block
of the current controller. (d) The control block of the PLL.

FIGURE 3. Experimental waveforms when the output port of SIa is
injected with a harmonic voltage at 130Hz. (a) when the neutral
inductances of the grid Lgnt = 0 mH. (b) when the neutral inductances of
the grid Lgnt = 4 mH.

and powers when the total neutral inductances of the grid
(Lgnt = Ldn + Lgn) equals 0mH and 4mH respectively. And
the other parameters can be seen in Table 1. From Figure 3(a),
it can be seen that there is no harmonic voltage at 130Hz in
SIb and SIc since PCCE does not exist in three phases and the
harmonic components produced by SIs cannot transmit to SIb
and SIc. On the contrary, it can be seen from Figure 3 (b) that
the harmonic voltage at 130 Hz also appears in SIb, of course,
SIc, due to the PPCE transmitted from SIa. And the harmonic
voltages at 30Hz and 230Hz are caused by the FCE.

PPCE makes output voltages and currents of each phase
inverter affect each other, which makes the stability analysis
of the system need to consider the coupling effect between
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the three phases. The next section will deduce the impedance
of the SIs and the inverter sub-system.

III. IMPEDANCE MODELING OF THE THREE-PHASE
FOUR-WIRE SYSTEM DURING ASYMMETRIC
FAULTS OF WEAK GRID
This section first briefly introduces the impedance model of
the SI considering the initial phase of phase-a phase-b and
phase-c grid voltages and then builds the impedance model
of the inverter sub-system.

A. IMPEDANCE MODEL OF THE INVERTER SUB-SYSTEM
CONSIDERING FCE AND PPCE
The impedance model of SI is presented as shown in
equation (1). Figure 4 shows the voltage and current
small-signal path figures of the SI, from which it can be seen
that in addition to the current and voltage components with
a perturbation frequency ω there are also voltage and current
components with frequency ω±2jω1 in the system due to the
FCE. The ω1 = 2π f1, f1 is the rated frequency of the grid.
In Figure 4, s represents the Laplace operator. s− represents
negatively coupled frequency s−2jω1. And s+ represents the
positively coupled frequency s+ 2jω1.
From Figure 4 it can be seen that the grid current ig at

frequencies ω − 2jω1, ω, and ω + 2jω1 can be obtained as igx(s−)
igx(s)
igx(s+)

 = (Yxref (s) + Yxinvo (s))

 uxpcc(s−)
uxpcc(s)
uxpcc(s+)

 (1)

where, Yxinvo(s) = [Yxio(s−), 0, 0; 0 Yxio(s), 0; 0, 0 Yxio(s+)]
and Yxref(s) can be obtained as equation (2).

Yxref (s) =

 Yxref 0
(
s−

)
Yxref+

(
s−

)
0

Yxref− (s) Yxref 0 (s) Yxref+ (s)
0 Yxref−

(
s+

)
Yxref 0

(
s+

)
 (2)

Yxref−(s), Yxref 0(s), and Yxref+(s) represent the transfer rela-
tionship from voltage upcc at frequency ω + 2jω1, ω,
and ω-2jω1 to current ig at frequency ω respectively. And the
responding mathematical expressions can be expressed as

Yxref 0 (s) = Ixref 0 (s)Gplant (s) (3)

Yxref+
(
s+

)
= Ixref+

(
s+

)
Gplant

(
s+

)
(4)

Yxref−
(
s−

)
= Ixref−

(
s−

)
Gplant

(
s−

)
(5)

Ixref 0 (s) = 0.25Iref
[
ũα (s) + jũβ (s)

]
Gxpll (s− jω1)

+ 0.25Iref
[
ũα (s) − jũβ (s)

]
Gxpll (s+ jω)

(6)

Ixref+ (s) = −0.25e−j2φvx Iref ũα (s+ 2jω1)Gxpll (s+ jω1)

− 0.25je−j2φvx Iref ũβ (s+ 2jω1)Gxpll (s+ jω1)

(7)

Ixref− (s) = −0.25ej2φvx Iref ũα (s− 2jω1)Gxpll (s− jω1)

+ j0.25ej2φvx Iref ũβ (s− 2jω1)Gxpll (s− jω1)

(8)

FIGURE 4. Voltage and current small signal path diagram of SI.

Gxplant =
GcGd

s3L1L2C + GcGd s2L2C + GdGc+sL1+sL2
(9)

Yxio (s) =
1 + s2L1C + sCkcGd − GfGd

s3L1L2C + kcGd s2L2C + GdGc + sL1 + sL2
(10)

Gxpll (s) =
GxPI (s)

s+ UmGxPI (s)
=

kxpp + kxii/s

s+ Um
(
kxpp + kxii/s

)
(11)

The subscript ‘‘x’’ in (1) to (11) denotes the variables in
phase-a, phase-b, or phase-c. φvx denotes the initial phase of
the grid. The GOSGα and GOSGβ denote the transfer function
from uPCC to uα and uβ respectively. Without loss of the
generality, the time delay-based PLL [12], [17] is also applied
in the paper, which can be expressed as (12). T0 = 0.02 s,
which is the period of the grid voltage.{

uα (s) = Gosgα (s) upcc (s) = upcc (s)
uβ (s) = Gosgβ (s) upcc (s) = upcc (s) e−T0s/4

(12)

Figure 5 shows the three-phase four-wire system
small-signal models considering the PPCE and FCE during
asymmetric fault. Figure 5(a) shows the variables with the
perturbation frequency ω. In Figure 5(a), the admittance
elements YSIoa, YSIob and YSIoc denote the input admittance
of SIa, SIb, and SIc at ω respectively. And the YSIox can
be defined by Yxref 0(s) + Yxio(s). Similarly, the variables in
Figure 5(b) and Figure 5(c) are at the coupling frequency
ω + 2jω1 and ω − 2jω1 respectively. Zdx and Zgx represent
the grid impedance of phase-x. Gfa and Gfb denote the fault
admittance of the fault branch in phase-a and phase-b.
The coupling relationship between three circuits is mod-

eled by the controlled current sources in Figure 5. The
controlled current sources i1a+2 is determined by the voltage
difference u+2

a − u+2
n , which represents the current compo-

nent at frequency ω produced by the voltage across SIa at
frequency ω + 2jω1. Correspondingly, the controlled current
sources i1a−2 is determined by voltage difference u−2

a − u−2
n ,

which represents the current component at frequency ω pro-
duced by the voltage across SIa at frequency ω − 2jω1. And
the definitions of the controlled current sources in SIb and SIc
are similar to SIa.
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FIGURE 5. Three-phase four-wire system small-signal models considering frequency coupling effect and phase coupling effect. (a) system
small-signal models at frequency ω. (b) system small-signal models at frequency ω + 2jω1. (c) system small-signal models at frequency
ω − 2jω1.

According to Figure 5(a), the following expression can be
achieved as, u1a − u1n

u1b − u1n
u1c − u1n

 =

 u1an
u1bn
u1cn

 = Zs3 (s)


i1ga

i1gb

i1gc

 +

 v1a
v1b
v1c

 (13)

And (14) shows the grid impedance matrix.

Zs3 (s) = ZD (s) + ZDN (s) + ZG (s) (I + ZG (s)Gf (s))−1

(14)

where, ZD(s) = diag (Zda(s), Zdb(s), Zdc(s)), ZDN(s) =

(Zdn(s) + Zgn(s))E. And E is the identity matrix. Impedance
matrix ZG(s) = diag (Zga(s), Zgb(s), Zgc(s)), and the admit-
tance matrix of the fault branches can be obtained asGf(s) =

diag (Gfa(s), Gfb (s), Gfc(s)). Defining Zdys) = sLdy + Rdy
and Zgy(s) = sLgy + Rgy, y = a, b, c, n, denote the grid
impedances. Gfx(s) = 1/sL fx + 1/Rfx , x = a, b, c, denote
the fault admittance of the phase-x.

From Figure 5(a), the grid current can be expressed as,
i1ga

i1gb

i1gc

 =

 i1a−2
i1b−2
i1c−2

 +

 i1a+2
i1b+2
i1c+2

 +

 i1a1
i1b1
i1c1

 (15)

In Figure 5(a), the controlled current sources i1a−2, i
1
b−2,

and i1c−2 denote the current component at frequencyω excited
by voltage across SIa, SIb, and SIc respectively at frequency
ω − 2jω1.
Thus, according to (1) and (2), the i1a−2, i

1
b−2, and i

1
c−2 can

be obtained as,

I1
−2 (s) = YC+2 (s)U−2 (

s−
)

(16)

where, YC+2(s) = diag (Yaref−(s), Ybref−(s), Ycref−(s)),
which is the 3∗3 diagonal matrix. Yaref−(s), Ybref−(s),
Ycref−(s) can be obtained from (5). Denote I1

−2(s) =

[i1a−2(s), i
1
b−2(s), i

1
c−2(s)]

T, U−2(s) = [u−2
an (s

−), u−2
bn (s

−),
u−2cn(s−)]T.

Similarly, the controlled current sources i1a+2, i
1
b+2 and i

1
c+2

can be obtained as,

I1
+2 (s) = YC−2 (s)U+2 (

s+
)

(17)

where, YC−2(s) = diag (Yaref+(s), Ybref+(s), Ycref+(s)),
which is the 3∗3 diagonal matrix. Yaref+(s), Ybref+(s),
Ycref+(s) can be obtained from (4). Denote I1

+2(s) =

[i1a+2(s), i
1
b+2(s), i

1
c+2(s)]

T, U+2(s+) = [u+2
an (s

+), u+2
bn (s

+),
u+2
cn (s

+)]T.
The currents i1a1, i

1
b1 and i

1
c1 denote the current component

at frequency ω excited by the voltage across the single invert-
ers at frequency ω, which can be expressed as (18).

I11 (s) = YSIO (s)U1 (s) (18)

where, YSIO(s) = diag (YSIOa(s), YSIOb (s), YSIOc(s)), which
is a 3∗3 diagonal matrix. YSIOx(s) = Ixref 0(s) + Yio(s), x =

a, b, c denotes phase-x. Denote I11(s)[i
1
a1, i

1
b1, i

1
c1]

T, U1(s) =

[u1an(s), u
1
bn(s), u

1
cn(s)].

From Figure 5(b), the controlled current sources i+2
a1 , i

+2
b1

and i+2
c1 represent current with frequency ω + 2jω1 pro-

duced by voltage across SIa, SIb and SIc respectively at
frequency ω, which can be expressed as,

I+2
1

(
s+

)
= YC+2 (

s+
)
U1 (

s+
)

(19)

where, YC+2(s+) = diag (Yaref−(s+), Ybref−(s+),
Ycref−(s+)), which is a diagonal matrix. Denote I+2

1 (s+) =

[i+2
a1 (s

+), i+2
b1 (s

+), i+2
c1 (s

+)]T,U1(s)[u1an(s),U
1(s)u1bn(s),U

1(s)
u1cn(s)]

T.
Similarly, the current i+2

a+2, i
+2
b+2 and i+2

c+2 denotes the cur-
rent component with frequency ω + 2jω1 excited by voltage
across SIa, SIb and SIc respectively at frequency ω + 2jω1,
which can be expressed as,

I+2
+2

(
s+

)
= YSIO

(
s+

)
U+2 (

s+
)

(20)

where, YSIO(s+) = diag (YSIOa(s+), YSIOb (s+), YSIOc
(s+)), it’s a 3∗3 diagonal matrix. Denote YSIOx(s+) =

Ixref 0(s+) + Yio(s+). The current matrix I+2
+2 (s+) and

voltage matrix U+2(s+) can be expressed as I+2
+2 =
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[i+2
a+2(s

+), i+2
b+2(s

+), i+2
c+2(s

+)]T and U+2(s+) = [u1an(s
+), u1bn

(s+), u1cn(s
+)]T.

From Figure 5(b), the grid currents and the terminal volt-
ages of the inverter sub-system at frequency ω + 2jω1 can be
obtained as,

U+2 (
s+

)
= Zs3

(
s+

) (
I+2
1

(
s+

)
+ I+2

+2

(
s+

))
. (21)

Combing (16), (17) and (28), the relationship between
terminal voltages of the inverter sub-system at frequency
ω + 2jω1 and ω can be achieved as (19). Matrix I is the
diagonal unit matrix.

U+2 (
s+

)
=

[
I − Zs3

(
s+

)
YSIO

(
s+

)]−1 Zs3
(
s+

)
×YC+2 (

s+
)
U1 (s) .(22)

Similarly, the relationship between terminal voltages of
the inverter sub-system at frequency ω − 2jω1 and ω can be
achieved as,

U−2 (
s−

)
=

[
I − Zs3

(
s−

)
YSIO

(
s−

)]−1 Zs3
(
s−

)
×YC−2 (

s−
)
U1 (s) .(23)

Combining (15), (22), and (23), the impedance model of
the inverter sub-system can be expressed as (24).

I1 (s) = YSIO (s)U1 (s)

+YC+2 (s)
[
I − Zs3

(
s−

)
YSIO

(
s−

)]−1

×Zs3
(
s−

)
YC−2 (

s−
)
U1 (s)

+YC−2 (s)
[
I − Zs3

(
s+

)
YSIO

(
s+

)]−1

×Zs3
(
s+

)
YC+2 (

s+
)
U1 (s)

=

[
YSIO (s) + G−2

c (s) + G+2
c (s)

]
U1 (s)

= YT (s)U1 (s) (24)

The matrix YT in (24) is the impedance matrix model of
the inverter sub-system obtained by considering the three SIs
as a whole during asymmetric fault, which is the foundation
for the later parameter and stability analyses. It should be
noted that although this impedance model is derived for the
scenario with the grounded short-circuit fault occurring in
both phase-a and phase-b, it is equally applicable to other
fault scenarios as well as to the no-fault scenario. To obtain
the impedance matrix of the inverter sub-system in other
scenarios, it is sufficient to replace the grid impedance matrix
of the corresponding scenario. In particular, the no-fault sce-
nario is a special case of the scenario studied by this paper,
as the result of Rfault = ∞.
In (26),G−2

c (s) is introduced due to the coupled current at
ω−2jω1 andG−2

c (s) is introduced due to the coupled current
atω+2jω1, which can be set to zero if the FCE is ignored. The
model developed in the paper can be easily extended to other
scenarios with great generality, which can greatly reduce the
workload of analyzing system stability in different scenarios.

B. MODEL VERIFICATION
The frequency scanning measurement by perturbation volt-
ages injection is implemented to verify the accuracy
of the established impedance model in the frequency
domain. By the frequency scanning measurement, the actual
impedance results of measurement by the control-hardware-
in-loop (CHIL) platform can be achieved as shown in
Figure 6, which can be used to compare with the analytical
impedance results.

FIGURE 6. Verification of the proposed impedance model of the inverter
sub-system.

C. PARAMETERS ANALYSES OF PPCE
The non-zero amplitude of off-diagonal elements in (24)
reflects the existence of PPCE between SIs of different
phases. The strength of PPCE can be defined as the ratio of
the quadratic sum of off-diagonal elements amplitude and the
quadratic sum of diagonal elements amplitude [35], which
can be expressed as,

ε=
|YT12|2+|YT13|2+|YT21|2+|YT23|2+|YT31|2+|YT32|2

|YT11|2+|YT22|2+|YT33|2

(25)

Figure 7 shows the curves of ε under different PLL band-
width fPLL . In Figure 7, there are two crests and one trough
in the curves. The frequencies corresponding to the two
crests all increase with the increase of fPLL . The frequency
corresponding to the trough decrease with increasing the
phase-locked loop bandwidth. In addition, the frequency
coupling degree near 50 Hz is not affected by fPLL . The fre-
quency coupling degree above 100 Hz is positively correlated
with fPLL .

Figure 8 shows the curves of ε when different neutral
inductances of the grid Lgnt = Ldn + Lgn used (2mH/ 3mH/
5mH). From Figure 8, the larger neutral inductance Lgnt
causes the lager ε. Tus the closeness degree of the coupling
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FIGURE 7. The strength of PPCE ε under different PLL bandwidths.

FIGURE 8. The strength of PPCE ε under different neutral
inductances Lgnt.

relationship between the three phases is positively correlated
with the value of the neutral inductance Lgnt . This is in line
with common sense. In the extreme case, if the neutral line
inductance Lgnt is zero, there is no coupling relationship
between the three phases as shown in Figure 3(a). This also
means that the weaker the strength of the grid, the more atten-
tion should be paid to the PPCE when performing stability
analysis.

IV. STABILITY ANALYSIS OF THREE-PHASE FOUR-WIRE
SYSTEM DURING ASYMMETRIC FAULTS
Combining (13) and (24), the system model of the currents of
three phases and voltages of three phases at the perturbation
frequency can be achieved as (26). i1ga (s)

i1gb (s)

i1gc (s)

=(I − YT (s)Zs3 (s))−1 YT (s)

v1a (s)
v1b (s)
v1c (s)

. (26)

The system analysis of stability is able to be simplified by
means of transforming the system variables in phase domain
to the variables in sequence domain. The variable in phase
domain can be decomposed into a NS, PS and ZS system
component.

Defining,S =
1
3

 1 1 1
1 α α2

1 α2 α

 ,S−1
=

 1 1 1
1 α2 α

1 α α2

 (27)

where, α = ej
2π
3 = −

1
2 + j

√
3
2 .

By matrix operations, (28) can be transferred as,i0 (s)
i1 (s)
i2 (s)

 = (I − YT012 (s)Zs012 (s))−1YT012 (s)

v0 (s)
v1 (s)
v2 (s)


(28)

YT012 (s) = SYT (s)S−1 (29)

ZS012 (s) = SZS3 (s)S−1. (30)

FIGURE 9. Nyquist curves of ζ1, ζ2 and ζ3 when fPLL = 80Hz,
fPLL = 150Hz and fPLL = 170Hz.

It should be noted that the matrices in equation (30) are
diagonal matrices when the system is completely symmetric.
And the stability of the system can be analyzed independently
by PS, NS and ZS SISOmodels. However, when the system is
not symmetric, there will be a coupling relationship between
the ZS PS and NS impedances, and then the stability of the
systemwill be analyzed by the Generalized Nyquist Criterion
(GNC) [36].

The stability of the system is determined by whether
the Nyquist curves of the three eigenvalues ζ1, ζ2, and
ζ3 of the impedance ratio matrix YT012ZS012 encircle
the point (−1, j0) according to the GNC theory. These
eigenvalues can be calculated by solving the equation
det(λE–YT012ZS012) = 0.

In the paper, the fault resistance value RFault is adopted to
weigh the fault degree, the larger the fault resistance value
means the weaker the fault degree. When RFault = ∞,
it means that there is no short circuit fault.

A. EFFECT OF PLL BANDWIDTH ON SYSTEM STABILITY
Figure 9 shows the Nyquist curves of ζ1, ζ2 and ζ3
when fPLL = 80Hz, fPLL = 150Hz, fPLL = 170Hz,
and RFault = 0.8�. It can be seen from Figure 9 that as fPLL
gradually increases, Nyquist curves ζ1 gradually approach
(−1,0). When fPLL = 170Hz, the Nyquist curve ζ1 surrounds
(−1,0) and intersects with the unit circle at 112 Hz. It indi-
cates that the systemwill destabilize at 112 Hz. This indicates
that reduced PLL bandwidth contributes to improving the
system stability under asymmetry faults.

B. EFFECT OF ASYMMETRIC SHORT CIRCUIT FAULT
DEGREE ON SYSTEM STABILITY
Figure 10 shows the Nyquist curves of ζ1, ζ2, and ζ3
with fPLL = 80Hz and σ = 1 when RFault = 2�,
RFault = 0.8�, and RFault = 0.4�. From Figure 10, as RFault
gradually decreases, asymmetric fault degree, Nyquist curves
ζ1 gradually approach (−1,0). When RFault = 0.4�, the
Nyquist curve ζ1 surrounds (−1, 0) and intersects with the
unit circle at 82 Hz. This indicates that the system will
become unstable at 82 Hz. The law indicates that the deeper
the fault, the more likely it is to cause system instability under
the same controller parameters during asymmetry faults.
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FIGURE 10. The Nyquist curves of ζ1, ζ2 and ζ3 when RFault = 2�,
RFault = 0.8�, and RFault = 0.4� respectively.

FIGURE 11. The Nyquist curves of ζ1, ζ2 and ζ3 when σ = 0.03,
σ = 1 and σ = 39.

C. EFFECT OF SHORT CIRCUIT LOCATION ON SYSTEM
STABILITY ASYMMETRIC SHORT CIRCUIT FAULT DEGREE
Defining σ = Lgx /Ldx , σ denotes the short circuit location.
a smaller coefficient σ means that the location of short circuit
fault is further away from inverters. Figure 11 shows the
Nyquist curves of ζ1, ζ2 and ζ3 with fPLL = 80Hz and
RFault = 0.8� when σ = 0.03, σ = 1, and σ = 39.
From Figure11, as σ gradually increases, the stability margin
of the system gradually decreases. And when σ increases to
39, the curve ζ1 intersects with the point (−1,0) at 88 Hz.
This indicates that the system will become unstable at 88 Hz.
This also shows that the closer the short circuit fault is to the
inverter, themore likely it is to result in small signal instability
during asymmetry faults.

V. EXPERIMENTAL RESULTS
To better validate the above theoretical analysis, the exper-
imental platform is established as expressed in Figure 12.
The hardware platform consists of two parts, the control
part based on TMS320F28335+FPGA control board and the
main circuit part based on Typhoon 602+. The control part
is to realize the role of performing sampling, calculation,
control and PWM generation, and Typhoon 602+ is used to
simulate the main circuit of the SIs as well as the grid. The
experimental parameters can be seen in Table 1.
Figure 13 shows the verification waveform about the effect

of the PLL bandwidth on the system stability. Figure 13 is
divided into three states. State ① shows active power, reactive

FIGURE 12. Experimental platform.

TABLE 1. Parameters of single-phase inverters-based power system.

power, voltages, and currents of the PCC during normal
operation. It can be seen from the figure that all three phases
of inverters operate stably. State ② shows the experimental
waveform when the grounded short-circuit fault occurs in
both phase-a and phase-b with fPLL = 80Hz, Rfault = 0.8�,
and σ = 1. It can be seen from the figure that after a
dynamic process of about 100ms, the three single-phase
inverters resume steady-state operation, the ZS component of
50Hz in the system increases significantly, and there is no
obvious harmonic component in the system. State ③ shows
the experimental waveformwhen the fPLL changes from 80Hz
to 170Hz with Rfault = 0.8 � and σ = 1.
From Figure 13 the system gradually diverges as fPLL

increases, and there are obvious harmonic components in the
system at 12Hz, 112Hz and 212Hz. The frequencies of the
harmonic components are consistent with the harmonic fre-
quencies predicted in Figure 9. Therefore, comparing state ②
and state ③, it can be observed that the larger PLL bandwidth
is, the more likely it is to result in system instability when the
short-circuit location σ = 1 and the degree of short-circuit
fault Rfault = 0.8� are guaranteed to be the same. The

VOLUME 11, 2023 63859



Y. Liao et al.: Small-Signal Stability Analysis of Three-Phase Four-Wire System

FIGURE 13. Verification waveform of the effect of the PLL bandwidth on
the system stability.

FIGURE 14. Verification waveform about the effect of the short fault
degree on the system stability.

experimental results coincide to the theoretical results
expressed in Figure 9.

FIGURE 15. Verification waveform of the effect of short circuit location on
system stability.

Figure 14 gives the validated waveforms about the effect of
the fault degree of the short circuit fault on the system stabil-
ity. Figure 14 is also divided into three states. State ① shows
the waveforms of the system during the stable operation state.
It can be seen from the figure that all three phases inverters
operate stably and there is no obvious harmonic component in
the system. State ② shows the experimental waveform when
the grounded short-circuit fault occurs in both phase-a and
phase-b with fPLL = 80Hz, Rfault = 0.8� and σ = 1. It can
be seen from the figure that after a dynamic process about
100ms, the three single-phase inverters resume steady-state
operation, the ZS component of 50Hz in the system increases
significantly, and there is no obvious harmonic component in
the system. State ③ shows the experimental waveform when
Rfault changes from 0.8� to 0.4� with fPLL = 80Hz and
σ = 1.
From Figure 14, there are obvious harmonic components

in the system, and the harmonic component frequencies are
18Hz, 82Hz, and 182Hz as shown by the FFT analysis. The
harmonic components’ frequencies are consistent with the
frequencies predicted in Figure 10. Therefore, comparing
state ② and state ③, it can be observed that the greater the
short circuit fault degree is, the more likely it is to result
in system instability when PLL bandwidth and short-circuit
location are guaranteed to be the same. And these experimen-
tal results coincide with theoretical analysis results expressed
in Figure 10.
The effect of short circuit location on system stability is

shown in Figure 15. The figure is divided into four states.
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State ① indicates the waveforms of the system during the sta-
ble operation state. It can be seen from the figure that all three
phases inverters operate stably. State ② shows experimental
waveform when the grounded short-circuit fault occurs in
both phase-a and phase-b with fPLL = 80Hz, Rfault = 0.8�
and σ = 4 From the figure, it can be seen that after a
dynamic process of about 200ms, the three-phase inverters
resume steady-state operation, and the ZS component of
50Hz in the system increases significantly, and there is no
obvious harmonic component in the system. State ③ shows
the experimental waveform when a short-circuit to ground
fault has been cleared. From State ③, the system stabilizes
after about 200ms. State ④ shows experimental waveform
when the grounded short-circuit fault occurs in both phase-a
and phase-b with fPLL = 80Hz, Rfault = 0.8� and σ = 39.
From State ④, there are obvious harmonic components in

the system, and the harmonic component frequency in the
system are 12Hz, 88Hz and 188Hz as shown by the FFT
analysis. The frequencies of harmonic components are con-
sistent with the frequencies predicted as Figure 11. Therefore,
comparing state ② and state ④, it can be found that the closer
grid fault location to the inverter, the more likely it is to
result in system instability when the control parameters are
guaranteed to be the same. The experimental results coincide
to the theoretical analysis results expressed in Figure 11.
These experiments demonstrate that the impedance model

considering the PPCE and FCE proposed in this paper can be
used to evaluate the system stability accurately.

VI. CONCLUSION
Theoretical research and experiments have been carried out
in this paper to study the stability of SIs connected to the
three-phase four-wire weak grid under asymmetric faults.
The conclusions can be seen as follows,

(1) In the system where the SIs are divided into three phase
groups and connected to the three-phase four-wire weak grid
under asymmetrical fault conditions, the PPCE, FCE, and
asymmetric grid impedance can be analyzed by considering
the SIs as an inverter sub-system. And the admittance model
considering PPCE, FCE, and asymmetric grid has been estab-
lished by harmonic transfer matrix.

(2) Based on the established admittance model, the main
factors that affect the PPCE are the PLL bandwidth and the
neutral inductance Lgnt . The larger PLL bandwidth or the
larger neutral inductance Lgnt brings stronger PPCE. This also
means that the weaker strength of the grid, the more atten-
tion should be paid to the PPCE when performing stability
analysis.

(3) Based on the achieved impedance model, the
small-signal stability analysis of the system during asym-
metric fault has been analyzed accurately. The study results
indicate that the reduced PLL bandwidth contributes to
improving the small-signals stability. And the deeper the
short circuit fault degree, the more likely it is to cause system
instability at the same controller parameters. In addition,

a closer location of the fault to the inverter will deteriorate
the system stability under asymmetric faults.

Overall, the paper focus on the factors and laws that
impacts the system’s small-signal stability, without proposing
strategies for enhancing it. Therefore, the next step for the
authors would be to explore how to improve system stability
through the rational design of inverters parameters or the
proposal of new control strategies.
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