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ABSTRACT This paper presents a novel probability distribution, namely the new XLindley distribution,
derived from a unique combination of exponential and gamma distributions through a special mixture
formulation. The study extensively investigates the mathematical properties of the proposed distribution,
including but not limited to the moment generation function, moments of different orders, mode identifica-
tion, and the quantile function. Furthermore, the research employs a Monte Carlo simulation to assess and
compare the performance of various estimators in estimating the unknown parameter of the new XLindley
distribution. These estimators are carefully evaluated and analyzed in terms of their efficiency and accuracy,
providing valuable insights into the practical application of the new distribution in statistical modeling and
data analysis contexts. The voltage and failure time data in the field of engineering are used to model the
proposed distribution. The newmodel is compared with many current distributions such as Xlindley, gamma,
Weibull, exponential, Lindley, Shanker, Akash, Zeghdoudi, Chris-Jerry, and Xgamma. Among all models,
it is concluded that the new one-parameter distribution performed the best in modeling based on criteria such
as the Akaike information criterion, Bayesian information criterion, and others. The real data results show
that the proposed distribution exhibits greater flexibility and improved goodness of fit compared to alternative
distributions. The new XLindley distribution could be useful in modeling real-life data and may warrant
further exploration in future research. Overall, this study contributes to the field of probability distributions
and provides new insights for statistical modeling.

INDEX TERMS Exponential distribution, XLindley distribution, quantile function, estimation, simulation,
voltage data.

I. INTRODUCTION
New distributions may be formed by merging a finite number
of probability distributions with a mixed proportion, known
as ‘‘finite mixture distributions’’. These distributions are used
regularly to simulate a wide range of random occurrences,
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in particular, to account for the heterogeneity of the unde-
tected data. In the field of statistical data modeling, the mixed
distribution model is widely recognized.

Many researchers are very interested in studying mixes
of distributions because datasets can be considered mixed
populations.Work onmixtures has been done in the literature.
Some of the more important references that cover various
forms of distribution mixtures include: authors in [4], [11],
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[13], [15], and [17] considered the mixture of the exponential
and gamma or Lindley and gamma distributions.

The Lindley distribution, named after British statistician
Dennis Lindley [11], is a probability distribution that is
widely used in statistical modeling and data analysis. It is
a one-parameter distribution that has been found to provide
a good fit for various real-world datasets, especially those
involving non-negative, right-skewed data. The Lindley dis-
tribution has been used in a wide range of applications,
including in the fields of finance, environmental studies, and
medical research, among others. The Lindley distribution
is characterized by its probability density function, which
exhibits a rapid drop-off at zero and a long tail to the right.
The distribution is particularly useful in modeling count data
with excess zeros, as well as in survival analysis and relia-
bility modeling. In recent years, there has been an increasing
interest in the Lindley distribution and its applications, lead-
ing to the development of new estimation methods and the
exploration of its properties in greater detail. This new paper
will contribute to this growing body of research by providing
a comprehensive overview of the Lindley distribution, its
properties, and its applications. One of the key advantages of
the Lindley distribution is its ability to capture the effects of
covariates or explanatory variables. In particular, the distribu-
tion can be used in regression modeling, where it can account
for the influence of one or more predictor variables on the
distribution of the response variable. This makes it a valuable
tool in various applications, from epidemiology to finance.
Also, for some generalizations of the Lindley distribution,
one can look at [1], [5], and [16].

The one-parameter Lindley distribution can be seen as
a mixture of exp(θ) and gamma(2,θ ) distributions. Later,
Ghitany et al. [7] worked extensively on the statistical prop-
erties of the Lindley distribution and established that it
performs better than the well-known one-parameter exponen-
tial distribution in many ways. The Lindley distribution has
only one scale parameter and can model data with mono-
tonic increasing failure rates. Due to this, the analysis of
different types of lifetime data may require a more flexible
distribution than the Lindley distribution provides. Several
one-parameter models have been proposed in the statistical
literature to modify lifetime data, including the Lindley [11],
exponential, Zeghdoudi [13], Ishita [27], Shanker [19],
Rama [25], Pranav [9], Rani [26], Akash [18], Aradhana [21],
Sujatha [24], Amarendra [20], Devya, [22] Shambhu [23],
Chris-Jerry [15], XLindley [4], and Xgamma [17].

The purpose of this article is, firstly, to propose and study
a new distribution with one parameter that combines the ben-
efits of Lindley and exponential distributions. It may be used
in various areas, including biology, engineering, astronomy,
actuarial science, and medicine. On the other hand, the new
distribution has an increased risk rate and a decreasing aver-
age residual life function. This new distribution may attract
research attention.

The following is the format of this research paper:
In Section II, the formulation of the proposed distribution

is presented. Some distributional properties of the newmodel
are discussed in Section III. In Section IV, the estimation
procedure of the model parameter is performed by many
estimators. The performances of these estimators are evalu-
ated via aMonte Carlo simulation in SectionV. In SectionVI,
several actuarial properties of the proposed model are inves-
tigated. The usability of the new distribution is illustrated via
a real data application in Section VII. Section VIII ends the
paper with a conclusion.

II. FORMULATION OF THE NEW DISTRIBUTION
Recently, Beghriche et al. [2] introduced a new statistical
family named new one-parameter polynomial exponential
distribution (NPED) having the probability density func-
tion (pdf)

f (x, θ) =
exp (−θx)

∑n
k=0 x

k ak,θ∑n
k=0

k!
θk+1 ak,θ

; x > 0, θ > 0. (1)

Our proposed model which is called new XLindley dis-
tribution (NXLD) is obtained as a special case of (1), when
n = 1, a0,θ = 1, and a1,θ = θ as follows

fNXL(x; θ ) =
θ

2
(1 + θx) exp (−θx) , x, θ > 0, (2)

and it can be obtained by mixture of f1(x) ∼ Exp(θ) and
f2(x) ∼ gamma(2, θ) with p1 = p2 =

1
2 .

III. STATISTICAL PROPERTIES
A. MODE
The pdf (2) behavior at zero and infinity are, respectively,
discussed by the following two limits as follows

lim
x→0

fNXL(x) =
θ

2
and lim

x→∞
f (x) = 0.

The first derivative of fNXL(x) is

dfNXL(x)
dx

= −
1
2
xθ3e−xθ < 0, (3)

and its second derivative is

d2fNXL(x)
dx2

=
1
2
θ3 (xθ − 1) e−xθ ,

with
d2fNXL (x)

dx2
< 0, x <

1
θ
, and

d2fNXL (x)
dx2

> 0, x >
1
θ

where
(
1
θ
, θe−1

)
is inflection point and the mode of NXLD

is
θ

2
. Note that the mode of the exponential distribution is

always at 0 like the mode of the NXLD.

B. SURVIVAL AND HAZARD RATE FUNCTION
The cumulative distribution function (c.d.f.) of the NXLD is
defined as follows

FNXL(x; θ ) = 1 −

(
1
2
θx + 1

)
e−xθ , (4)
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then, the survival function SNXL(x) and hazard rate function
(hrf) hNXL(x) for the NXLD are, respectively, defined as
follows

SNXL(x) = 1 − FNXL(x) = SNXL(x) =

(
1
2
θx + 1

)
e−xθ ,

(5)

hNXL(x) =
fNXL(x)

1 − FNXL(x)
=

θ + θ2x
θx + 2

. (6)

Proposition 1: The hrf hNXL(x) (6) is an increasing
function.

Proof: By Glaser [8] and the pdf (2), we have

ρ(x) =
θ3x

θ (1 + θx)
, (7)

and its first derivative is

ρ
′

(x) =
θ2

(xθ + 1)2
, (8)

then, the hNXL(x) is an increasing function.
The pdf and hrf plots of the NXLD distribution are given

in Figure 1. In Figure 1, it observed that the pdf is decreasing
and the hrf is increasing shaped.

Figure 1. The pdf and hrf plots for some choices of parameter θ .

C. MOMENTS
The rth moment of the NXLD is defined as follows

µ
′

r = E(X r ) =

∞∫
0

xr fNXL(x)dx =

∞∫
0

xr
θ

2
(1+θx) exp (−θx) dx

=
1
2θ r

(0 (r + 1) + 0 (r + 2)) . (9)

Proposition 2: Let X ∼ NXLD, the mean, variance, co-
efficients of variation, skewness, and kurtosis for X are,
respectively defined as follows

E(X ) =
3
2θ

,Var(X ) =
7
4θ2

,

Skewness =
√

β1 =
E(X3)

(Var(X ))
3
2

=

15
θ3(
7

4θ2

) 3
2

=
120
49

√
7 = 6.4793,

Kurtosis = β2 =
E(X4)

(Var(X ))2
=

72
θ4(
7

4θ2

)2 =
1152
49

= 23.5102,

C .V = γ =

√
Var(X )
E(X )

=

√
7

4θ2

3
2θ

=

√
7
3

.

The new distribution is leptokurtic and right-skewed accord-
ing to the skewness and kurtosis.
Theorem 1: Let X ∼ NXLD(θ). Then the median(X ) <

E(X ).
Proof: Let m = median(X ) and µ = E(X ) =

3
2θ .

Since the c.d.f. is given by (4), it follows that F(m) =
1
2 and

F(µ) = 1 −
7
4e

−
3
2 .

Note that 1
2 < 1−

7
4e

−
3
2 . Finally, since F(x) is an increasing

function in x > 0 for all θ > 0, we have m < µ.

D. ENTROPY
It is generally agreed that entropy and information can be used
to calculate the amount of uncertainty in a probability dis-
tribution. But many correlations have been created from the
characteristics of entropy. The entropy of a random variableX
measures the uncertainty’s variation. The entropy of Rényi is
defined as follows

IR (s) =
1

1 − s
log

{∫
∞

0
f s (x) dx

}
,

where s(integer) > 0 and s ̸= 1. For the NXLD, we have

IR (s) =
1

1 − s
log

(∫
∞

0

(
θ

2
(1 + θx) exp (−θx)

)s
dx
)

=
1

1 − s
log

(∫
∞

0

θ s

2s
(1 + θx)s e−θsxdx

)
,

where∫
∞

0

θ s

2s
(1 + θx)s e−θsxdx

=
θ s

2s

n∑
i=0

n!
(n− i)!i!

∫
∞

0
(θx)(n−i) e−θsxdx

=
θ s

2s

n∑
i=0

n!
(n− i)!i!

θn−i

sθ
0 (n+ 1 − i) (sθ)i−n .

Now, the Rényi entropy for the NXLD is determined as
follows

IR (s) =
1

1 − s
log

(
θ s

2s

n∑
i=0

n!
(n− i)!i!

θn−i0 (n− i+ 1)

(sθ)n−i+1

)
.

E. STRESS-STRENGTH RELIABILITY
Stress-strength reliability is a concept used to describe the
lifespan of a component that experiences random strength,
represented by the variable X , and random stress, represented
by the variable Y . If the stress exceeds the component’s
strength, it will fail immediately. Otherwise, the component
will function correctly until the stress exceeds its strength.
In statistical terms, the stress-strength parameter, denoted
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as R = P [Y < X ], measures component reliability. This
concept has broad applications in many fields, particularly
in engineering, where it is used to study the deterioration of
rocket motors, static fatigue of ceramic components, aging of
concrete pressure vessels, and other related issues.

One way to calculate the stress-strength reliability R for
a component with independent strength and stress random
variables X and Y , both follow NXLD with parameters θ1
and θ2, respectively, is as follows.

R = P [Y < X ] =

∫
∞

0
P [Y < X |X = x ] fNXL(x; θ )dx

=

∫
∞

0
fNXL(x; θ1)FNXL(x; θ2)

=

∫
∞

0

(
θ1

2
(1 + θ1x) exp (−θ1x)

)
×

(
1 −

(
1
2
θ2x + 1

)
e−xθ2

)
dx

=
θ2
(
3θ21 + 9θ1θ2 + 4θ22

)
4 (θ1 + θ2)

3 .

F. STOCHASTIC ORDERING
Definition 1: Consider two random variables X and Y .

Then X is said smaller than Y in the following
a) Stochastic order (X <S Y ), if FX (t) < FY (t),∀t .
b) Convex order (X ≤cx Y ), if for all convex functions φ

and .provided expectation exist, E[φ(X )] ≤ E[φ(Y )]
c) Hazard rate order (X ≤hr Y ), if hX (t) ≥ hY (t), ∀t .
d) Likelihood ratio order (X <lr Y ), if

fX (t)
fY (t)

is decreasing
in t.

Remark 1: Likelihood ratio order⇒Hazard rate order⇒

Stochastic order If E[X ] = E[Y ]; then Convex order ⇔

Stochastic order.
Theorem 2: Let Xi ∼NXLD(θi); i = 1; 2 be two random

variables. If θ1 ≥ θ2, then: X1 <lr X2; X1 <hr X2; X1 <S X2
and X1 ≤cx X2.

Proof:We have

fX (t)
fY (t)

=
θ1 (1 + θ1t)
θ2 (1 + θ2t)

e−(θ1−θ2)t .

For simplification, we use ln fX (t)
fY (t)

Now, we can find:

d
dt

ln
(
fX (t)
fY (t)

)
= −

(θ1 − θ2) (θ1 + θ2 + tθ1θ2) t
(tθ1 + 1) (tθ2 + 1)

.

To this end, if θ1 ≥ θ2, we have d
dt ln

(
fX (t)
fY (t)

)
≤ 0. This means

that X1 <lr X2: Also, according to Remark 1 the theorem is
proved.

G. LORENZ CURVE
Let X be a random variable pdf f (x) and the CDF F (x), the
Lorenz curve L is given by

L(F(x)) =

∫ x
−∞

tf (t) dt

E(X )
,

where E(X ) denotes the average. The Lorenz curve L(F)
may then be plotted as a function parametric in x: L(x)
vs. F(x). In other contexts, the quantity computed here is
known as size-biased distribution; it also has an important
role in renewal theory.

We have it for NXLD∫ x

0
tf (t) dt =

3
2θ

−
1
2θ
e−xθ

(
θ2x2 + 3θx + 3

)
.

We obtain the Lorenz curve for the NXLD as follows

L(p) = 1 −

(1 − p)
(
1
3
θx2 + θx + 1

)
(
1
2
xθ + 1

) .

where x = F−1(p) with F(·) given by (4).

H. EXTREME ORDER STATISTICS OF NXLD
Let X1, . . . ,Xn a sample of n random variables that follow
the NXLD and if X =

∑n
i=1 Xi
n represents the sample mean

then by the central limit theorem
√
n
(
X−E(X)

)
√
Var(X)

approximates
the standard normal distribution when n → ∞.
Theorem 3: We will study the asymptotic law of extreme

values Sn = max(X1, . . . ,Xn) and In = min(X1, . . . ,Xn),
For the distribution function defined in (4), we find that

lim
t→∞

1 − FNXL(t + x)
1 − FNXL(t)

= exp(−θx).

and

lim
t→0

FNXL(tx)
FNXL(t)

= x.

According to Theorem 1.6.2 in Leadbetter et al. [10] that
there must be norming constants αn > 0, βn, γn > 0 and
δn such that

P{αn(Sn − βn) ≤ x} → exp (− exp(−θx)) .

and

P{γn(In − δn) ≤ x} → 1 − exp (−x) .

as n → ∞. Using Corollary 1.6.3 in Leadbetter et al. [10],
we can see that αn = 1 and βn = F−1(1 − 1/n) with F(·)
given by (4).

I. FUZZY RELIABILITY
Let T be a continuous random variable representing a sys-
tem’s failure time (component). The fuzzy dependability can
then be calculated using the fuzzy probability in the formula

RF (t) = P (T > t) =

∞∫
t

ν(x) fNXL(x)dx, 0 ≤ t ≤ x < ∞,

where ν(x) is a membership function that describes the
degree to which each element of a given universe belongs to
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a fuzzy set (for more details see Chen et al. [3]. Now, assume
that ν(x) is

ν(x) =


0, x ≤ t1
x − t1
t2 − t1

, 0 ≤ t1 < x < t

1, x ≥ t2

For ν(x), by the computational analysis of the function of
fuzzy numbers, the lifetime x(λ) can be obtained to cor-
respond to a certain value of λ − Cut, λ ∈ [0, 1], can be
obtained as ν(x) = λ →

x−t1
t2−t1

= λ, then
x(λ) ≤ t1, λ = 0
x(λ) = t1 + γ (t2 − t1), 0 < λ < 1
x(λ) ≥ t2, λ = 1

As a result, the fuzzy reliability values may be determined
for all λ values. The fuzzy reliability definition determines
the fuzzy dependability of the NXLD. The fuzzy reliability of
the NXLD can be defined as,

RF (t)=
(
1+

(
1
2
θ t1+1

))
e−θ t1−

(
1+

(
1
2
θα+1

))
e−θλ.

Then RF (t)λ=0 = 0.

IV. ESTIMATION OF NXLD PARAMETER
This section will focus on estimating the proposed model pa-
rameter using various methods. We will obtain the estimator
by maximizing or minimizing an objective function, as we
will demonstrate.

Let Xi ∼ NXLD(θ), i = 1 . . . n be n random variables, the
likelihood function is defined as follows

L(θ ) =

(
θ

2

)n n∏
i=1

(1 + θxi))e−θ
∑n

i=1 xi .

The log-likelihood function is given as follows

ln l (xi; θ ) = n log
θ

2
+

n∑
i=1

log(1 + θxi) − θ

n∑
i=1

xi. (10)

The derivatives of ln l (xi; θ ) with respect to θ is determined
as follows

=
n
θ

+

n∑
i=1

(
xi

1 + θxi

)
−

n∑
i=1

xi.

To obtain the maximum likelihood estimation (MLE, E1)
of θ , θ̂MLE , we can maximize equation (10) directly with
respect to θ , or we can solve the non-linear equation
∂ ln l(xi;θ )

∂θ
= 0. Note that θ̂MLE cannot be solved analytically,

so we can use numerical iteration techniques for determining
it such as the Newton-Raphson algorithm.

Suppose we have an ordered random sample of size n given
by X1,X2, . . . ,Xn, where each Xi is distributed according to
an NXLD with parameter θ .

Then estimation of the NXLD parameter θ̂ is carried out
using the Anderson-Darling estimation (E2) approach, which
requires the minimization of the following equation.

A = −n−
1
n

n∑
i=1

(2i− 1)[logF(xi) + log S(xi)]

The estimation of the NXLD parameter θ̂ is carried out
using the Cramér-vonMises estimation (E3) approach, which
requires the minimization of the following equation.

C = −
1
12n

+

n∑
i=1

[
F(xi) −

2i− 1
2n

]2
.

The estimation of the NXLD parameter θ̂ is carried out
using the maximum product of the spacings estimation (E4)
approach, which requires maximizing the following equation.

T =
1

n+ 1

n+1∑
i=1

logMi, Mi = F
(
x(i)
)
− F

(
x(i−1)

)
.

The NXLD parameter θ̂ is estimated using the least-
squares estimation (E5) approach, which requires the mini-
mization of the following equation.

S =

n∑
i=1

[
F(xi) −

i
n+ 1

]2
.

The NXLD parameter θ̂ is estimated using the right-tail
Anderson-Darling estimation (E6) approach, which requires
the minimization of the following equation.

RL =
n
2

− 2
n∑
i=1

F (xi) −
1
n

n∑
i=1

(2i− 1) log S (xn+1−i) .

The NXLD parameter θ̂ is estimated using the weighted
least-squares estimation (E7) approach, which requires the
minimization of the following equation.

W =

n∑
i=1

(n+ 1)2(n+ 2)
i(n− i+ 1)

[
F(xi) −

i
n+ 1

]2
.

Suppose we have an ordered random sample of size n given
by X1,X2, . . . ,Xn, where each Xi is distributed according to
the NXLD with parameter θ , the estimation of the NXLD pa-
rameter θ̂ is carried out using the left tailedAnderson–Darling
estimation (E8) approach, which requires the minimization of
the following equation.

LT = −
3
2
n+ 2

n∑
i=1

F(xi:n) −
1
n

n∑
i=1

(2i− 1) logF(xi:n).

The NXLD parameter θ̂ is estimated using the minimum
spacing absolute distance estimation (E9) approach, which
requires the minimization of the following equation.

ω1 (xi) =

n+1∑
i=1

|Mi −
1

n+ 1
|.
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Table 1. Simulation values of BIAS, MSE, and MRE for θ = 0.1.

Table 2. Simulation values of BIAS, MSE and MRE for θ = 0.5.

The estimation of the NXLD parameter θ̂ is carried out
using the minimum spacing absolute-log distance estima-
tion (E10) approach, which requires the minimization of the
following equation.

ω2 (xi) =

n+1∑
i=1

| logMi − log
1

n+ 1
|.

V. NUMERICAL SIMULATION
This section will utilize all the estimation methods previ-
ously discussed. We will investigate the performance of these
various techniques when applied to estimate the parameter
of NXLD. Furthermore, we will compare the numerical val-
ues obtained from each approach to evaluate and contrast
their effectiveness by determining an average of bias (BIAS)
|Bias(̂θθθ )| =

1
M

∑M
i=1 |̂θθθ − θθθ |, mean squared errors (MSE),

MSE =
1
M

∑M
i=1(̂θθθ − θθθ)2, and mean relative errors (MRE)

MRE =
1
M

∑M
i=1 |̂θθθ − θθθ |/θθθ .

To determine the optimal method for estimating model
parameters, one potential approach is relying on simulation
results. In our case, we generated 1000 random samples from
the NXLD distribution using the R programming language.
The sample sizes varied between 15, 30, 100, 150, 200,
and 300. Tables 1-6 present the outcomes obtained from our
simulation, with each value representing the ranking of a
particular estimation method relative to the others. Mean-
while, Table 7 shows our estimator’s partial and overall
rankings. Based on the results of our simulations using ran-
dom samples from the NXLD, we conclude that the MPSE

Table 3. Simulation values of BIAS, MSE and MRE for θ = 1.0.

Table 4. Simulation values of BIAS, MSE and MRE for θ = 2.0.

Table 5. Simulation values of BIAS, MSE and MRE for θ = 2.5.

Table 6. Simulation values of BIAS, MSE and MRE for θ = 3.5.

approach is the most effective for estimating the NXLD
parameter.

VI. ACTUARIAL MEASURES
In this section, some actuarial properties of the NXLD are
discussed and derived mathematically.
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Table 7. Partial and overall ranks of all the methods of estimation of
proposed distribution by various values of the model parameter.

A. THE QUANTILE FUNCTION OR VALUE
AT RISK OF THE NXLD
From c.d.f. in Equation (4), the quantile function of the
NXLD is defined as follows

QX (u) = VaR = xu = −
2
θ

−
1
θ
W−1

[
2(u− 1)

e2

]
, u ∈ [0, 1] ,

whereW−1 is the negative branch Lambert function
Definition 2: Risk managers use value at risk (VaR) to

measure and control the level of risk exposure. The mathe-
matical definition is

VaR = inf(x ∈ R, P(X > x ≤ 1 − p)),

where p ∈ (0, 1) is the level. The formula tells us what the
maximum loss we can expect tomorrow, with normal market
conditions, or what amount of loss we should not exceed with
a given level of probability, thus VaR is also known as a
quantile risk measure and is defined as VaR = F−1(p) for
a continuous distribution is.

B. MEAN EXCESS FUNCTION
For a claim amount random variable X , the mean excess or
residual life function is the expected payment per claim on
a policy with a fixed amount deductible of x, where claims
with amounts less than or equal to x is completely ignored.
It is defined for the NXLD as follows

e(x) = E(X − x/X > x) =
1

1 − F(x)

∫
∞

x
(1 − F(u))du

=
θx + 3

θ (θx + 2)
.

C. LIMITED EXPECTED VALUE FUNCTION
The limited expected value function L of a claim size vari-
able X , or of the corresponding c.d.f F(x), is defined as
follows

L(u) = E{min(X , u)} =

∫ u

0
xdF(x) + u {1 − F(u)} , u > 0.

The value of the function L at point x is equal to the
expectation of the c.d.f F(x) truncated at this point. Given
a policy limit or deductible from a reinsurance perspective,
say u, a limited loss random variable is defined as follows

X ∧ u = min(X , u) =

{
X , X ≤ u
u, X > u

The limited expected value function is defined as the expec-
tation of the limited which is calculated as follows

E(X ∧ u) =

∫ u

0
xf (x)dx + u(1 − F(u))

= m1(u) + u(1 − F(u)),

where

m1(u)=
∫ u

0
xf (x)dx =

3
2θ

+
1
2

(
θu2− (1 +2θ )u−

3
θ

)
e−θu.

Then, we have

E(X ∧ u) =
3
2θ

+

(
θu2 + (

1
2

− θ )u−
3
2θ

)
e−θu.

D. TAIL VALUE AT RISK
The tail value at risk (TVaR) also known as the tail conditional
expectation is a risk measure associated with the general
value at risk. TVaR measures the expectation of the losses
beyond VaR. The TVaR is defined for the NXLD as follows

TVaR = E(X |X > VaR)

=
1

1 − p

∫
∞

VaR
xf (x)dx

=
1

1 − p

∫
∞

VaR
x
θ

2
(1 + θx)e−θxdx

=
θe−θVaR

2(1 − p)

(
VaR2 +

3
θ
VaR+

3
θ2

)
.

Although it virtually always represents a loss, VaR is con-
ventionally reported as a positive number.

E. TAIL VARIANCE
Tail variance (TV ) measures losses’ conditional variance,
given that they exceed VaR at a given probability P. TV is
defined for the NXLD as follows

TV = E(X2
|X > VaR) − (TVaR)2

=
1

1 − p

∫
∞

VaR
x2f (x)dx − (TVaR)2

=
θe−θVaR

2(1 − p)
((VaR)3 +

4
θ
(VaR)2 +

8
θ2

(VaR) +
8
θ3

)

−
9e−2θVaR

4(1 − p)2
(
θ

3
(VaR)2 + (VaR) +

1
θ
)2.
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VII. REAL DATA ANALYSIS
In this section, the real-life applicability of the new one-
parameter model is demonstrated by two real datasets. The
first real dataset represents the failure and running times
of a sample of devices from a larger system field-tracking
research. The data studied by [12] and for detailed informa-
tion about the data, see [6]. The first data are given by: 275,
13, 147, 23, 181, 30, 65, 10, 300, 173, 106, 300, 300, 212,
300, 300, 300, 2, 261, 293, 88, 247, 28, 143, 300, 23, 300,
80, 245, 266. The second dataset indicates the failure times
of eight components at three different temperatures 100, 120,
140 and taken from [14]. The second data are 14.712, 32.644,
61.979, 65.521, 105.50, 114.60, 120.40, 138.50, 8.610,
11.741, 54.535, 55.047, 58.928, 63.391, 105.18, 113.02,
2.998, 5.016, 15.628, 23.040, 27.851, 37.843, 38.050, 48.226.

We evaluate the NXLD from Xlindley (XL), gamma (G),
Weibull (W), exponential (E), Lindley(L), Shanker (S),
Akash (A), Zeghdoudi (Z), Chris-Jerry(CJ), and Xgamma
(XG) distributions for this data. Information of pdf about
competitor models is provided as follows:

fXL (x) =
θ2

(1 + θ)2
(θ + x + 2) exp (−θx) , x, θ > 0

fG (x) =
1

θα0 (α)
xα−1 exp

(
−
x
θ

)
, x, α, θ > 0

fW (x) =
α

θ

( x
θ

)α−1
exp

(
−

( x
θ

)α)
, x, α, θ > 0

fE (x) = θ exp (−θx) , x, θ > 0

fL (x) =
θ2

(1 + θ)2
(1 + x) exp (−θx) , x, θ > 0

fS (x) =
θ2

θ2 + 1
(θ + x) exp (−θx) , x, θ > 0

fA (x) =
θ3

θ2 + 2

(
1 + x2

)
exp (−θx) , x, θ > 0

fZ (x) =
xθ3

2 + θ
(1 + x) exp (−θx) , x, θ > 0

fCJ (x) =
θ2

2 + θ

(
1 + θx2

)
exp (−θx) , x, θ > 0

fXG (x) =
θ2

1 + θ

(
1 +

θx2

2

)
exp (−θx) , x, θ > 0

The MLE method is used to carry out the parameter es-
timation procedure for all models based on voltage data.
We compute the MLEs of the parameter of models with
their standard errors (SE), as well as ℓ̂, Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC),
consistent AIC (CAIC), Hannan-Quinn information criterion
(HQIC), Kolmogorov-Smirnov statistic (KS), Cramér von
Mises statistic (CVM), Anderson-Darling statistics (AD) and
p-value of these statistics (KS p-value, CVM p-value, and
AD p-value).

Modeling results for two real data are presented
in Tables 8-11. It is noteworthy from Tables 8-11 that NXLD
gives better results than the other ten models when all criteria
are considered. Based on this result, the proposed model gave

Table 8. The goodness of fit results in voltage data for models NXLD, XL,
G, W, and E.

Table 9. The goodness of fit results in voltage data for models L, S, A, Z,
CJ, and XG.

Table 10. The goodness of fit results in failure times data for models
NXLD, XL, G, W, and E.

Table 11. The goodness of fit results in failure times data for models L, S,
A, Z, CJ, and XG.

better results than the two-parameter Weibull and gamma
distributions. As NXLD performs well over a wide range of
one-parameter distributions as well as Weibull and gamma
distributions, NXLD will become a very competitive model.

VIII. CONCLUSION
This study introduced a novel one-parameter distribu-
tion called the New XLindley Distribution (NXLD).
One-parameter distributions hold significant value as they
serve as fundamental models for developing future distribu-
tions. We have investigated various mathematical properties
of the NXLD, including mode, moments, entropy, and stress-
strength reliability. Moreover, we have explored the NXLD’s
applicability in actuarial science by examining its actuarial
properties. Furthermore, we have addressed the estimation
of the unknown parameter in the NXLD using multiple
estimation techniques. To assess the performance of these
estimators, we conducted a comprehensive Monte Carlo
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simulation and compared them based on criteria such as bias,
mean squared error (MSE), and mean relative error (MRE).
The examined mathematical properties contribute to a deeper
understanding of the distribution’s behavior, while the ac-
tuarial analyses highlight its utility in actuarial contexts.
The findings of our study provide valuable insights into
the characteristics and practical applications of the NXLD.
After analyzing the voltage and failure time data, it is seen
that the new one-parameter distribution demonstrates higher
flexibility compared to several one-parameter distributions
such as exponential, Lindley, Shanker, Akash, Xlindley, and
others, as well as two-parameter distributions like gamma and
Weibull. If a data analyst aims to utilize distribution with one
parameter tomodel real data effectively, the newmodel serves
as a good alternative to achieve this objective.
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