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ABSTRACT Immunohistochemical (IHC) assay is a commonly used auxiliary technique in pathological
diagnosis. Compared to the conventional manual scoring methods that are complicated and time-consuming,
automated scoring methods have been playing a more and more important role in the development of digital
medicine due to their adaptability and consistency. This study proposes an automatic scoringmodel for tumor
IHC images, which mainly consists of a module for extracting the regions of interest (ROI) and a feature
fusion scoring network. The former module extracts the effective tissue regions and the nuclear regions
as prior knowledge to exclude cytoplasmic staining interference. The feature fusion network includes two
branches. The main branch network combines the structure of cross-block stitching feature maps and the
frequency channel attention networks (FcaNet) to extract the features of the effective tissue region images.
The other branch network extracts the color representation vector of the cell nucleus region images. The
fully-connected layers combine the features from both branches to give a comprehensive final score as the
result. We performed experiments on IHC images of P53 protein in colorectal cancer. The results show that
the proposed P53Net achieves better classification results than the commonly used classification models,
with 94.21% accuracy, 89.24% F1-Score, and 0.9136 kappa coefficient.

INDEX TERMS Immunohistochemical scoring, P53 protein, computer vision, DenseNet, attention
mechanism.

I. INTRODUCTION
Statistics shows that there were about 4.57 million cancer
cases and 3 million deaths in China in 2020 [1]. Timely
diagnosis and treatment can greatly improve the survival rate
of patients [2], [3]. The gold standard for clinical diagnosis
of cancer is the pathological diagnosis [4]. However, there
exist 5% to 10% of cases upon which a definitive morpho-
logical diagnosis is difficult to make with the conventional
hematoxylin-eosin staining technique alone. Using Immuno-
histochemical (IHC) staining as an adjunct can noticeably
increase the diagnostic accuracy of poorly differentiated or
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undifferentiated tumors [5]. Pathologists focus on the level
of P53 protein expression in the nucleus rather than the
cytoplasm and score IHC images based on the percent-
age and intensity of positive staining. Conventional IHC
scoring is done manually, which is very time-consuming,
therefore the shortage of medical equipment and specialized
pathologists can affect the diagnosis and treatment severely.
Therefore, it is important to develop an automated IHC scor-
ing technique.

With the rapid development of artificial intelligence in
recent years, intelligent and automatic detection has become
an important field in digital medicine. Computer vision
techniques have been applied to IHC image analysis, pro-
viding pathologists with efficient and reliable auxiliary
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interpretation information. The existing research can be
divided into conventional image processing techniques and
deep-learning-based methods.

Conventional techniques usually require manual selection
of the ROI on the images [6], followed by the use of digital
image processing [7] and machine learning techniques to cal-
culate metrics such as positive staining intensity and staining
range at the pixel or cellular level to obtain an IHC score after
a comprehensive evaluation. Konsti et al. [8] used ImageJ
image analysis software to evaluate Ki67 IHC images. They
determined the segmentation threshold through the sample
test, combined staining intensity and percentage for scoring,
and achieved 87% evaluation accuracy with manual scoring.
Roge et al. [9] used a virtual double staining technique to
differentiate tissue types for Ki67 IHC images. They circum-
vented the effect of physical double staining on the analysis,
delineated the tumor regions using a Bayesian classifier, and
classified the stained cells to be negative or positive according
to the set thresholds. A grid counting method was then used
to calculate the number of positive and negative cells as well
as the proliferation index. Conventional techniques have the
advantages of good interpretability, good consistency and
high repeatability. However, some division thresholds need to
be determined, such as staining intensity threshold, positive
percentage threshold, etc. Most current methods determine
the threshold by testing on a small number of sample images.
Some scholars also directly set the threshold based on experi-
ence. Whether the threshold division is accurate will greatly
affect the scoring accuracy.

In recent years, intelligent medical prediction and evalu-
ation models based on deep learning have been extensively
studied [10]. Some scholars have applied deep learning tech-
nology to the field of IHC image analysis and have achieved
excellent results for the ROI extraction [11], [12], feature
extraction [13], and automatic scoring tasks [14]. Some of the
existing deep-learning-based methods evaluate single nuclei
to score the entire image. Feng et al. [15] developed an auto-
matic scoring model for IHC images of ER, PR, Ki-67, and
HER-2. They selected the fully convolutional network as the
backbone network for nucleus detection and DenseNet as
the classification backbone network for scoring, in combina-
tion with the nucleus and cell membrane staining intensity.
Saha et al. [16] proposed the HscoreNet for IHC scoring of
breast cancer-related estrogen and progesterone proteins. The
encoder and decoder of the HscoreNet were used for nucleus
segmentation. The scoring layer calculates the IHC score
based on staining intensity, color expression, and the number
of positive and negative nuclei, achieving an accuracy of
94.53%. These methods require adding training labels to each
nucleus. The image annotation is time and labor consuming.

Some scholars regard IHC image scoring as an image
classification task. They used convolutional neural net-
works to extract full-image features and predict IHC
scores. Khosravi et al. [17] predicted negative and positive
categories for the IHC images of breast cancer using
the InceptionV3 network and achieved 96% accuracy.

Xue et al. [14] established an automatic classification model
for the expression level of proteins in IHC images. They com-
pared the classification performance of deep neural networks,
random forests, and support vector machines. The highest
classification accuracy is 73.72%. These methods can greatly
reduce the amount of image annotation, but do not incorpo-
rate clinical prior experience. However, there are problems
that the extracted features do not have clear meanings.

In summary, conventional image processing techniques
require manually set quantitative metrics [18], [20] that are
usually not well adapted. Some deep-learning-based meth-
ods evaluate protein expression from the nucleus level,
which requires a lot of time for data annotation. Other
methods directly predict scoring results by building image
classification models. It can greatly reduce the amount of
image annotations. However, there are also problems that
the extracted features do not have clear meanings and the
accuracy is not high.

Inspired by image fusion techniques [21] and heteroge-
neous pulse-coupled neural network (HPCNN) [22], we pro-
pose a two-step feature fusion method for automatic IHC
scoring to solve the above problems. Our method consists of
two steps. The first step is to extract the effective tissue area
and the nucleus area as the region of interest (ROI). In an IHC
image, not all areas are tissue. The periphery of the tissue
is the background of the slide and impurities such as broken
cells. Effective tissue regions need to be extracted from the
original IHC images to exclude the interference of irrelevant
regions. In addition, pathologists pay attention to the expres-
sion of P53 protein in the nucleus region when interpreting
the IHC images of P53 protein. P53 protein expression in the
cytoplasm needs to be excludedwhen interpreting. Therefore,
the second step is to construct an IHC scoring model based
on feature fusion. The main branch extracts the features of
the effective tissue region images using DenseNet and FcaNet
mechanism. The branch of nuclear region feature extraction
extracts the color representation vector of the nuclear region
as the staining intensity feature. Finally, the classifier is
trained to synthetically discriminate the IHC scores corre-
sponding to the fused feature vectors. The main contributions
of this paper are as follows:

1. Propose a method for segmenting nuclei in the
hematoxylin staining channel to improve the segmentation
accuracy.

2. Propose an improved FCM segmentation algorithm
combined with the region merging strategy to solve the prob-
lem that negatively stained nuclei are easily lost.

3. Propose an automatic scoring method for IHC images
based on feature fusion network. Prior knowledge of pathol-
ogist scoring can be effectively exploited.

II. MATERIALS AND METHODS
A. IMAGE ACQUISITION
The IHC images were obtained from tissue microarrays
produced by the Institute of Cancer Institute, the Second
Affiliated Hospital, Zhejiang University School of Medicine.
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FIGURE 1. Original IHC images corresponding to different scores.
(a) Negative. (b) Weakly positive. (c) Positive. (d) Strongly positive.

The tissues came from surgically resected specimens of
colorectal cancer patients. The antibody is P53 (CST, item
number 2527S) [23], [24]. The dataset contained 1168whole-
slide images (WSIs) with a resolution of 3000 × 3000 and
were classified into four categories: negative (374), weakly
positive (200), positive (117), and strongly positive (477),
corresponding to a score of 0, 1, 2, and 3. The original
images are shown in Fig. 1. Negative cell nuclei were stained
blue by hematoxylin, and positive areas were stained brown
at various degrees by DAB. The darker the color and the
larger the positively stained area is, the higher the score
should be.

B. FRAMEWORK
The method in this paper incorporates the scoring rules of
pathologists. The procedures of the automatic IHC images
scoring proposed in this paper is shown in Fig. 2. First, the
ROI extraction part extracts the effective tissue regions to
exclude the interference of irrelevant regions in recognition
of the stained area. Meanwhile, it extracts the nucleus regions
to exclude the interference from cytoplasmic staining, mak-
ing the scoring network focus more on the nucleus regions.
To address the problem of limited number of WSIs, which
is prone to overfitting, data augmentation is used to enhance
the number of data sets. Afterwards, the main branch of the
feature fusion network uses a modified convolutional neural
network to learn the features of the effective tissue region
images. The feature extraction branch of the nuclear regions
obtains the staining intensity feature vector. The feature vec-
tors are stitched together as the input into the fully connected
layers to calculate the IHC score.

C. EFFECTIVE TISSUE REGION EXTRACTION
We focus on the circular tissue area at the center of the
images. In addition to the stained tissue sections in IHC
images, there also exist meaningless regions, such as intersti-
tial and slide backgrounds, which can influence the network
scoring results. The process starts from graying out and
enhancing the original image, followed by significance detec-
tion, and finally, the complete effective tissue region image is
obtained by connected domain detection.

1) Image preprocessing: The color of the circular tissue
region is very light and close to the background color of
the slide, which leads to poor results using direct extraction.
Therefore, the tissue region features need to be enhanced.
Image graying can reduce the computational effort and
increase the contrast visually at the same time. Then, the
contrast at the dark regions in the image is enhanced through
gamma transformation, which helps to better distinguish the
image details at low gray levels. A gamma value of 0.5 is
selected in our work.

2) Significance detection algorithm: The LC significance
detection algorithm [25] is used to extract tissue regions from
the contrast space. This method can increase the contrast
at the tissue regions. The saliency mapping of the image is
built on the grayscale contrast among the image pixels. The
significance value is the sum of the distances between one
pixel and all the other pixels in the graph in grayscale value.

3) Connected domain detection: In order to obtain the
complete tissue region, it is necessary to remove the periph-
eral impurities and to fill the small areas missed among the
tissues. The sizes of all the connected domains are detected
by using the four-neighborhood connected domain detection
algorithm. According to the set threshold, the small regions
that are incorrectly detected are removed to obtain a more
complete tissue region.

D. CELL NUCLEUS SEGMENTATION ALGORITHMS
In P53 IHC scoring, pathologists focus only on the degree of
the expression of P53 protein in the nucleus. However, P53
protein is also expressed to some extent in the cytoplasm,
resulting in some degree of positive staining in the cytoplasm
and mesenchyme in the IHC images as well.

Various types of stains are used in IHC staining, among
which the diaminobenzidine (DAB) stains P53 protein brown
through antigen-antibody reaction, and the hematoxylin
stains the nucleus blue. Therefore, we first obtain an image
composed of the hematoxylin staining channel, the DAB
staining channel, and the residual channel by color deconvo-
lution, and then segment the nucleus region based on fuzzy
C-mean clustering.

1) Color deconvolution: It is a common algorithm used
for color separation in IHC images. The color deconvolution
algorithm in [26] was used to transform the P53 IHC image
fromRGB space to stain space to obtain image that consists of
the hematoxylin staining channel, the DAB staining channel,
and the residual channel.
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FIGURE 2. The structure of proposed IHC image scoring method.

FIGURE 3. Hematoxylin channel image obtained by color deconvolution.
(a) Original image. (b) Hematoxylin channel image with white color in the
nucleus region.

2) Fuzzy C-mean clustering segmented cell nuclei region:
Although the P53 protein expressed in positive cell nuclei is
stained brown by DAB, hematoxylin staining is still present.
As shown in Fig. 3, the pixels in the nucleus region of the
hematoxylin channel have a high gray value and appearwhite.
This feature can be used to segment the nucleus region in
the hematoxylin channel. The above analysis shows that the
pixels of the hematoxylin staining channel can be divided
into 3 categories: positive nuclei, negative nuclei, and other
pixels. Using the Fuzzy C-means (FCM) algorithm [27], the
segmentation results of the nucleus region are obtained by
combining the positive and negative nucleus regions. When
positive nuclei are not present in the image, the following
merging strategy is developed by observing the values of the
centroids of each cluster to prevent unknown classification
results leading to merging errors:

I =

{
0, I ∈ {Ck |ck − min ci <= 0.1 }

1, I ∈ {Ck |ck − min ci > 0.1 }
(1)

where Ci is the cluster center. Observing the value of each
cluster center point, it is found that the value of the cluster
center point of positive nuclei and negative cell nuclei is
usually about 0.2 higher than that of other regions. Therefore,
a threshold value of 0.1 is set, and the class with the value

of the cluster centroid higher than the minimum value of
0.1 is divided into cell nuclei or is divided into other regions.
The cell nucleus region segmentation image is successfully
obtained by using this merging strategy.

E. P53Net
As mentioned above, we have extracted valid tissue region
images and cell nucleus region images. Data enhancement is
first performed, and then the improved feature fusion network
P53Net makes full use of image features to obtain more
accurate IHC scores.

1) Data enhancement: The number of full-field IHC images
is limited, so the trained network model is prone to over-
fitting. In this paper, four data enhancement methods are
employed, including vertical flip, horizontal flip, randompan,
and random crop. Moreover, we propose a data enhancement
method based on region swapping. Since the key feature is
the color of the IHC image, swapping regions of the same
size in the image can enrich the morphological features and
suppress overfitting while preserving the color features. The
specific steps of image region exchange are as follows: divide
the image into 16 blocks of the same height and width, then
randomly swap the positions of them to form a new image.

2) Main branch network: A FcaNet [28] module is inserted
after each transition layer of DenseNet as the backbone struc-
ture for effective tissue region feature extraction. On the one
hand, the score for P53 IHC images is not sensitive to high-
level semantic features such as the shape and the contour
of the images but is more concerned with low-level features
such as pixel color and staining area. The densely connected
structure of DenseNet enables the reuse of feature maps and
optimizes the propagation path of low-level features, making
it more suitable for the scoring task of P53 IHC images.
The main branch uses the DenseNet169 network as the basic
model, which contains four dense convolutional blocks and
three transition layers. The four dense convolutional blocks
contain 6, 12, 32, and 32 convolutional blocks, respectively;
each convolutional block has the same structure. They all
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FIGURE 4. Backbone network for effective tissue region feature extraction. The
convolutional layer is blue, and the dense convolutional block is shorter. The transition
layer is gray. The FcaNet structure is green. The feature vector is purple.

consist of a 1 × 1 convolutional layer, a 3 × 3 convolutional
layer, and a batch normalization layer. On the other hand,
the number of feature map channels increases with the num-
ber of network layers. In order to enhance the key features
and weaken the other features in the feature map, we insert
a FcaNet module after each transition layer of DenseNet,
so that the network can learn the weights of each channel.
The performance of the whole network can be affected by
the choice of the frequency component in the Discrete Cosine
Transform (DCT). The analysis shows that the neural network
is more concerned with the low-frequency information in the
images [29]. So we introduce 32 low-frequency components
to obtain the best performance based on the experimental
comparisons.

The structure of the main branch network is shown in
Fig. 4. A feature map with 1024 channels is obtained after
going through all the convolutional, pooling, and batch nor-
malization layers [30] of the network. Each channel of the
feature map can be regarded as a feature of the input image.

3) Nuclear region feature extraction branch: The degree
of positivity is directly related to the pixel color. Therefore,
a vector can be used to record the distribution of image pixels
in the nucleus region as a characterization of the image color
distribution features. The first step is the grayscale value
division. In order to compress the information and avoid the
high dimensionality after vectorization, we divide the gray
values of each channel into 26 degrees, starting from 0, for
every 10 gray values. Then, we arrange the compressed R,
G, and B values from high to low in 26 to map the points in
the three-dimensional coordinate system to one-dimensional.
The length of the constructed feature vector is 17576. Next,
we count the number of pixels, so that the value of the
corresponding position of the vector is equal to the number of
pixels mapped to this position. Finally, the extracted vectors
are normalized to the range 0 to 1 and sent into the feature
extraction network. The network consists of an input layer
containing 17576 neurons and a fully connected layer con-
taining 1024 neurons. The nuclear region feature extraction
branching network can learn the staining intensity features of
the cell nuclear region and output a feature vector of a length
of 1024. The branching structure is shown in Fig. 5.
4) Comprehensive scoring: The two feature vectors

extracted above are stitched into one vector and fed into

FIGURE 5. Extraction branch network of the nuclear region features.

two fully connected layers. The first fully-connected layer
contains 1024 neurons, and the second output layer contains
4 neurons. The dropout is set to be 0.5 for each fully con-
nected layer. The output layer uses the softmax activation
function to normalize the output of each category to the range
0 to 1, indicating the confidence level. The category with
the highest confidence level is the prediction result of the
model. This feature fusion network structure extracts features
from the images of effective tissue region while paying higher
attention to the staining intensity features in the cell nucleus
region.

III. RESULTS AND DISCUSSION
A. EFFECTIVE TISSUE REGION EXTRACTION RESULTS AND
ANALYSIS
The three significance detection algorithms, RBD [31],
SR [32], and FT [33] are selected to compare with the LC
algorithm used in this study, and the results are shown in
Fig. 6. It can be seen that although the tissue regions extracted
by the SR algorithm are more complete, a very large number
of incorrectly detected regions are generated. There are some
tissue regions undetected when using RBD and FT algo-
rithms. The tissue regions extracted by the LC algorithm are
relatively complete and the number of false detection regions
is less.

We compare the tissue region extraction algorithm used
in this paper with the OTSU algorithm and the watershed
algorithm, which are commonly used in medical image seg-
mentation. The results are shown in Fig. 7. The cell nuclei
with darker color have a larger grayscale difference from the
tissue regions, as a result, the OTSU algorithm selects a larger
threshold and classifies the tissue regions as background.
The tissue regions extracted by the watershed algorithm are
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FIGURE 6. Comparison of the results of different algorithms for effective
tissue region extraction. (a) RBD algorithm detection result. (b) SR
algorithm detection result. (c) FT algorithm detection result. (d) detection
results of LC algorithm used in this study.

TABLE 1. Comparison of tissue region extraction results.

partially missing and some regions in the middle are incor-
rectly detected due to over-segmentation. Compared with the
above methods, the method used in this paper extracts the
most complete tissue region and also identifies the vacant
part in the middle of the tissue region better. To quantitatively
compare the performance of segmentation, dice similarity
coefficient (DSC) and pixel accuracy (PA) were used as
evaluation metrics [34]. Comparison experiments were per-
formed on 20 IHC images. Results are shown in Table 1. It can
be seen that the proposed method in this paper can provide
more accurate tissue region segmentation results than other
methods.

B. CELL NUCLEUS SEGMENTATION RESULTS AND
ANALYSIS
Fig. 8 shows the nucleus segmentation results. The nucleus
regions in the original images that are white in the mask are
kept, and the other regions are filled with a gray value of 255.
It can be seen that the nucleus segmentation algorithm can
acquire the nucleus region properly in the case where there
is no cytoplasm stained brown. For the case with cytoplasm
stained brown, the algorithm can extract only the nucleus

FIGURE 7. Comparison of the method in this study with the OTSU
algorithm and the Watershed algorithm. (a) The original image. (b) The
OTSU algorithm result. (c) The Watershed algorithm result. (d) Our result.

regions, thus the influence of cytoplasm staining on the sub-
sequent scoring calculation is excluded. It can be seen that
the obtained nuclei are complete, and both the positive nuclei
stained in brown and the negative nuclei stained in blue are
correctly segmented.

The proposed nuclei segmentation method was compared
with OTSU and FCM algorithm. Fig. 9 shows the comparison
results of cell nucleus segmentation using three algorithms.
The threshold calculated by OTSU algorithm was not suit-
able. As a result, some areas of negative nuclei with brighter
colors were missed. When directly using FCM algorithm to
segment the nuclei, some bright-colored negative nuclei will
also be clustered into the background. The improved FCM
algorithm clustered pixels into 3 categories. Positive nuclei
were then merged with negative nuclei classes by formulating
a class merging strategy. After adding the category merging
strategy proposed in this paper, both positive and negative
nuclei were completely segmented, and better nuclei segmen-
tation performance was achieved.

C. P53Net SCORING RESULTS AND ANALYSIS
In this work, a NVIDIA RTX2060 graphics card was used
to train the network and the Karas framework was used
for programming. The data set is divided into training sets
and test sets by a ratio of 2:1. Due to the high resolution
of the original images, all images are uniformly reduced to
672×672 in order to reduce the computational effort without
losing too much image detail. The idea of transform learning
is used in the training process. The network uses the weights
from the DenseNet169 model pre-trained on the ImageNet.
The training process consists of two stages. We freeze the

64010 VOLUME 11, 2023



J. Zhang et al.: Automatic Scoring Method for Tumor IHC Images

FIGURE 8. Cell Nucleus Segmentation Results. (a)(b)(c)(d) The original image. (e)(f)(g)(h) Segmentation of the proposed method.

FIGURE 9. Comparison results of cell nucleus segmentation algorithms. (a)(e) Original image. (b)(f) Segmentation of OTSU algorithm (c)(g) Segmentation
of unimproved FCM algorithm (d)(h) Segmentation of the proposed method.

convolutional layers of the pre-trained model and train only
the newly added layers and the fully connected layers in the
first stage, and all layers of the model are added to the training
in the second stage. This two-stage training strategy takes use
of the pre-trained weights to speed up the learning efficiency
and shortens the time needed for training. The Adam opti-
mizer is used in the training process, and the learning rate

is decayed by cosine annealing. The initial learning rate is
set to a large value and the termination learning rate is set
to a small value. It decays in a descending cosine function.
The accuracy cannot be improved after 30 epochs of iteration
in the first stage, which is designed to determine a suitable
initial weight for these layers. It is the second stage of training
that determines the final performance of the network, so it is
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FIGURE 10. Model performance at different iteration epochs.

TABLE 2. Results of ablation experiment I.

TABLE 3. Results of ablation experiment II.

necessary to design a comparison experiment of the network
performance under different iterations. As shown in Fig. 10,
the accuracy rate tends to be stable when the number of
iterations reaches 80 in the second stage.

We have designed some ablation experiments based on
the above study to demonstrate the necessity of the pro-
posed method. The first ablation experiment is used to verify
the effectiveness of the region exchange data enhancement
method and the FcaNet module. The second experiment
ablates two network branches separately to verify the neces-
sity of each branch. The average accuracy on the test set in
three training sessions is taken as the result.

It can be seen in Table 2 that the accuracy on the test
set decreases if we ablate either the region exchange data
enhancement or the FcaNet module. The result proves that
both the proposed data augmentationmethod for region swap-
ping and the FcaNet module used in the network structure are
indeed helpful to improve the network performance.

As shown in Table 3, when the main branch network is
ablated, the accuracy of the model on the test set drops a
lot. This is because the main branch network is used to

TABLE 4. Performance comparison of different methods on The test set.

extract features from the effective tissue region images, which
contain more comprehensive feature information. In addition,
the nuclear region feature extraction branch is used to extract
the staining intensity features of the nucleus region, which is
a supplement to the former. Using the nuclear region feature
extraction branch alone causes loss of other information and
cannot obtain features related to staining extent, tissue region
area, and other positive staining percentage indicators. There
is also a decrease in accuracy on the test set after ablating
the nuclear region feature extraction branch. This is because
the nuclear region feature extraction branch provides a more
complete set of features of the staining intensity in the nuclear
region of the cell, so ablating this branch would reduce
the effective information in the feature vector. The ablation
experiments demonstrate that both the main branch and the
nuclear region feature extraction branch contribute to the
improvement of network performance. Combining the feature
vectors extracted from the two branches through the structure
of the feature fusion network can increase the information
dimension and improve the model performance.

The above two sets of ablation experiments demonstrate
the effectiveness of the method proposed in this study. Next,
we compare the method with five generic methods in the
field of general image recognition to verify the effect of this
method. These 5 methods are VGG16, InceptionV3, ResNet-
50, DenseNet-169 and EfficientNet-b4. Accuracy, F1-Score,
and Kappa coefficient are chosen as the evaluation indices.
The parameters and optimizers are kept the same during the
training process. The average of the results of three experi-
ments is also taken for reducing the random factors such as
dataset division and initial weights.

The experimental results are shown in Table 4. It can be
seen that the generic image recognition methods also give
good results. However, the IHC scoring task has its special
features, which depend on the staining intensity and stain-
ing percentage and need to focus on the positive expression
location. Therefore, it is difficult to learn the correct features
with the limited amount of WSIs. In this study, we use the
feature fusion method and introduce the FcaNet mechanism
to improve the performance of the network to better perform
the task of P53 IHC image scoring for colorectal cancer.

The challenges in implementation mainly came from how
to effectively use the prior knowledge of pathologists and
the large GPU memory required for model training. On the
one hand, we analyzed the scoring process of pathologists.
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Features were extracted separately from tissue regions and
nuclei that are of interest to pathologists. Image texture fea-
tures and color features were fused to improve the scoring
accuracy of IHC images. On the other hand, to reduce the
GPU memory usage of model training, we optimized the
kernel region feature extraction branch. We reduced the size
of the color feature vectors by setting a grayscale threshold.
In addition. We also adjusted the hyperparameters such as the
image resolution of the input model and the batch size used
in the training process through experiments.

The algorithm in this paper outputs the score with the high-
est confidence level, showing good results on images of all
scoring levels. The confidence level of the prediction results
for the negative and strong positive images is high. Most of
them are above 98%. A small number of weakly positive
and positive images have low confidence in the prediction
results because their features are not distinct enough and
can be easily confused with the images of adjacent scoring
levels. The low confidence level in this case suggests that the
algorithm may give incorrect score. In practical applications,
appropriate thresholds can be set to filter out images with
low confidence for manual interpretation. Such combination
of algorithmic scoring and manual verification approach can
greatly reduce the required time for pathologists to read the
images while ensuring the accuracy of the scoring results.

IV. CONCLUSION
With the development of computer technology and whole
slide digital pathological section technology, computer-
assisted IHC interpretation methods have shown great appli-
cation prospects in improving the consistency of IHC scoring
results and shortening the interpretation time. In this paper,
we propose an automatic scoring method for tumor IHC
images based on deep learning. The tissue regions and the cell
nuclei regions are extracted as the ROI. The image features of
tissue regions and the staining intensity features of cell nuclei
are learned through a feature fusion network. The features
are then combined to give the IHC score. We perform experi-
ments on IHC images of P53 protein and verify the efficiency
of this study. The ablation experiments show that the accu-
racy of scoring can be further improved by fusing the color
features of the cell nucleus region, compared with the image
features extracted by convolutional neural network alone.
Our method can obtain accurate scores without extensive
manual labels, further demonstrating the potential of artificial
intelligence for automated IHC scoring. For the problem that
weakly positive and positive images are occasionally con-
fused, we propose that images with confidence levels below
a threshold can be filtered out for manual scoring. This work
can greatly save the time of pathologists on reading images
while ensure the accuracy of the scoring results.
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