
Received 24 May 2023, accepted 15 June 2023, date of publication 21 June 2023, date of current version 10 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3288431

A Survey on FPGA-Based Heterogeneous
Clusters Architectures
WERNER FLORIAN SAMAYOA 1,2, MARIA LIZ CRESPO 1, ANDRES CICUTTIN 1,
AND SERGIO CARRATO 2
1Multidisciplinary Laboratory (MLab), The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
2Dipartimento di Ingegneria e Architettura (DIA), Universitã degli Studi di Trieste, 34127 Trieste, Italy

Corresponding author: Werner Florian Samayoa (werneroswaldo.floriansamayoa@phd.units.it)

This work was supported by the University of Trieste and The Abdus Salam International Centre for Theoretical Physics.

ABSTRACT In recent years, the most powerful supercomputers have already reached megawatt power con-
sumption levels, an important issue that challenges sustainability and shows the impossibility of maintaining
this trend. To this date, the prevalent approach to supercomputing is dominated by CPUs and GPUs. Given
their fixed architectures with generic instruction sets, they have been favored with lots of tools and mature
workflowswhich led tomass adoption and further growth. However, reconfigurable hardware such as FPGAs
has repeatedly proven that it offers substantial advantages over this supercomputing approach concerning
performance and power consumption. In this survey, we review the most relevant works that advanced the
field of heterogeneous supercomputing using FPGAs focusing on their architectural characteristics. Each
work was divided into three main parts: network, hardware, and software tools. All implementations face
challenges that involve all three parts. These dependencies result in compromises that designers must take
into account. The advantages and limitations of each approach are discussed and compared in detail. The
classification and study of the architectures illustrate the trade-offs of the solutions and help identify open
problems and research lines.

INDEX TERMS FPGA, SoC, heterogeneous computing, supercomputing, reconfigurable computing.

The notion of reconfigurable hardware has been present
since 1984, when Altera delivered the first programmable
logic device (PLD) to the industry [1]. Then, in 1985
Ross Freeman and Bernard Vonderschmitt patented the
first commercially viable field-programmable gate array
(FPGA) [2]. Owing to production costs, when compared to
application-specific integrated circuits (ASICs), FPGAs are
traditionally used in applications with low production vol-
umes that require high throughput and low latency.

FPGAs are electronic devices that consist of many config-
urable logic blocks composed of look-up tables, flip-flops,
I/O blocks, and interconnection fabric. FPGAs are used to
create custom hardware solutions, which make the imple-
mentation of algorithms quite different from targeting a CPU.
The initial step typically consists of describing the algorithm

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

using a Hardware Description Language (HDL), such as
VHDL or Verilog. The HDL description is then synthesized
into a netlist that is mapped onto the FPGA’s logic ele-
ments and interconnections required to implement the desired
digital design. The final implementation in the FPGA is
performed using vendor-specific tools such as Vivado [3],
Vitis [4], Quartus [5], and Libero [6]. Once the mapping and
routing process is completed, the design is compiled into a
bitstream file loaded onto the FPGA to configure its logic
elements and interconnections to create a circuit correspond-
ing to the algorithm. It has to be added, however, proprietary
FPGA vendor tools have dominated the field, there are now
some open-source FPGA tools, such asYosys [7], F4PGA [8],
and RapidSilicon [9], that provide alternative options for
developers seeking open-source solutions.

FPGAs have evolved into more complex devices [10]
by integrating components, such as embedded memory
resources, clock management units, digital signal processing

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 67679

https://orcid.org/0000-0002-2951-3059
https://orcid.org/0000-0002-5483-3388
https://orcid.org/0000-0002-3645-9791
https://orcid.org/0000-0003-2953-8886
https://orcid.org/0000-0002-8718-111X


W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

TABLE 1. The 13 dwarfs of Berkeley [16], where each one represents an
algorithmic method encapsulating patterns of communication and/or
computation with example problems.

blocks (DSP), network-on-chip (NoC), and CPUs [11]. These
hybrid devices are known as system-on-chip (SoC-FPGA)
or adaptive SoCs, depending on the vendor. Their increased
capabilities have increased interest in specific applications
and general purposes [12], [13].

As a reconfigurable device, FPGA offers the advantage of
continuous improvement in hardware and software. In fact,
being able to change the architecture offers great freedom
when developing complex systems. Furthermore, FPGAs
have been shown to consume considerably less power than
CPUs and GPUs [14], leading to reduced cooling and energy
costs.

By studying computing problems, classification based on
repeating algorithmic patterns was proposed in 2004 [15]. In
2006, [16] 6 new algorithmic encapsulations were defined,
expanding the classification to 13 dwarfs as shown in Table 1.
Theoretically, each dwarf can bemapped onto a specific com-
puting architecture [17], [18]. This has inspired the creation
of benchmarks for heterogeneous systems such as Dwarf-
Bench [19], Rodinia [20], and OpenDwarfs [21].

Several implementations of heterogeneous high-
performance computing (HPC) systems housing FPGAs
can be named, such as Project Catapult at Microsoft [22],
Alibaba FaaS (FPGA as a Service) [23], Amazon EC2 F1
instances [24], and ARUZ cluster at Lodz University [25].
At CERN, the massive adoption of FPGAs for online data
processing has motivated the development and adoption of
specific tools to aid the development of applications based
on FPGAs, such as hls4ml [26] (high-level synthesis for
machine learning). This tool, along with many others [27],
[28], [29], [30], [31], allows for a higher level of abstrac-
tion, thereby significantly reducing implementation errors

and development time. The preference for FPGAs is due
to their reconfigurability, which allows extreme hardware
specialization when needed. In addition, the fact that FPGAs
offer a wide array of input-output ports makes them ideal for
stream computation and for creating pipe-lined systems that
can maintain high throughput with low latency.

The purpose of this survey is to demonstrate and ana-
lyze the challenges of heterogeneous supercomputing by
studying the most relevant implementations of FPGA-based
cluster architectures from different application fields. Each
studied platform provides valuable insight into the decisions
and tradeoffs developers have made to reach their specific
goals. By leveraging their experience, it will be possible to
visualize the evolution and present trends in FPGA-based
clusters and target the main open challenges. We propose
dividing the architectural components of each cluster into
network, hardware, and software tools. This division helps
identify and discuss the pros and cons of each component in
its corresponding domain.

The main contributions of this study are as follows:

1) The comprehensive study of the state-of-the-art of
FPGA-based clusters.

2) A three-way segmentation of the clusters’ architecture.
3) A critical discussion of the components that build up

the studied clusters.

In the context of this paper, we describe a cluster by its
computational units (CU), which correspond to its small-
est independent part and sometimes coincide with a single
network node. Each CU can be composed of several compu-
tational elements (CE), namely CPUs, GPUs, and FPGAs.

The remainder of this paper is organized as follows.
Section I elaborates on the implementations and explores rel-
evant advancements in their application fields. A table at the
end of each application field discussion summarizes the main
contributions of each study, along with the reported perfor-
mance and energy improvements, when available. Significant
differences can be understood by studying the evolution of
heterogeneous clusters within each niche. Section II presents
the classification of systems from an architectural perspec-
tive. The threemain aspects described in each implementation
were used as comparison points. Subsection II-A presents
a comparison of the network infrastructure in the studies.
The hardware available in each studied cluster is discussed
in Subsection II-B. To complete the classification discus-
sion, the developer tools are compared in Subsection II-C.
In Section III we present the remaining open problems and
the identified trends. To close this paper, Section IV draws
conclusions.

I. CLUSTER IMPLEMENTATIONS
Different FPGA-based cluster implementations were stud-
ied, and their specific characteristics highlight the purpose
for which they were planned. Technological advances offer
greater flexibility, and cost reduction opens the door to
increasing complexity. It can be appreciated that there is a

67680 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

growing interest in developing research-capable platforms
to explore diverse areas of heterogeneous supercomputing.
Tables 2, 3, 4, 5, and 6 provide a summary of the contribu-
tions of each work and the reported energy and performance,
if available.

A. MANYCORE EMULATION
The development of manycore platforms is a long and expen-
sive process that involves several stages of experimentation,
validation, and integration. There are software tools that help
simulate architectures for easy parameter tuning, with the
major drawback of speed. In this particular aspect, FPGA
prototyping allows faster execution times and benefits from
insights from real hardware. It is not rare for a complete
platform to exceed the logic available in a single FPGA,
pushing for a cluster of FPGAs.

This was the case since 1997, when one of the first FPGA
clusters was used to emulate the RAW architecture [32].
The RAW cluster consisted of 5 boards or CUs, each with
64 FPGAs, totaling 320 FPGAs. Its results showed orders of
magnitude speed-up compared to contemporaneous scalable
processors with the disadvantages of reduced flexibility, high
cost, and high implementation complexity, which hindered
their adoption in other research applications.

In 2006, the FAST [33] cluster was presented to bring hard-
ware back into the research cycle to address the disadvantages
of RAW. FAST combined dedicated microprocessor chips and
static random access memories (SRAM) with FPGAs into a
heterogeneous hybrid solution to simulate chip multiproces-
sor architectures. The vision was to reduce hardware costs
and ease development, both for programming and portability.
Each FAST CU consisted of 8 processors, 10 Xilinx Virtex
FPGAs, and 4memory-interconnected tiles. The 2 processors
in each tile acted as the CPU and floating processing unit,
respectively, and 2 FPGAs acted as the level-one memory
controller and coprocessor.

A central hub, made up of 2 FPGAs, was used to manage
shared resources and orchestrate communication between
tiles allowing access to off-the-board devices through exter-
nal IOs. Additionally, the expansion connector available to
the FPGA hub allows multiple FAST CUs to be connected.
The CU implementation is illustrated in Figure 1.
A custom software stack was developed specifically for

FAST. It included several modules and predefined interfaces
for functionality and benchmarking. An operating systemwas
developed to manage control tasks such as programming and
configuration. Portability was demonstrated by implementing
several architectures; however, scalability and costs remained
open to discussion.

Similar to FAST, the RAPTOR cluster was presented as a
baseboard hosting up to 4 daughter cards based on complex
programmable logic devices (CPLD) [34]. In 2010, a second
version was presented using FPGAs and a renewed architec-
ture [35]. This new version consisted of a RAPTOR-Xpress
baseboard (CU) that provides two buses for Gigabit Ethernet,
universal serial bus (USB) 2.0, and peripheral component

FIGURE 1. Fast [33] computational unit (CU) with the computing tiles in
orange and the FPGA hub in purple.

interconnect express (PCIe) 2.0 × 8 for the host connection
to configure and manage up to 4 DB-V5 (daughter board
version 5).

Figure 2 shows the RAPTOR-Xpress baseboard with
4 DBs interfaced directly with their neighbors in a ring
topology. Each has a Xilinx Virtex-5 FPGA with up to 4
GB of DDR3 memory and a dedicated FPGA as a PCIe
interface Multiple baseboards can be connected together via
4 high-speed connectors, each consisting of 21 full-duplex
serial lanes, enabling scaling resources beyond the 4 DB on
board. The baseboards can also be interfaced with the host
via dedicated FPGAs onNallatech front-side bus acceleration
modules [36], which provides an extra 8.5 Gb/s for writing
and 5.6 Gb/s for reading.

The RAPTOR project also comprises a custom soft-
ware development environment that includes RAPTORLIB,
RAPBTORAPI, and RAPTORGUI tools, which aid devel-
opers by providing hardware-supported protocols, remote
access, and a graphical user interface to facilitate testing. The
design flow includes aids for design partitioning, which is
a manual process assisted by a graphical integrated devel-
opment environment (IDE) and standard synthesis tools
developed in vMAGIC [37].

Convinced by the need for cheaper and smaller hardware,
the Formic cluster [38] based on the Formic board [39]
was presented in 2014. The Formic board acts as the build-
ing block for a larger system, with a maximum size of
4096 boards. Each board consists of an FPGA, SRAM,
1 GB of double data rate (DDR) RAM, a power supply,
buffered joint test action group (JTAG) connectors, and
configuration memory, making it independent and perfectly
symmetric. Eight multi-gigabit transceivers (MGT) at a max-
imum speed of 3 Gb/s are available for interconnection on
8 serial advanced technology attachment (SATA) connec-
tors. Inside each board, a full NoC with a 22 port crossbar
switch interfaces the configured blocks with MGT links and
allows developers to scale the designs. Access to local and
remote memories is done using the Remote Direct Memory

VOLUME 11, 2023 67681



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

FIGURE 2. Simplified diagram of the RAPTOR-Xpress board [35] or computational unit (CU) with the
daughter boards in orange.

Access (RDMA) protocol [40]. As the first application,
a multicore system based on 8 custom MicroBlaze [41]
processors per module forming a 512-core cluster [42] was
implemented.

Simultaneously, the industry has produced exciting devel-
opments in manycore emulation. In an attempt to reduce the
time to market for new ICs, Cadence [43] and Siemens [44],
together with others, developed solutions for the prototyping
of ICs. Unfortunately, there is little accessible information
regarding the architecture of most implementations, and the
high costs make them uncommon in academia, with some
exceptions, such as the Pico Computing board (nowMicron)
used for image processing [45] and the DINI (now Synopsys)
board FPGA board used for online video processing [46].

From the described works, it can be seen that there is
a trend in reducing the complexity of CUs, as shown in
Figure 3. In this field, costs tend to be the leading factor, mak-
ing granularity a desirable characteristic. With smaller CUs,
it is possible to reduce the implementation costs, depending
on the requirements of the chip to emulate. Smaller CUs also
make it easier for clusters to scale, maintain, and upgrade.

B. SCIENTIFIC COMPUTING
The complexity of scientific computing problems has always
pushed technology to its limit, making computer clusters
a basic requirement. Regardless of whether complex algo-
rithms process huge amounts of data or massive system
simulations, reconfigurable computing provides the level of
customization required by these problems. This did not go
unnoticed, as early as 1991, programmable hardware was
already part of custom supercomputers for specific problems
like in RTN [47], RASA in 1994 [48], and later in SUE
2001 [49].

The first massive cluster was created in 2006. Janus [50]
was a massively parallel modular cluster for the simulation of
specific theoretical problems in physics developed by a large
collaboration of European institutions [51].

The core of Janus comprised an array of 4 by 4
FPGA-based simulation processors (SP) which were con-
nected with their nearest neighbors. Another processing unit
called an Input/Output processor (IOP), acted as a crossbar
and was in charge of managing communications between
FPGAs and the host.

A two-layer software stack was created to help developers
build applications. The firmware layer consisted of a fixed
part targeting the IOPs, which included a stream router and
dedicated devices to communicate, manage, and program the
SPs. The second layer, the Janus Operating System (JOS),
consisted of the programs running on the host PCs, includ-
ing a set of libraries (JOSlib) to manage the IOP devices,
a Unix socket application program interfaces (APIs) to inte-
grate high-level applications and new SP modules, and an
interactive shell (JOSH) for debugging and testing.

In the worst case, Janus performed just 2.4 times faster
than conventional PCs. Nonetheless, Janus was limited by its
performance and scarce memory for some applications [52].

In parallel, great interest has been shown in the cryptanal-
ysis field with the development of the COPACOBANA FPGA
cluster [53] in 2006. Figure 4 shows the COPACOBANA
cluster which was built over a CU holding up to 20 dual
in-linememorymodules eachwith 6Xilinx Spartan-3 FPGAs
directly connected to a 64-bit data bus and 16-bit control
bus. A controller module allowed the host PC to interact via
USB or Ethernet through a software library that provided the
necessary functions for the PC to program, store, and read the
status of the cluster as a whole or as individual FPGAs. This
made it possible to scale resources by attaching another CU to
the host PC. Its capabilities were demonstrated by testing sev-
eral encryption algorithms, which resulted in it outperforming
conventional computers by orders of magnitude [54].

The positive outcome of this project motivated the creation
of a hybrid FPGA-GPU cluster [55] based on commercial off-
the-shelf (COTS) components in 2010. The Cuteforce [56]
system implemented 15 CUs, 14 with Xilinx Virtex FPGAs,

67682 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

FIGURE 3. Clusters targeting manycore emulation have shown a trend of reducing the
complexity and increasing the granularity of CUs to favor production costs and
scalability.

TABLE 2. Manycore emulation clusters’ contributions and reported performance improvement.

and the last with an NVIDIA GPU interconnected through
a CPU on a CU via Infiniband. The results were not
as expected, partly because of complications in FPGA
implementation.

The same approachwas later used in 2010 byTse, et al. [57]
who focused on Monte Carlo simulations. However, instead
of using one CE per CU, a single CUwas used to host 2 CPUs,
an NVIDIA GPU, and a Xilinx FPGA, which was further
supported by a comprehensive analysis of the performance
and energy. The network remained practically unchanged
fromCuteforce, where the CPUs are themain communication
CEs and relegate GPUs and FPGAs to an accelerator posi-
tion. To further demonstrate the scalability of this strategy,
Superdragon [58] was created to accelerate single-particle
cryo-electron 3D microscopy.
Bluehive [59] also sought to distance itself from custom

PCBs by embracing commodity boards to build a cus-
tom FPGA cluster for scientific simulations and manycore
emulation [60] requiring high-bandwidth and low-latency
communication. These challenges were overcome with the
development of a 64-node FPGA cluster based on Terasic
DE4 boards that host an Altera Stratix IV FPGA, an 8xPCIe
connector, and a DIMM with 4 GB of RAM and interfaced
through a custom interconnect called BlueLink [61] with four

8U rack boxes, each with 16 boards. The boards in the boxes
were interconnected through a PCIe to the eSATA board.
A small Linux computer allowed remote programming using
a USB-to-JTAG converter and a DE2 board as a JTAG fan-out
to parallelize the configuration.

The Bluehive development environment was supported by
Quartus and mandatory blocks were provided to developers,
routers for inter-FPGA communication, FBs, and high-speed
serial link controllers [61], all developed on Bluespec Sys-
temVerilog [62].

In 2014, Janus received an important upgrade [63], which
significantly improved its performance. The architecture
remained mostly the same, with the largest change in the
adoption of newer FPGAs with 8 GB of RAM and MGTs
instead of ordinary I/Os for interconnection.
Janus II and Bluehivewere successful in tackling the mem-

ory issue, but as problems scale, larger clusters were needed.
This was the case for ARUZ [25], an application-specific
cluster formed by approximately 26,000 FPGAs distributed
over 20 panels, each consisting of 12 rows, which in turn con-
tained 12 CU. The CUs are composed of eight slave FPGAs
that constitute the resources and a central master SoC-FPGA
that manages operations. The addition of the Zynq SoC is
motivated by the higher abstraction level provided by the

VOLUME 11, 2023 67683



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

FIGURE 4. COPACOBANA [53] computational unit (CU) with the dual
in-line memory module (DIMM) modules in orange, each with 6 FPGAs,
and the controller module in purple.

ARM processor for slow-control tasks. In addition, each CU
is interfaced with a concentrator board (CB) that feeds the
state of the simulations to a host that controls the entire
process.

Global communication is based on Gigabit Ethernet and
allows data exchange between SoC-FPGAs to configure its
8 FPGAs. All nodes are connected in a Daisy chain, and
only one board is connected to an external switch. A custom
protocol for data transfer was developed, consisting of a small
packet of no more than 256 bytes, with a constant overhead
of 11 bytes.
ARUZ designers developed their own methodology [64],

as there are no standard solutions available. Considering
the multitude of mechanism combinations for programming
and controlling ARUZ, a high level of flexibility is required.
VPP [65] was selected for code pre-processing and parame-
terization. DLLDesigner was developed to generate VHDL
code for interconnecting as many FBs as required. All of
these tools allow the implementation of highly optimized
architectures for molecular simulations.

FPGAs have also found a place in neuromorphic com-
puting, as demonstrated by Bluehive. Spiking neural net-
works (SNN) require many densely interconnected elements.
A substantial level of parallelism is suitable for hardware
acceleration; however, the challenge is scalability. This was
specifically addressed by Astrobyte [66] using a fully scalable
NoC-based FPGA cluster with functional verification and
real-time monitoring.

However, more specialized platforms presented better
results at higher costs. This is the case for BiCoSS [67], a
35 system-on-module cluster, each with a Cyclone IV FPGA
and 2 SDRAMs capable of simulating 4 million spiking
neurons in real-time.

Another relevant application in the scientific context is
real-time control (RTC) systems of adaptive optics (AO)
instruments. This is the main focus of the Green Flash
project [68] that aims to develop energy-efficient real-time
HPC accelerators and smart interconnects, based on GPUs

and FPGAs [69]. The RTC modules have a standard CPU
server that hosts an NVIDIA GPU, Intel CPU, and Intel
Arria 10 FPGA. The FPGAs are hosted on a custom main-
board calledµXCompwhich includes 2GB of onboard RAM,
PCIe 3, an FMC connector, Ethernet, 4 QSFP, and other
valuable resources.

In this heterogeneous system, communication between
GPUs is performed by a Smart Interconnect (SI) system
implemented on FPGAs. The SI uses the UDP protocol,
which is implemented in the FPGA fabric alongside the
device protocol handlers and dedicated direct memory access
(DMA) engines. This is configured with the QuickPlay
FPGA framework, which extends its capabilities by using
abstraction models and board support packages (BSPs) for
portability. This architecture allows pipelining several GPUs
and FPGAs. A similar approach can be seen in Spinnaker [70]
and BrainscaleS [71] supercomputers, which implement ded-
icated ASICs interconnected by FPGAs for neuromorphic
computing, and MDGRAPE [72] for modular dynamics
simulations.

C. FPGAS IN DATA CENTERS
The positive results obtained by FPGAs attracted great inter-
est outside of the scientific community. Specifically in the
data center (DC) context, where computing tasks can quickly
overwhelm CPUs. DC workloads demand reduced power
consumption, latency, and cost while maximizing computing
power and flexibility.
Catapult [22] is a successful example of the inclusion

of FPGAs in high-reliability commodity DC. FPGAs were
specifically selected given that the flexibility of recon-
figurable hardware helps tackle the 2 main requests in
DCs. First, the desire for homogeneity greatly facilitates
the installation, maintenance, and deployment of ser-
vices. Second, there is a need for flexibility, considering
that such services evolve rapidly, making fixed hardware
impractical.

A custom half-width unit motherboard was developed to
host 2 high-end CPUs and the daughter FPGA card, which
consisted of a Stratix V D5 FPGA with 8 GB of DRAM
and acted as the CU. Two 12-core Sandy Bridge processors
with 64 GB of RAM, 2 SSDs, and 4 HDDs complete the
resources present on the motherboard. The FPGA and host
CPUs communicate via PCIe, and high-speed transceivers
are used in the inter-FPGA network. A two-dimensional 6 ×

8 node torus was selected for the network configuration in
each rack. For the final system, 34 of these racks were used
for a total of 1632 nodes.

To evaluate the performance of Catapult, a significant
portion of the ranking stack of Bing was offloaded to each
rack. To guarantee the reliability of the system, the following
services were implemented:2-bit error detection and 1-bit
error correction on top of the CRC in the DRAM and high-
speed network. For user productivity and reusability, the
FPGA space was split into 2 parts. A shell that hosts hardware
controllers, an inter-FPGA network stack, a status notifier,

67684 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

TABLE 3. Scientific computing clusters’ contributions, reported power and performance gains.

and a single-event upset logic to reduce system errors that
consume 23% of the FPGA resources, and a role part where
the computing logic lies. Additionally, a Mapping manager
and health monitor continually scanned each node in the
network. In case of failure, the faulty node is immediately
reconfigured. If the issue persists, the node is flagged for
manual intervention, and the mapping manager automatically
relocates the services to the available resources.

With custom hardware and communication protocol,
Catapult achieved an improvement of 95% in through-
put in a production search infrastructure when compared
to a software-only solution. In addition, the inclusion of
the FPGA increased the power consumption by only 10%,

and the added cost of ownership did not exceed the
limit of 30%. These results show the significant advantage
that FPGAs can offer in terms of throughput and power
consumption.

With the success of Catapult [22], it was only a matter
of time before FPGAs were made available for cloud com-
puting tasks, which is exactly what the IBM cloudFPGA
[73] did. Virtualizing the user space makes FPGAs in an
Infrastructure-as-a-Service (IaaS) environment feasible for
education, research, and testing.

In the architecture presented, the FPGAs are standalone
nodes in the cluster directly interfaced to the DC via PCIe,
unlike the approach of Amazon [24], Alibaba [23] and IBM

VOLUME 11, 2023 67685



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

Supervessel [74] which tie the FPGAs to host CPUs. Under
this approach, a daughter card consisting of an FPGA and
abundant RAM was developed. By creating a custom carrier
board, 64 daughter cards can be accommodated in a single 2U
rack chassis [75]. To achieve the desired homogeneity within
the DC, FPGAs have been provided with a soft network
interface chip, with the advantage of loading only the required
services.

The multi-FPGA fabric formed by multiple prototypes of a
network-attached FPGA was evaluated with a text-analytics
application. The results, compared to a software implemen-
tation and an implementation accelerated with PCIe-attached
FPGAs, show that the network-attached FPGAs improved in
latency and throughput. Additionally, network performance
was compared with bare metal servers, virtual machines, and
containers [76] with results showing orders of magnitude bet-
ter for the FPGA prototype. To further improve the usability
of the platform, continuous developments have been made
to integrate MPI into the system [77], [78]. An in-depth
study of FPGA cloud computing architectures is available
in [79] and [80].

D. GENERAL-PURPOSE CLUSTERS
Overspecialized systems tend to constrain the potential of
reconfigurable hardware in favor of optimizing performance
or costs. Nevertheless, general-purpose clusters are addressed
by a larger group of projects seeking to change the pro-
gramming paradigm. These clusters, rather than being a
general purpose in the broad sense of the word, serve as
experimental platforms to test solutions to all heterogeneous
supercomputing challenges, ranging from network to user
experience.

One of the first projects was the Reconfigurable Com-
puting Cluster (RCC) [81] in the early 2000s. It was a
multi-institution investigation project that explored the use
of FPGAs to build cost-effective petascale computers, with its
main contribution being the introduction ofmicrobenchmarks
for software, network performance, memory bandwidth, and
power consumption. To evaluate each test Spirit, a cluster
consisting of 64 FPGA nodes was built. Each node had a
Virtex 4 FPGA with 2 Gigabit Ethernet ports, 8 DIMM
slots for onboard RAM, and 8 MGTs for the board-to-board
interconnection [82] using the Aurora protocol [83].

For internode communication, a configurable network
layer core was developed as part of an Adaptable Computing
Cluster project [84]. It consists of a network switch imple-
mented in the FPGA acting as a concentrator for the router.

Considering that the head node is aworkstation, amessage-
passing interface (MPI) approach offered the flexibility that
the cross-development environment required. A custom com-
piler based on GNU GCC was built to support OpenMPI and
its Modular Component Architecture (MCA) [85] which was
adapted to support the high-speed network. A software infras-
tructure based on a Linux system allowed users to access,
manage, and configure all nodes of the cluster via SSH [86].

Similar to the RCC project, the FPGA High-Performance
Computing Alliance (FHPCA [87]) was established in
2005 with the Maxwell supercomputer [88]. The Maxwell
CUs were built on a standard IBM BladeCenter chassis,
in which an Intel Xeon and 2 FPGAs were interfaced
via PCI-X. Additionally, an FPGA-dedicated network is
available via MGTs without routing logic, given the nearest-
neighbor scheme. By supporting standard parallel computing
software, structures, and interfaces, it sought to disrupt the
HPC space without causing significant friction.

To facilitate the development of applications targeting
Maxwell, the Parallel Toolkit (PTK) [89] was developed.
It included a set of practices and infrastructure to solve
issues such as associating tasks with FPGA resources, seg-
menting the application into bitstreams, and managing code
dependency. PTK provided a set of libraries where common
standard interfaces, data structures, and components were
defined.

Similarly, Cube was created to explore the scalability of
a cost-effective massive FPGA experimentation cluster for
real-world applications. It consisted of 8 boards that host
a matrix of 8 by 8 Xilinx FPGAs [90] forming a cluster
of 512 FPGAs, as shown in Figure 5. It features a single
configuration of multiple data-programming paradigms that
allowed all FPGAs to be configured with the same bitstream
in a matter of seconds. The FPGAs were interconnected
in a systolic array that reached up to 3.2 Tb/s inter-FPGA
bandwidth offering significant advantages as it simplified the
programming model and greatly relaxed the requirements of
the PCB layout.

Simultaneously, Quadro Plex (QP) [91], a hybrid cluster
was introduced. It was composed of 16 nodes, each consisting
of one AMD CPU, 8 GB of RAM, 4 NVIDIA Quadro GPUs,
and one Xilinx Virtex 4 Nallatech FPGA accelerator. The
nodes were interconnected using Ethernet and Infiniband.
Cluster communication was managed using OpenFabrics
Enterprise Distribution software stack. The complete system
occupied four 42U racks, consumed 18 kW, and had a theo-
retical performance of 23 TFLOPS. CUDAwas used for GPU
development, and the FPGA workflow completely relied on
the Xilinx ISE design suite [92].

Several applications were developed, showing that there
were substantial difficulties in taking advantage of an entire
system. Applications would only use a combination of CPUs
and GPUs or CPUs and FPGAs. A framework for easing the
porting of applications and providing a compatibility layer
for different accelerator workflows, called Phoenix [93] was
developed.

In the same spirit, Axel [94] was built, consisting of
16 nodes. Each node had an AMD CPU, an NVIDIA Tesla
GPU, and a Xilinx Virtex 5 FPGA occupying a 4U full-scale
rack. All CEs were connected to a common PCIe bus for
intranodal communication and between nodes in a Gigabit
Ethernet network. Considering the high latency and nonde-
terministic nature of Ethernet, a parallel network using the
4 MGT of the FPGA was also available.

67686 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

TABLE 4. Data center FPGA clusters’ contributions reported power and performance improvement.

FIGURE 5. Cube [90] computational unit (CU) showing the configuration controllers in purple. Dotted lines
show the control and configuration bus and solid lines show the data path.

The cluster was managed remotely from the central node
using the Torque [95] resource manager and the Maui [96]
scheduler. A custom resource manager (RM) was responsible

for managing GPUs and FPGAs. For this to be feasible, all
Axel programs needed to allocate part of the resources in the
CEs to interface with the RM runtime API. Using an IPC

VOLUME 11, 2023 67687



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

message queue framework, CEs communicated their state to
the head node. The central node collected information from
all nodes with the help of the RM and prepared a script to
submit the jobs to Torque. Communication between tasks in
different nodes was performed via OpenMPI using Gigabit
Ethernet.

To implement an application in Axel, users would pro-
vide a data flow graph and hardware abstraction model.
A MapReduce framework then rewrites the application
for partitioning the analysis into tasks. These tasks are
assigned to the corresponding CEs based on the targeted
attributes.
Axel also introduced an architecture classification for het-

erogeneous systems based on uniformity, shown in Figure 6.
Following this classification, Axel is a Non-Uniform Node
Uniform System (NNUS) architecture. This means that
all nodes are equal but are built with different CEs. The
advantage of this architecture is that the single-program
multiple-data (SPMD) programming paradigm can be imple-
mented easily. Axel also brought to light the need to reduce
the design time and implementation time of FPGA, possibly
by parallelizing the process to use heterogeneous clusters
to optimize its own executable. Furthermore, it showed that
design exploration tools were also lacking and essential for
automating the performance estimation and code generation
for multiple accelerators.

In 2010, Novo-G was presented as an experimental
research cluster [97] consisting of 68 compute nodes built
with COTS components. Its purpose was to help understand
and advance the performance, productivity, and sustainabil-
ity of future HPC systems and applications focusing on
the sustainability problem of current HPC systems using
three different PCIe Intel FPGA boards: 24 nodes with 192
Stratix III FPGAs boards, 12 nodeswith 192 Stratix IV FPGA
boards, and 32 nodes with 128 Stratix V.
Novo-G has been used for several acceleration projects,

ranging from biology to finance. One aspect all applications
have in common was being embarrassingly parallel and,
therefore, naturally scalable. All of these applications were
developed using the software offered as part of the Novo-G
platform, and the results showed an enormous speed-up com-
pared to CPU clusters.
Chimera was the first work to focus on implementing an

algorithmic FPGA and GPU pipeline. The Chimera clus-
ter [17] was built using commercial components to explore
alternative solutions to the computational constraints found in
astronomy and provide access to high-performance comput-
ing hardware for inexperienced users. The system is formed
by CUs equipped with one CPU for management tasks,
which is interfaced with 3 NVIDIA Tesla GPUs and 3 Altera
Stratix IV FPGAs through PCIe via a backplane. Communi-
cation could always be considered a bottleneck, but in this
case, it is clear that this limitation is directly related to the
algorithms implemented in the entire system and theway each
CEs interacts with the others.

FIGURE 6. Axel [94] node or computational unit (CU) classification
showing possible uniform and non-uniform node and system
configurations for heterogeneous clusters of CPUs, GPUs, and FPGAs.

The success of Novo-G and the advancement of technol-
ogy have allowed Novo-G to be upgraded to Novo-G# [98].
The cluster is made up of Gidel ProceV accelerators that
house Stratix V FPGAs, two 8 GB DDDR3, and 32 Mbits of
SRAMmemory. The boardswere interconnected by grouping
24 transceivers into six groups to support a torus topology
with a total bandwidth of 300 Gb/s. The physical connection
is done with fiber optics using QSFP+ modules. The data are
transmitted via packets through a configurable single-level
router network. This allows one to instantiate as many routers
as necessary to service the ports and increase the internal
bandwidth at the expense of the hardware resources. The
network flexibility enables users to experiment with a variety
of routing modalities, depending on the requirements of the
application. Novo-G# nodes support three communication
blocks: a Low Latency, a Custom block, and Interlaken [99]
to allow the optimization of the physical layer depending on
the application.

A common problem in custom computing is the lack of
software development tools to help users build applications.
To solve this problem, the Novo-G# team developed a mod-
ified Altera OpenCL to provide extended support for the 3D
torus network present in the cluster.

67688 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

An important aspect that most clusters left out, besides
those focused on communication, was the interface with the
physical world. This is the empty space that the Axiom plat-
form [100] seeks to fill with a custom scalable cluster based
on a board with a Xilinx MPSoC (Multiprocessor System on
Chip) supporting the Arduino interface.

The MPSoC has an FPGA fabric, four 64-bit ARM cores
for general-purpose applications, and two 32-bit ARM cores
for real-time applications in the same die. Four USB-C ports
managed by the FPGA MGTs are available for interconnect-
ing the boards. A custom network interface (NI) in the FPGA
provides support for all communications, allowing users to
focus on their applications written on an OpenMP extension
called OmpSs. The NI is divided into six main groups: a data
mover that deals with DMA transfers, RX and TX controllers,
and FIFOs to cache packets. A router is interfaced with
each NI and is responsible for handling the USB-C channels,
monitoring the network, and establishing virtual circuits.

As part of the Axiom project, a custom software stack [101]
consisting of multiple layers was also developed. Its founda-
tion is a distributed shared-memory (DSM) architecture. The
main advantage of this approach is that it allows applications
to directly address physical memory by transparently rely-
ing on an OS network. Several tests [102] and benchmarks
have validated the effectiveness of the platform, pushing the
project forward into IoT and edge computing [103].

Progress in this field has led to the creation of the Xilinx
Adaptive Compute Clusters (XACC) [104] group under
the Xilinx Heterogeneous Accelerated Compute Clusters
(HACC) [105] initiative. This industry and academic collabo-
ration focuses on the development of new architectures, tools,
and applications for next-generation computers.

As part of this initiative, several clusters were built at some
of the world’s most prestigious universities in Switzerland,
the USA, Germany, and Singapore. At the Paderborn Univer-
sity’s National High-Performance Computing Center (PC2),
high-performance clusters Noctua [106] and Noctua 2 [107]
were built to provide hardware to accelerate research on
computing systems with high energy efficiency.

The Noctua 2 cluster was designed to fit common server
racks and be compatible with the network industry standards.
It has 36 nodes with 2 AMD Milan. A combination of 48
Xilinx Alveo and 32 Intel Stratix 10 GX FPGAs comprised
the reconfigurable computing part of the cluster. Each Stratix
node has 4 pluggable QSFP+ at 40 Gb/s and each Alveo has 2
QSPF+ at 100 Gb/s links and depends on Intel tools, such as
oneAPI [108], OpenCL, and DSP Builder. A specific optical
switch is used to build a configurable point-to-point network
between all FPGAs.

More recently, Enzian [109] was developed as a scalable
platform to fill the void left by industry-specific hybrid plat-
forms. The reason behind Enzian provides a general, open,
and affordable platform for research on hybrid CPU-FPGA
computing, escaping the niche of specific-purpose hybrid
platforms by providing a lot of flexibility. Explicit access

to coherence messages, thermal and power monitoring, and
an open baseboard management controller (BMC) allows
for research that is not possible in any current commercial
systems.

Likewise, UNILOGIC [110] presented a new approach,
this time from the management of the cluster by introducing a
Partitioned Global Address Spaces (PGAS) parallel model to
heterogeneous computing. This allows hardware accelerators
to directly access any memory location in the system, and
locality makes coherency techniques unnecessary, greatly
simplifying communication. By integrating Dynamic Partial
Reconfiguration (DPR) into the framework, accelerators can
be installed on the go. TheUNILOGIC architecture was eval-
uated on a custom prototype consisting of 8 interconnected
daughter boards, each with four Xilinx Zynq Ultrascale+
MPSoCs and 64 Gigabytes of DDR4 memory, yielding better
energy and computing efficiency than conventional GPU or
CPU parallel platforms.

In 2022, the supercomputer Cygnus [111] was updated
[112] to follow amulti-hybrid accelerators approach based on
GPUs and FPGAs. 32 Albireo nodes were added to Cygnus,
each consisting of 4 NVIDIA V100 GPUs and two Intel
Stratix 10 FPGAs. Similar to previous systems, a dedicated
FPGA network was created with a 2D torus topology with
improved stream capabilities, called CIRCUS [113]. Col-
laboration between the FPGAs and GPUs is achieved by
using a DMA engine in the FPGA that accesses the GPU
directly, bypassing the CPU, and offering almost double the
throughput.

Finally, Fugaku [114], the first supercomputer to win
all four categories in the Top500, presented a prototype
FPGA cluster, ESSPER [115]. Motivated by the impres-
sive continuous improvements in FPGAs regarding energy
and performance, a cluster of 8 nodes, each with two Intel
Stratix 10 FPGAs, was built and tested. This cluster was
interfacedwith Fugaku using a novel approach called loosely-
coupled, where a host-FPGA bridging network provides
interoperability and flexibility to all nodes in Fugaku.

E. COMMUNICATION SYSTEMS INFRASTRUCTURE
Another field of application where clusters of FPGAs are
relevant is the emulation of communication system infras-
tructure. The most important difference with manycore
emulation is the need to interface with analog systems. This
requirement implies providing additional external ports to
interface with radio front-ends.

One of the first implementations was the Berkeley Emu-
lation Engine (BEE) [117] in 2003. Its main purpose was
to support design space exploration for real-time algorithms,
focusing mainly on data-flow architectures for digital signal
processing.
BEE was designed to emulate the digital part of telecom-

munication systems and to provide a flexible interface for
radio front-ends. Computations are performed inside BEE
Processing Units (BPU). Each BPU has a main processing

VOLUME 11, 2023 67689



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

board (MPB) and 8 riser I/O cards for 2400 external signals.
The MPBs are the main computing boards hosting 20 Xilinx
Virtex FPGAs, 16 zero-bus turnaround (ZBT) SRAMS, and
8 high-speed connectors. FPGAs on the periphery of the
board have off-board connectors to link otherMPBs. A hybrid
network consisting of a combination of a mesh network and
partial crossbar, called a hybrid-complete graph and a partial
crossbar (HCGP) [118], was implemented. A single-board
computer (SBC) running Apache web services over Linux
allows users to deploy their applications and perform config-
uration and slow control tasks.

To take full advantage of the platform, an automated high-
level workflow was used [119] that relied on MATLAB
and Simulink to develop the main hardware blocks. The
BEE compiler then processes the output and generates the
required VHDL files for the simulation and configuration of
the system. A time-divisionmultiple access (TDMA) receiver
was fully implemented to satisfy real-time requirements and
validate the workflow.

Following the BEE success, the BEE2 [120] was conceived
as a universal, standard reconfigurable computing system
consisting of 5 Virtex 2 FPGAs, each with 4 DIMM connec-
tors for up to 4GB of RAM. Four FPGAs are available for
computing, and one was reserved for control tasks. Pivoting
away from the HCGP, an onboard mesh was implemented
between the 4 computing FPGAs. Using high-speed links,
it was possible to aggregate the 5 FPGAs and use them as
a single, larger FPGA. The workflow remained almost the
same for BEE2, with the main change being the use of a
computational model of synchronous data flow for both the
microprocessor and FPGA.

To overcome the shortcomings ofBEE2 and take advantage
of the already validated Spirit architecture [121], a digital
wireless channel emulator (DWCE) [122], [123] was devel-
oped. It consisted of 64 nodes in the same way as Spirit,
but with valuable upgrades to demonstrate the capabilities of
FPGA clusters with military radios. Its capabilities improved
with an upgraded FPGA, additional 2 FMC connectors, and
the adoption of a standard MicroTCA.4 form factor.

Considering the possible improvements to BEE and
because it was being developed as part of the research accel-
erator for multiple processors (RAMP) community [124],
a fast response was presented in the form of BEE3 [116]. The
development of BEE3 differed from previous iterations and
successfully demonstrated a new collaboration methodology
between industry and academia [125].

The architecture of BEE3 changed substantially from that
of its predecessor by removing the control FPGA and intro-
ducing a controlmodule on a smaller PCB.Another important
aspect worth highlighting is that, for the first time, a PCBwas
intentionally developed to support different FPGA parts, all
interconnected using a DDR2 interface in a ring topology.

The BEE3 prototype had approximately 30 collaborators,
most of whom were professionals with extensive knowledge

of CAD. Relying on industry specialists for PCB design has
resulted in simpler and more reliable PCBs within a shorter
project time horizon. In addition, it was possible to parallelize
the design process, allowing the academic community to
focus on firmware development.

The BEE collaboration presented its final iteration in 2010,
consisting of BEE4 and miniBEE [126], [127]. BEE4 was
updated to support Virtex 6 FPGAs and up to 128 GB of
DDR3 RAM per module. The QSHs were removed in favor
of FMC connectors to support a wider range of mezzanine
boards. BEE4 was built around the Honeycomb architecture
using the Sting I/O intermodule communication protocol.
The design tools were further refined to include Nectar OS
and BeeCube Platform Studio in MATLAB/Simulink, which
are unfortunately proprietary. However, being a proprietary
system did not discourage its use in academia [128]. The
success of BEECube attracted further interest from the indus-
try, and was bought by National Instruments in 2015 [129].
Today, it is a part of the FlexRIO [130] line-up, and soft-
ware development is supported by NI tools. From this point
onward, almost all implementations depend on commercially
available emulation platforms.

To demonstrate the scalability of such implementations,
the world’s largest wireless network emulator was built,
Colosseum [131], which can compute workloads of 820 Gb/s
and perform 210 T operations per second. It was formed
by CUs that consisted of three FPGAs in a chain. The
outer FPGAs were used to interface with the radios and
provide some processing. The central FPGA is dedicated
to digital signal processing. Commercially available solu-
tions were selected to avoid complications when designing
the custom board. For the radio-attached FPGAs, 128
USRP-X312 [132] software-defined radios were used. Each
provides the analog interfaces required for the antennas,
along with a Kintex 7 FPGA. As dedicated processing
FPGAs, 16 NI ATCA-3671 [133] modules were used, each
hosting 4 FPGAs. The 64 processing FPGAs were intercon-
nected in a 4 × 4 × 4 HyperX topology [134] which allowed
the data to be efficiently distributed for processing.

The NI modules are based on the BEE architecture and
support the same development tools. Given the complexity
of the system, a Python data-flow emulator [135] was built
to confirm the topology and architecture of the system. It is
possible to confirm the latency of the system by providing
models of the implemented components and topology.

Another notable contribution of this study is the proposal
of a data flow methodology [136]. It comprises three guiding
principles that highlight the issues present in other implemen-
tations. The first principle is the use of a unified interface
for modular components to favor portability. Second, when
dealing with heterogeneous systems, the suggested approach
is asynchronous processing to decouple operations from time
and favor parallelization. Finally, based on design best prac-
tices, solutions are urged to be vendor-independent.

67690 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

TABLE 5. General-purpose clusters’ contributions, reported power and performance gains.

VOLUME 11, 2023 67691



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

TABLE 6. Communication systems emulation clusters’ contributions, reported power and performance gains.

FIGURE 7. Main concepts for the proposed classification of clusters.

II. CLASSIFICATION
After studying each of the works described above, it was
possible to identify common elements. These elements reflect
the decisions made by the designers when conceiving each
cluster. Given that heterogeneous computing is broad and
complex, until now no universal methodology has been devel-
oped to design a cluster. A classification systemwas proposed
in [94] based on the uniformity of the system and its nodes.

We proposed segmenting the cluster infrastructure into
threemain components, as shown in Figure 7. The first aspect
is the network. This covers the physical interfaces chosen to
connect the nodes, logic protocols, and topologies. Another
important aspect to consider is the hardware available in the
CU. Each CU can have more than one CE type. Finally,
software tools that allow the cluster to be securely available
to users for development were considered. They encompass

isolation tools that protect hardware frommisbehavior, which
are discussed in [137], [138] but go beyond programming
languages, APIs, libraries, etc. All the cited works provide an
overview of the tools available to the user and the intended
workflow. Depending on the target application these tools
vary in scope, flexibility, and complexity. With a study of all
previous contributions, it is possible to build a wide base that
helps understand the greatest challenges, future trends, and
real capabilities of heterogeneous supercomputing.

A. NETWORK
A cluster is no more than a set of computational ele-
ments (CE) that collaborate toward a common goal. The
collaboration method and its means are crucial for ensur-
ing implementation efficiency. The means of collaboration
branch out from the hardware interfaces to the commu-
nication protocols and, ultimately, the schedulers or other
methods of synchronization. With this consideration, we can
draw a line between systems that delegate communication
tasks to an external entity and those that incorporate the stack.
Another important aspect of the interconnection is how it is
handled. In high-speed stream computing, it is desired that
the communication be established as direct data channels
with back-pressure, and this particular aspect is difficult to
replicate with purely routed networks.

Table 7 shows several aspects that distinguish the imple-
mentations concerning network infrastructure for all the
works presented in Section I. The manner in which nodes
are connected is discriminated according to the existence of
any additional hardware that processes, redirects, or interprets
a stream of data or packages between adjacent nodes as an
indirect interconnection. This implies that a direct intercon-
nection is such that one node can interact directly with the

67692 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

TABLE 7. Network infrastructure.

nearest neighbor without the need for additional networking
hardware, excluding physical interfaces. In these implemen-
tations, network services are provided by in-fabric routers
and switches, which allow users to experiment with different
protocols at the expense of resources. This is particularly
crucial in implementations targeting heavy communication
problems that require low latency. By no means, the depen-
dence on external hardware imposes a disadvantage because
recent implementations show that it is capable of extending
scaling capabilities without affecting performance, as in the
case of [25], which effectively interconnects thousands of
CEs. As shown in [141], adding dedicated network hardware
increases the latency by a constant factor. To determine the
impact on performance, a ring topology was implemented
using the E40G protocol. The experiments showed that the

performance depended on the size of the packet. For smaller
packets, the latency was dominant, tipping the scale in favor
of direct interconnection, but for larger packets (> 1 MB),
the switched implementation offered an improvement of
approximately 5%.

To compare the impact of both network connections, a leaf-
spine topology was implemented for the switched network,
and a ring topology for direct interconnection. The switched
network was modeled for 2048 FPGAs using 64 radix
switches. The ring topology was simulated for a direct net-
work. These simulations showed that for a small message size
(≈ < 1 MB), a direct network offers a shorter transmission
time than a switched network, regardless of the number of
nodes. In contrast, larger payloads (> 227 MB) benefit from
a switched network, but only up to 1024 nodeswhen the direct

VOLUME 11, 2023 67693



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

network transmission time catches up. These results show
that one approach is not necessarily better, but that it comes
down to the specificity of each cluster.

Similarly, the topology of the clusters is a decisive design
factor. Given that nodes are desired to have the highest
throughput with the lowest latency, most researchers have
opted for a tightly interconnected topology such as a mesh
or two-level mesh (TLM). These are great at providing a
consistent distance between the nodes in the system, but they
strongly affect larger systems. Another popular topology is
torus, 2D, or 3D. It has the advantage of limiting the longest
distance between nodes; however, as mentioned before, this
distance continues to grow asmore nodes are added to the sys-
tem. The system should also keep a uniform shape and nodes
should be added to fill columns or rows to avoid introducing
inconsistencies to latency. Later works, such as Noctua and
Enzian, are not bound by a fixed topology. In particular,
Noctua’s infrastructure provides an optical switch capable of
implementing different topologies in runtime based on user
requests. Naturally, given that this is an external device, it can
be implemented in any indirectly connected cluster. For some
of the directly interconnected clusters, it may be possible to
add an external switch, but only if a standard protocol and
interface are used, such as Novo-G and Novo-G#.

The strong relationship between the interface and the
protocol is hard to break, and it is rare to find a reason
good enough to do this. For the same reason, most MGT
implementations are based on the Aurora protocol or similar
for the physical layer, and the data link relies on Ethernet.
However, Bluehive challenges this reasoning by implement-
ing eSATA over PCIe connectors because PCIe was the
only high-speed connector available on the FPGAs nodes.
Other particular design choices include the implementation
of DDR over GPIOs in same-board communications; this is
the case for BEE, BEE2, and BEE3. It can be appreciated
that, considering the complexity of bringing up one of these
systems, standard protocols, and interfaces have been more
favored. This stems from the fact that proven technologies
shorten design times, allowing developers to focus on other
issue.

B. HARDWARE
When studying a cluster’s hardware, it is helpful to divide it
into its computational units (CU). A CU is any entity that is
available for computing and is the smallest independent func-
tional part of the cluster. According to this definition, devices
that act as pure network appliances, routers, or switches are
not considered. ACU can be composed ofmultiple CEs. Over
time, smaller CUs are preferred when dealing with general-
purpose clusters, whereas specific problems can benefit from
larger CUs with an ad hoc network topology.

In the context of Axel, [94], a classification structure was
proposed. It focuses on identifying the nodes, which in this
paper we refer to as CUs, to avoid confusion with network
nodes, by their CEs, and the way in which they are distributed
in the system. Four different types were considered, as shown

FIGURE 8. 13 dwarfs (table 1) mapped-out according to highest affinity
computational element (CE); the superscript ˆ refers to floating point and
∗ to fixed point [17].

in Figure 6. The Uniform-Node Uniform-System (UNUS)
corresponds to a homogeneous cluster and is typically formed
by CPUs. However, we can also find FPGA implementations
such as Formic [39], Janus I [51], and Janus II [63]. This
approach has the advantage that a single programming model
can be applied to the entire system but is not restricted by
it. Given that an FPGA is by nature a heterogeneous device,
this is not the case. Uniformity significantly simplifies the
management and maintenance of clusters. Interestingly, the
advantages have not critically outweighed the disadvantages,
given that several other studies have explored other more
complex approaches. Performance-wise, there is a lot to win
when dealing with non-uniform nodes or systems. As shown
in Table 1, all the computing problems can be classified into
13 categories. By carefully studying the affinity between each
category of problems and the resources encapsulated in each
CE, ideal candidates to solve each problem can be found. This
means that by mixing and matching, a heterogeneous clus-
ter may offer performance advantages over a homogeneous
cluster.

Figure 8 shows how each of the problems is mapped to
CEs depending on their characteristics [17]. This map shows
that there are clear advantages in using one type of CE over
another, mainly between GPU and FPGA. This is further
supported by the implementations ofChimera [17] andGreen
Flash [140]. In both cases, GPUs and FPGAs are intended to
be used as collaborative CEs. However, this new paradigm
makes development much more complicated, not because
of the lack of tools for FPGA and GPU co-processing, but
also because of the required radical change of mindset when
leaving the traditional CPU plus accelerator context. This is
reflected in the reported applications of QP [91] in which
users used only a combination of CPU plus GPU or FPGA.

67694 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

Table 8 shows the most relevant studies classified accord-
ing to the characteristics of their CU. The Axel classification
system was used to identify the uniformity of the node (CU)
and system. The total number of CUs is also presented. Some
studies have presented the architecture of a single node as
a building block for a future cluster. These are considered
relevant for their contribution to the study of heterogeneous
workloads. The form factor of each work is shown in the
respective column. Given that these are heterogeneous sys-
tems, different types of CE may be present at CUs, and
sometimes even among CUs. Finally, Table 8 shows the total
number of CEs implemented in the system.

As previously described, classification based on node (CU)
and system uniformity is useful for understanding the pro-
gramming paradigm. According to the previous definition of
nodes, multiple CEs can be hosted on a single node. A balance
between a crowded or simple node resides in the diversity of
the CEs and network infrastructure. Diverse CEs in a single
node allow for the highest resource availability per CU for
developers, but it remains a challenge to interface all devices
considering all the different ports. This leads to different
form factors that directly impact the way the cluster scales,
and more importantly, the availability of physical structures
to hold the nodes in place and provide efficient cooling.
Custom CU form factors usually host several CEs and can
compromise not only scalability, but also fault tolerance. This
is the case for ARUZ [25], where a single node hosts up
to 11 FPGAs. In an unfortunate case where one or more CEs
break down, the OS must be notified to circumvent these
nodes or completely ignore them until they are fixed. In this
regard, COTS clusters have a great advantage: the up-bring
cost is mostly absorbed by the industry by providing tested
and validated nodes for quick installation, which is the case
for Noctua 2 [107] and Catapult [22], among others. Some
rare cases of industry and academia collaboration greatly ben-
efit from COTS advantages with specific research-motivated
modifications, as in Novo-G, [97] and BEE3 [125].

C. SOFTWARE TOOLS
Finally, each work discussed would be incomplete if there
were no tools available to help users develop their appli-
cations. These tools provide different layers of isolation,
ranging from templates that encapsulate internode com-
munication to complete operating systems that manage
multiple-user access. Each of the tools offers a degree of
abstraction encapsulating all underlying details to offer ser-
vices to the user or to a higher layer. The depth of the layer
stack depends on several factors:

• Purpose of the cluster
• Degree of freedom intended for the user (isolation)
• Cluster flexibility

A stack of tools can be structured according to the ser-
vices provided and required, as shown in Figure 9. First,
we have the interface with the external worldatn a physical
level. Naturally, we rely on electric signals controlled by

internal gates, GPIOs, or MGTs. Typically, in HPC, this
is not out for discussion, given that CPUs and GPUs have
fixed interfaces, but FPGAs are not bounded by this. Thus,
the communication layer can be either available for users
to freely customize and test or fixed by the developers and
provided as a service. In addition, we have actual CEs; these
can be CPU, GPU, or FPGA custom cores. It is in this
part where actual computing is performed, and users may
be able to define the entities, or developers may provide
programmable blocks. To interact safely with these block
drivers, a file system and a scheduler may be provided as
an operating system. This creates a safe space for users to
build applications based on the hardware and communication
services. At this level, users must rely on a programming
language that describes how the underlying parts cooperate
for the intended computation. Some studies have presented
new programming languages that aim to capture the different
programming paradigms in heterogeneous clusters. Tools that
take the abstract description of the computation and transform
it into instructions may be provided as a contained solution or
along libraries and APIs to facilitate development. Another
level of abstractionmay be introduced, in which users interact
with prebuilt blocks in a fixed context inside a GUI.

Table 9 shows a series of works with the development
tools provided and the intended application. Depending on
the scope of the application, user needs vary and may require
deeper access to the system or more abstract tools. Most
general-purpose clusters are intended to be used as research
platforms. This requirement relaxesmanymanagement appli-
cations and abstraction layers that, in turn, must be provided
to the user in other cases. As research could take part in
the lowest level of communication, users may need the free-
dom to change the electrical standard of the GPIOs or the
encoding of the MGT. These properties are only available if
the user sees the platform as a bare metal solution, or if the
development environment has a standardized way of defining
communication devices. In any case, most systems avoid
this by providing the user with a template that abstracts the
communication layer. Specific application clusters seek to
encapsulate most of the details such that the user faces only
the challenges related to the application.

The flexibility of the software stack also depends on the
platform’s openness. In this regard, FPGA development
frameworks have been significantly delayed as opposed to
CPU and GPU. Currently, one can use complete open-source
frameworks to develop applications for CPUs and GPUs,
but FPGAs are radically different. One reason for this is
that the stack of tools is fundamentally different. Instead of
targeting fixed hardware through a well-known and well-
defined instruction set architecture (ISA), FPGA tools target
configuration memory with architecture-specific informa-
tion. These architectural details tend to be industry secrets
that force developers to rely on vendor tools with all their
benefits and limitations. One of the most important limita-
tions is the proprietary nature of some vendor tools. Efforts
have been made to create completely open-source workflows

VOLUME 11, 2023 67695



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

TABLE 8. Hardware architecture of computation units (CU) with respect to their computational elements (CE).

67696 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

TABLE 8. (Continued.) Hardware architecture of computation units (CU) with respect to their computational elements (CE).

such as F4PGA [8], in which experienced users can actively
collaborate to improve the platform. Finally, an important
aspect directly tied to the application is the level of flexibility
provided by the cluster. Some applications can implement
external hardware for optional data streams. This is the case
for all the BEE implementations. Other domains of flexibility
include the network topology and communication protocol of
the cluster. The portability of the framework was described
by the flexibility of the CEs. This means that the cluster CEs
could potentially be updated or changed without requiring
important modifications of the development tools, future-
proofing them, and providing customization depending on the
user’s needs.

III. OPEN PROBLEMS AND TRENDS
Supercomputing is a complex and fast-evolving field inwhich
CPUs and GPUs have traditionally dominated the market.
Several successful attempts have been made to introduce
FPGAs in this context, such as F1 instances in Amazon and
the IBM cloud FPGA service. The flexibility and energy
efficiency of FPGAs strongly challenge CPU and GPU for
the same computing tasks, further motivating research in this
area.

The opportunities that FPGAs offer to heterogeneous
computing are huge. As already shown in several stud-
ies [14], [142], [143], [144], [145], FPGAs can surpass CPU
energy efficiency by orders of magnitude by relying on

VOLUME 11, 2023 67697



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

FIGURE 9. Tool stack divided into different levels depending on the user
isolation from the hardware.

hardware-level customization. FPGAs also offer the high-
est degree of control to developers, allowing optimization
at a logic level that is impossible with CPUs and GPUs.
In addition, modern SoC-FPGAs offer internal high-speed
connections that allow CPUs, GPUs, and FPGAs to interact
on the same die, thereby reducing communication latency and
power consumption.

However, as has been shown in this paper, having hard-
ware does not mean that the problems are solved. One of
the biggest obstacles to mass adoption is the lack of hard-
ware abstraction and efficient synthesis tools, which increases
development time [14], [144] compared to CPUs and GPUs.
To identify the specific challenges, we divided the imple-
mentation of a cluster into three areas: network, hardware,
and software tools. For each area, we performed a study to
recognize the trends and obstacles.

The network aspect of clusters has rapidly evolved and
is mainly driven by telecommunications. Faster and more
efficient communication platforms are always positive, but
their implementation in heterogeneous computing has not
been obvious, given the existing trade-offs. This part is often
fixed in the design process, and its drawbacks are widespread
throughout the service stack. From the studied implementa-
tions, the following trends and trade-offs were identified:

• Interface: The advantage of a standard interface such
as MGTs greatly reduce development efforts at the cost
of reducing flexibility. Alternatively, SoC-FPGAs offer
numerous GPIOs that can be used at hundreds of mega-
hertz, catching up with the throughput of MGT. The
flexibility offered by GPIOs allows the development of
custom protocols, such as the time-division multiplexed
TDM proposed in [146]. Development time has pushed
designers to embrace well-defined interfaces, which are
usually constrained by the selected vendor, complicating
porting. However, the need for portable interfaces and
systems is addressed in [147] by introducing Kyokko,
which is a vendor-independent MGT controller.

• Topology: This aspect directly impacts the maximum
transmission rate and data throughput in the cluster.

In addition, it offers flexibility. Depending on the inter-
face, the topology can bemodified in runtime, as in [107]
or fixed, as in [64]. For a fixed topology, the 3D torus
allows the best physical interconnection at the expense
of non-uniform latency if the scaling is not symmetric,
as shown in [146]. The alternative of a virtual circuit net-
work over indirect connections shows promise, as shown
by VCSN [148] which allows a flexible virtual topology
with a performance similar to or better than directly
connected networks.

• Protocol: As shown in Table 7, custom protocols
remain relevant, suggesting that no industry standard
completely satisfies the requirements of heterogeneous
computing. This is partially owing to the flexibility of
FPGAs, which allows developers to optimize the proto-
col for latency, as shown in [141]. The drawback is that
a more flexible protocol will have a greater complexity,
impacting routers, decoders, encoders, and ultimately
the network’s throughput and latency.

The hardware that constitutes a cluster is another point
of discussion. This is closely related to the network, given
that the possible interfaces, topologies, and protocols are
constrained by the selected hardware. The contribution of
Chimera [17] in which they defined the ideal hardware to
defeat each of the 13 dwarfs [16] confirms the advantage of
heterogeneous nodes, particularly FPGAs, with the inclusion
of CPUs or GPUs. This points directly to the SoC-FPGA,
which in most cases includes all CEs in a single chip. The
main trends identified correspond to an increasing preference
for

• CU with fewer CEs
• SoC-FPGAs as the heterogeneous part of the system
• CU standard form factor

Having fewer CEs reduces the CU cost, which is important
for the scalability and maintenance of the cluster. A standard
form factor facilitates integration in current supercomput-
ing centers by relying on common structural and thermal
solutions.

‘‘A tool is only as good as the hands that wield it,’’ is
a common saying. In this case, quite often the tool lacks
a handle from which to wield it. Software tools are crucial
for the usability of any computer, particularly heterogeneous
systems that present a new paradigm that makes development
much more complicated. This has been the Achilles heel of
most implementations, and is one of the reasons that general
adoption has yet to occur. We recognize that there are some
missing pieces that represent open challenges:

• Hardware abstract model for different heterogeneous
platforms.

• Standard interfaces for portability.
• Flexible design tools to optimize implementations tar-
geting heterogeneous clusters.

• Open source tools for community-driven development
to further accelerate adoption.

• Operating Systems for cluster management.

67698 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

TABLE 9. Target application and development tools.

VOLUME 11, 2023 67699



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

• Runtime performance analysis tools to identify
bottlenecks.

In 2008, the strategic infrastructure for reconfigurable
computing applications (SIRCA) [149] provided a com-
prehensive study of the tools required for the adoption of
mainstream reconfigurable computing. This study separated
the tools based on four relevant phases: formulation, design,
translation, and execution.

The initial phase, in which the algorithms are elaborated
and optimized for parallel computing, is referred to as the
formulation. This is the highest level of abstraction, mostly
dealingwith pseudo-codes and verbal language for reasoning.
SIRCA highlighted the need for tools that aid developers
in making strategic decisions that favor the parallel model
embedded in heterogeneous computing rather than leaving
the decisions to the later phases. Formulation is the most
critical step in which researchers can benefit the most from
insight into the paradigm present in the targeted hetero-
geneous system. Tools that provide strategic exploration,
high-level prediction, and numerical analysis have a strongly
positive impact on the other phases.

The design phase consists of the languages used to translate
an algorithm into a behavioral implementation. This field has
been broadened by the creation and adaptation of modern
HDL languages, such as Chisel [150], [151] based on Scala
and Clash [152], [153] based on Haskell, and high-level syn-
thesis tools, such as BondManchine based onGo [154] among
several others. New developments have solved, to some
degree, the issues of portability and interoperability by raising
abstraction. However, the method for scaling designs to het-
erogeneous clusters remains platform-specific. Without these
facilities, users are expected to be responsible for porting
and partitioning the design. Furthermore, users are tasked
with specifying the concurrency model at the system level,
which is a difficult task. An in-depth study of design tools,
frameworks, and strategies for design space exploration can
be found in [155].

Once a PC-compatible description of the algorithm is avail-
able, the next phase maps it to the actual physical resources
of the system. This phase is known as translation or place-
and-route (PAR). Several improvements were made in recent
years [156], [157]. Most focus on the speed-up of the process
by implementing parallelism with good results when com-
pared with vendor tools. However, these improvements are
not easily integrated into proprietary workflows and require
a high level of expertise for effective usage. Likewise, exist-
ing PARs targeting clusters are platform-specific and do not
change until a standard way of describing a heterogeneous
system is adopted.

In the final phase, execution, developers must be able to
verify and analyze the performance of the implementation.
Critical runtime services must be included, such as task man-
agement, checkpoints, heartbeats, and debugging services.
The effective implementation of such services depends on
their consideration in previous design phases. The works
studied in detail in [158] provided definitions of abstraction

layers for user interaction and management, showing great
improvement in the execution phase. Likewise, several FPGA
operating systems have been developed [159], [160], [161]
implementing abstractions such as threads. Nevertheless,
some challenges remain, notably:

• Translation tools capable of targeting scalable heteroge-
neous platforms

• High-level prediction tools for performance, energy con-
sumption, and resource utilization, among others

• Universal debugging and verification tools for dis-
tributed reconfigurable computing

Even if there are platform-specific solutions to some of
the previously mentioned challenges, the real challenge is
to develop standard and generic solutions suitable for any
heterogeneous cluster implementation in a community-driven
development approach that would greatly accelerate adoption
and growth, as shown in [162], [163], and [164]. At high-level
synthesis, novel frameworks provide a convenient approach
by including off-chip synchronization and communication
APIs, such as Auto-Pipe [165] in 2010 and, more recently,
OpenFC [166] and SMAPPIC [167].

IV. CONCLUSION
Supercomputers have been growing in recent years to occupy
large areas and consume as much energy as small towns. This
trend is impossible to support, and highlights the major issues
of the current approach based on CPUs and GPUs. Mean-
while, FPGA-based heterogeneous platforms have shown
great improvements in performance and energy consumption
when compared to their CPU or GPU counterparts. Nonethe-
less, adoption has remained low, primarily owing to the
complexity of hardware design and the lack of standards for
interconnection, structure, and program description, to men-
tion some that affect most development tools by forcing
over-specification.

By studying the most relevant implementations of FPGA
heterogeneous clusters, we propose three main domains in
each cluster, namely, network, hardware, and software tools,
that help recognize the contributions and challenges of each
work. Furthermore, studying a specific cluster architecture
under this division aids in identifying the origin of some
issues and understanding the compromises of design deci-
sions taken in the different domains. By understanding the
trade-offs related to each decision, developers can better
anticipate the critical issues in each domain to plan contin-
gency measures in the most convenient manner. This survey
sheds light on the open challenges that future clusters will
have to overcome but also offers an overview of the already
available and tested approaches.

FPGA-based heterogeneous computing is a challenging
field, with enormous potential to change the dominant
computing paradigm. In later years, great interest brought
important contributions to the development of tools and,
more importantly, experimental platforms. With standard
platform descriptions and interfaces, an open collaborative

67700 VOLUME 11, 2023



W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

development approach will allow the creation of commu-
nities to accelerate adoption. New technologies, such as
SoC-FPGAs, will certainly be at the center of future cluster
architectures, considering the advantages of having CPUs,
GPUs, and FPGAs in the same device.

ACKNOWLEDGMENT
The authors would like to thank Romina Soledad Molina and
Charn Loong Ng for their valuable insight in the process of
writing this article.

REFERENCES
[1] C.Maxfield. (Sep. 2011).WhoMade the First PLD?—EETimes. [Online].

Available: https://www.eetimes.com/who-made-the-first-pld/
[2] (2017). Xilinx Co-Founder Ross Freeman Honored—EETimes. [Online].

Available: https://www.eetimes.com/xilinx-co-founder-ross-freeman-
honored/

[3] Xilinx. (2021). Vivado Design Suite User Guide, Version 2021.1.
[Online]. Available: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2021_1/ug973-vivado-release-notes-install-license.pdf

[4] Xilinx. (2021). Vitis Unified Software Platform User Guide, Version
2021.1. [Online]. Available: https://www.xilinx.com/support/document
ation/sw_manuals/xilinx2021_1/ug1416-vitis-unified-platform.pdf

[5] Intel Corporation. (2021). Quartus Prime User Guide, Version
21.1. [Online]. Available: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/ug/ug-qps.pdf

[6] Microsemi Libero. (2021). Libero SoC Design Suite User Guide, Version
12.0, 2021. [Online]. Available: https://www.microsemi.com/document-
portal/doc_view/131953-libero-soc-design-suite-v12-0-user-guide

[7] (2021). Yosys Open SYnthesis Suite. Accessed: May 9, 2023. [Online].
Available: https://github.com/YosysHQ/yosys

[8] CHIPS Alliance. (2017). FOSS Flows for FPGA—F4PGA
Documentation. [Online]. Available: https://f4pga.readthedocs.
io/en/latest/index.html

[9] Agile Analog. (2021). RapidSilicon: Accelerating Silicon Development.
Accessed: May 9, 2023. [Online]. Available: https://www.agileanalog.
com/products/rapidsilicon

[10] W. A. Najjar and P. Ienne, ‘‘Reconfigurable computing,’’ IEEE Micro,
vol. 34, no. 1, pp. 4–6, Jan. 2014. [Online]. Available: https://dl.acm.org/
doi/10.1145/508352.508353, doi: 10.1109/MM.2014.25.

[11] Altera Corporation. (Jul. 2014). What is an SoC FPGA? Architecture
Brief. [Online]. Available: http://www.altera.com/socarchitecture

[12] W. Vanderbauwhede et al., High-Performance Computing Using FPGAs.
New York, NY, USA: Springer, 2013.

[13] M. Awad, ‘‘FPGA supercomputing platforms: A survey,’’ in Proc.
Int. Conf. Field Program. Log. Appl., Aug. 2009, pp. 564–568.
[Online]. Available: http://ieeexplore.ieee.org/document/5272406/, doi:
10.1109/FPL.2009.5272406.

[14] K. O’Neal and P. Brisk, ‘‘Predictive modeling for CPU, GPU, and
FPGA performance and power consumption: A survey,’’ in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2018, pp. 763–768, doi:
10.1109/ISVLSI.2018.00143.

[15] P. Colella. (2004). Defining Software Requirements for Scientific
Computing. DARPA HPCS. [Online]. Available: https://www.krellinst.
org/doecsgf/conf/2013/pres/pcolella.pdf

[16] K. Asanovic et al., ‘‘The landscape of parallel computing research:
A view from Berkeley,’’ 2006. [Online]. Available: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[17] R. Inta, D. J. Bowman, and S. M. Scott, ‘‘The ‘Chimera’: An off-the-shelf
CPU/GPGPU/FPGA hybrid computing platform,’’ Int. J. Reconfigurable
Comput., vol. 2012, pp. 1–10, Jan. 2012. [Online]. Available: http://www.
hindawi.com/journals/ijrc/2012/241439, doi: 10.1155/2012/241439.

[18] R. D. Chamberlain, ‘‘Architecturally truly diverse systems: A
review,’’ Future Gener. Comput. Syst., vol. 110, pp. 33–44,
Sep. 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0167739X19313184, doi: 10.1016/j.future.2020.03.061.

[19] R. Palmer. (2011). Parallel Dwarfs (Inaccessible). [Online]. Available:
http://paralleldwarfs.codeplex.com/

[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, ‘‘Rodinia: A benchmark suite for heterogeneous comput-
ing,’’ in Proc. IEEE Int. Symp. Workload Characterization (IISWC),
Oct. 2009, pp. 44–54, doi: 10.1109/IISWC.2009.5306797.

[21] Virginia Tech Synergy. (2019). GitHub—VTSynergy/OpenDwarfs: A
Benchmark Suite. [Online]. Available: https://github.com/vtsynergy/
OpenDwarfs

[22] A. Putnam et al., ‘‘A reconfigurable fabric for accelerating large-scale
datacenter services,’’ in Proc. ACM/IEEE 41st Int. Symp. Comput. Archit.
(ISCA), Jun. 2014, pp. 13–24, doi: 10.1109/ISCA.2014.6853195.

[23] Alibaba. (2018). Deep Dive Into Alibaba Cloud F3 FPGA as
a Service Instances—Alibaba Cloud Community. [Online]. Avail-
able: https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-
f3-fpga-as-a-service-instances_594057

[24] Amazon. (2017). Amazon EC2 F1 Instances. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

[25] R. Kiełbik, K. Hałagan, W. Zatorski, J. Jung, J. Ulański, A. Napieralski,
K. Rudnicki, P. Amrozik, G. Jabłoński, D. Stożek, P. Polanowski,
Z. Mudza, J. Kupis, and P. Panek, ‘‘ARUZ—Large-scale, massively
parallel FPGA-based analyzer of real complex systems,’’ Comput.
Phys. Commun., vol. 232, pp. 22–34, Nov. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0010465518302182, doi:
10.1016/j.cpc.2018.06.010.

[26] F. Fahim et al., ‘‘hls4ml: An open-source codesign workflow to
empower scientific low-power machine learning devices,’’ 2021,
arXiv:2103.05579.

[27] J. Villarreal, A. Park, W. Najjar, and R. Halstead, ‘‘Designing modu-
lar hardware accelerators in C with ROCCC 2.0,’’ in Proc. 18th IEEE
Annu. Int. Symp. Field-Program. Custom Comput. Mach., May 2010,
pp. 127–134, doi: 10.1109/FCCM.2010.28.

[28] R. Nane, V. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels,
‘‘DWARV 2.0: A CoSy-based C-to-VHDL hardware compiler,’’ in
Proc. 22nd Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2012,
pp. 619–622, doi: 10.1109/FPL.2012.6339221.

[29] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong,
and W.-M.-W. Hwu, ‘‘Efficient compilation of CUDA kernels for
high-performance computing on FPGAs,’’ ACM Trans. Embedded Com-
put. Syst., vol. 13, no. 2, pp. 1–26, Sep. 2013, doi: 10.1145/2514641.
2514652.

[30] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, ‘‘LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,’’ ACM
Trans. Embedded Comput. Syst., vol. 13, no. 2, pp. 1–27, Sep. 2013.
[Online]. Available: https://doi-org.ezproxy.cern.ch/10.1145/2514740,
doi: 10.1145/2514740.

[31] S. Lee, J. Kim, and J. S. Vetter, ‘‘OpenACC to FPGA: A frame-
work for directive-based high-performance reconfigurable computing,’’
in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2016,
pp. 544–554, doi: 10.1109/IPDPS.2016.28.

[32] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and
A. Agarwal, ‘‘Baring it all to software: Raw machines,’’ Computer,
vol. 30, no. 9, pp. 86–93, 1997. [Online]. Available: http://ieeexplore.
ieee.org/document/612254/, doi: 10.1109/2.612254.

[33] J. D. Davis, ‘‘FAST: A flexible architecture for simulation and testing
of multiprocessor and CMP systems,’’ Dept. Elect. Eng., Stanford Univ.,
Stanford, CA, USA, Dec. 2006.

[34] H. Kalte, M. Porrmann, and U. Rückert, ‘‘A prototyping platform for
dynamically reconfigurable system on chip designs,’’ in Proc. IEEE
Workshop Heterogeneous Reconfigurable Syst. Chip (SoC), Hamburg,
Germany, Apr. 2002, pp. 57–75.

[35] M. Porrmann et al., ‘‘RAPTOR—A scalable platform for rapid prototyp-
ing and FPGA-based cluster computing,’’ in Parallel Computing: From
Multicores and GPU’s to Petascale (Advances in Parallel Computing),
vol. 19. Amsterdam, TheNetherlands: IOS Press, 2010, doi: 10.3233/978-
1-60750-530-3-592.

[36] C. Steffen and G. Genest, ‘‘Nallatech in-socket FPGA front-side bus
accelerator,’’ Comput. Sci. Eng., vol. 12, no. 2, pp. 78–83, Mar. 2010, doi:
10.1109/MCSE.2010.45.

[37] C. Pohl, C. Paiz, and M. Porrmann, ‘‘vMAGIC—Automatic code
generation for VHDL,’’ Int. J. Reconfigurable Comput., vol. 2009,
pp. 1–9, Jan. 2009. [Online]. Available: http://vmagic.sourceforge.net/,
doi: 10.1155/2009/205149.

VOLUME 11, 2023 67701

http://dx.doi.org/10.1109/MM.2014.25
http://dx.doi.org/10.1109/FPL.2009.5272406
http://dx.doi.org/10.1109/ISVLSI.2018.00143
http://dx.doi.org/10.1155/2012/241439
http://dx.doi.org/10.1016/j.future.2020.03.061
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1109/ISCA.2014.6853195
http://dx.doi.org/10.1016/j.cpc.2018.06.010
http://dx.doi.org/10.1109/FCCM.2010.28
http://dx.doi.org/10.1109/FPL.2012.6339221
http://dx.doi.org/10.1145/2514641.2514652
http://dx.doi.org/10.1145/2514641.2514652
http://dx.doi.org/10.1145/2514740
http://dx.doi.org/10.1109/IPDPS.2016.28
http://dx.doi.org/10.1109/2.612254
http://dx.doi.org/10.3233/978-1-60750-530-3-592
http://dx.doi.org/10.3233/978-1-60750-530-3-592
http://dx.doi.org/10.1109/MCSE.2010.45
http://dx.doi.org/10.1155/2009/205149


W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

[38] S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou,
I. Mavroidis, M. Katevenis, D. Pnevmatikatos, and D. S. Nikolopoulos,
‘‘FPGA prototyping of emerging manycore architectures for parallel
programming research using formic boards,’’ J. Syst. Archit., vol. 60,
no. 6, pp. 481–493, Jun. 2014. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S138376211400054X, doi: 10.1016/j.sysarc.
2014.03.002.

[39] S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou,
D. Tsaliagkos, M. Katevenis, D. Pnevmatikatos, and D. Nikolopoulos,
‘‘Formic: Cost-efficient and scalable prototyping of manycore
architectures,’’ in Proc. IEEE 20th Int. Symp. Field-Program. Custom
Comput. Mach., Apr. 2012, pp. 61–64, doi: 10.1109/FCCM.2012.20.

[40] H. Shah et al., ‘‘Remote direct memory access (RDMA) protocol exten-
sions,’’ Tech. Rep. 7306, Jun. 2014.

[41] V. Kale, ‘‘Using the MicroBlaze processor to accelerate cost-sensitive
embedded system development,’’ Xilinx, Jun. 2016. [Online]. Available:
https://docs.xilinx.com/v/u/en-US/wp469-microblaze-for-cost-sensitive-
apps

[42] S. G. Kavadias, M. G. H. Katevenis, M. Zampetakis, and
D. S. Nikolopoulos, ‘‘On-chip communication and synchronization
mechanisms with cache-integrated network interfaces,’’ in Proc. 7th
ACM Int. Conf. Comput. Frontiers, May 2010, pp. 217–226, doi:
10.1145/1787275.1787328.

[43] Cadence. (2019). Palladium Emulation | Cadence. [Online]. Available:
https://www.cadence.com/en_US/home/tools/system-design-and-
verification/emulation-and-prototyping/palladium.html

[44] Siemens. (2022). Veloce Prototyping—FPGA | Siemens Software.
[Online]. Available: https://eda.sw.siemens.com/en-US/ic/veloce/fpga-
prototyping/

[45] B. da Silva, A. Braeken, E. H. D’Hollander, A. Touhafi, J. G. Cornelis,
and J. Lemeire, ‘‘Comparing and combining GPU and FPGA accelerators
in an image processing context,’’ in Proc. 23rd Int. Conf. Field Program.
Log. Appl., Sep. 2013, pp. 1–4. [Online]. Available: http://ieeexplore.
ieee.org/document/6645552/, doi: 10.1109/FPL.2013.6645552.

[46] T. Otsuka, T. Aoki, E. Hosoya, and A. Onozawa, ‘‘An image recognition
system for multiple video inputs over a multi-FPGA system,’’ in Proc.
IEEE 6th Int. Symp. Embedded Multicore SoCs, Sep. 2012, pp. 1–7.
[Online]. Available: http://ieeexplore.ieee.org/document/6354671/, doi:
10.1109/MCSoC.2012.33.

[47] The RTN Collaboration, ‘‘64-transputer machine,’’ in Proc. CHEP,
Geneva, Switzerland, 1992, pp. 353–360.

[48] H. Schmit et al., ‘‘Behavioral synthesis for FPGA-based comput-
ing,’’ in Proc. IEEE Workshop FPGA’s Custom Comput. Mach., 1994,
pp. 125–132, doi: 10.1109/FPGA.1994.315591.

[49] A. Cruz, J. Pech, A. Tarancón, P. Téllez, C. L. Ullod, and C. Ungil,
‘‘SUE: A special purpose computer for spin glass models,’’ Com-
put. Phys. Commun., vol. 133, nos. 2–3, pp. 165–176, Jan. 2001, doi:
10.1016/S0010-4655(00)00170-3.

[50] F. Belletti, I. Campos, A. Maiorano, S. P. Gavir, D. Sciretti, A. Tarancon,
J. L. Velasco, A. C. Flor, D. Navarro, P. Tellez, L. A. Fernandez,
V. Martin-Mayor, A. M. Sudupe, S. Jimenez, E. Marinari, F. Mantovani,
G. Poll, S. F. Schifano, L. Tripiccione, and J. J. Ruiz-Lorenzo, ‘‘Ianus: An
adaptive FPGA computer,’’ Comput. Sci. Eng., vol. 8, no. 1, pp. 41–49,
Jan. 2006. [Online]. Available: http://ieeexplore.ieee.org/document/
1563961/, doi: 10.1109/MCSE.2006.9.

[51] F. Belletti et al., ‘‘Janus: An FPGA-based system for high-
performance scientific computing,’’ Comput. Sci. Eng., vol. 11, no. 1,
pp. 48–58, Jan. 2009. [Online]. Available: https://ieeexplore.ieee.org/
document/4720223/, doi: 10.1109/MCSE.2009.11.

[52] M. Baity-Jesi et al., ‘‘An FPGA-based supercomputer for statistical
physics: The weird case of Janus,’’ in High-Performance Computing
Using FPGAs. New York, NY, USA: Springer, Mar. 2013, pp. 481–506.
[Online]. Available: https://link-springer-com.ezproxy.cern.ch/chapter/
10.1007/978-1-4614-1791-0_16, doi: 10.1007/978-1-4614-1791-0_16.

[53] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler, ‘‘Breaking
ciphers with COPACOBANA—A cost-optimized parallel code breaker,’’
in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst., in Lecture
Notes in Computer Science: Including Subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics, vol. 4249, 2006,
pp. 101–118, doi: 10.1007/11894063_9.

[54] T. Güneysu, T. Kasper, M. Novotný, C. Paar, and A. Rupp, ‘‘Crypt-
analysis with COPACOBANA,’’ IEEE Trans. Comput., vol. 57, no. 11,
pp. 1498–1513, Nov. 2008. [Online]. Available: http://ieeexplore.ieee.
org/document/4515858/, doi: 10.1109/TC.2008.80.

[55] W. Kastl and T. Loimayr, ‘‘A parallel computing system with special-
ized coprocessors for cryptanalytic algorithms,’’ in P170—Sicherheit
2010—Sicherheit, Schutz und Zuverlässigkeit, F. C. Freiling, Ed. Bonn,
Germany: Gesellschaft für Informatik, 2010, pp. 78–83. [Online]. Avail-
able: https://dl.gi.de/handle/20.500.12116/19801

[56] B. Danczul, J. Fuß, S. Gradinger, B. Greslehner, W. Kastl, and F. Wex,
‘‘Cuteforce analyzer: A distributed bruteforce attack on PDF encryption
with GPUs and FPGAs,’’ in Proc. Int. Conf. Availability, Rel. Secur.,
Sep. 2013, pp. 720–725. [Online]. Available: http://ieeexplore.ieee.
org/document/6657310/, doi: 10.1109/ARES.2013.94.

[57] A. H. T. Tse, D. B. Thomas, K. H. Tsoi, and W. Luk,
‘‘Dynamic scheduling monte-carlo framework for multi-accelerator
heterogeneous clusters,’’ in Proc. Int. Conf. Field-Program. Technol.,
Dec. 2010, pp. 233–240. [Online]. Available: http://ieeexplore.ieee.
org/document/5681495/, doi: 10.1109/FPT.2010.5681495.

[58] G. Tan, C. Zhang, W. Wang, and P. Zhang, ‘‘SuperDragon,’’ ACM
Trans. Reconfigurable Technol. Syst., vol. 8, no. 4, pp. 1–22, Oct. 2015.
[Online]. Available: https://dl.acm.org/doi/10.1145/2740966, doi:
10.1145/2740966.

[59] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mujumdar,
‘‘Bluehive–A field-programable custom computing machine for extreme-
scale real-time neural network simulation,’’ in Proc. IEEE 20th Int.
Symp. Field-Program. Custom Comput. Mach., Apr. 2012, pp. 133–140.
[Online]. Available: https://ieeexplore.ieee.org/document/6239804/, doi:
10.1109/FCCM.2012.32.

[60] P. J. Fox, A. T. Markettos, and S. W. Moore, ‘‘Reliably prototyping
large SoCs using FPGA clusters,’’ in Proc. 9th Int. Symp. Reconfig-
urable Commun.-Centric Syst.-on-Chip (ReCoSoC), May 2014, pp. 1–8.
[Online]. Available: http://ieeexplore.ieee.org/document/6861350/, doi:
10.1109/ReCoSoC.2014.6861350.

[61] A. Theodore Markettos, P. J. Fox, S. W. Moore, and A. W. Moore,
‘‘Interconnect for commodity FPGA clusters: Standardized or cus-
tomized?’’ in Proc. 24th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2014, pp. 1–8. http://ieeexplore.ieee.org/document/6927472/, doi:
10.1109/FPL.2014.6927472.

[62] R. S. Nikhil et al., BSV by Example, 10th ed. 2010. [Online]. Available:
http://www.bluespec.com/support/

[63] M. Baity-Jesi et al., ‘‘Janus II: A new generation application-driven com-
puter for spin-system simulations,’’ Comput. Phys. Commun., vol. 185,
no. 2, pp. 550–559, Feb. 2014. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0010465513003470, doi: 10.1016/j.cpc.2013.
10.019.

[64] R. Kiełbik, K. Rudnicki, Z. Mudza, and J. Jung, ‘‘Methodology of
firmware development for ARUZ—An FPGA-based HPC system,’’ Elec-
tronics, vol. 9, no. 9, p. 1482, Sep. 2020. [Online]. Available: https://
www.mdpi.com/journal/electronics, doi: 10.3390/electronics9091482.

[65] (2006). VHDL Preprocessor Home Page. [Online]. Available: https://
sourceforge.net/projects/vhdlpp/

[66] S. Karim, J. Harkin, L. McDaid, B. Gardiner, and J. Liu, ‘‘AstroByte:
Multi-FPGA architecture for accelerated simulations of spiking astrocyte
neural networks,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2020, pp. 1568–1573, doi: 10.23919/DATE48585.2020.9116312.

[67] S. Yang, J. Wang, X. Hao, H. Li, X. Wei, B. Deng, and K. A. Loparo,
‘‘BiCoSS: Toward large-scale cognition brain with multigranular neuro-
morphic architecture,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 33,
no. 7, pp. 2801–2815, Jul. 2022, doi: 10.1109/TNNLS.2020.3045492.

[68] D. Gratadour. (2021). Microgate—Green Flash. [Online]. Available:
http://green-flash.lesia.obspm.fr/microgate.html

[69] Y. Clénet et al. (2019). MICADO-MAORY SCAO Preliminary Design,
Development Plan & Calibration Strategies. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-03078430

[70] A. Brown, D. Thomas, J. Reeve, G. Tarawneh, A. De Gennaro,
A. Mokhov, M. Naylor, and T. Kazmierski, ‘‘Distributed event-based
computing,’’ in Parallel Computing is Everywhere (Advances in Parallel
Computing), vol. 32. 2018, pp. 583–592. [Online]. Available: https://
ebooks.iospress.nl/doi/10.3233/978-1-61499-843-3-583, doi: 10.3233/
978-1-61499-843-3-583.

[71] M. A. Petrovici, B. Vogginger, P. Müller, O. Breitwieser, M. Lundqvist,
L. Müller, M. Ehrlich, A. Destexhe, A. Lansner, R. Schüffny,
J. Schemmel, and K. Meier, ‘‘Characterization and compensation of
network-level anomalies in mixed-signal neuromorphic modeling plat-
forms,’’ PLoS ONE, vol. 9, no. 10, Oct. 2014, Art. no. e108590. [Online].
Available: https://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0108590, doi: 10.1371/journal.pone.0108590.

67702 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.sysarc.2014.03.002
http://dx.doi.org/10.1016/j.sysarc.2014.03.002
http://dx.doi.org/10.1109/FCCM.2012.20
http://dx.doi.org/10.1145/1787275.1787328
http://dx.doi.org/10.1109/FPL.2013.6645552
http://dx.doi.org/10.1109/MCSoC.2012.33
http://dx.doi.org/10.1109/FPGA.1994.315591
http://dx.doi.org/10.1016/S0010-4655(00)00170-3
http://dx.doi.org/10.1109/MCSE.2006.9
http://dx.doi.org/10.1109/MCSE.2009.11
http://dx.doi.org/10.1007/978-1-4614-1791-0_16
http://dx.doi.org/10.1007/11894063_9
http://dx.doi.org/10.1109/TC.2008.80
http://dx.doi.org/10.1109/ARES.2013.94
http://dx.doi.org/10.1109/FPT.2010.5681495
http://dx.doi.org/10.1145/2740966
http://dx.doi.org/10.1109/FCCM.2012.32
http://dx.doi.org/10.1109/ReCoSoC.2014.6861350
http://dx.doi.org/10.1109/FPL.2014.6927472
http://dx.doi.org/10.1016/j.cpc.2013.10.019
http://dx.doi.org/10.1016/j.cpc.2013.10.019
http://dx.doi.org/10.3390/electronics9091482
http://dx.doi.org/10.23919/DATE48585.2020.9116312
http://dx.doi.org/10.1109/TNNLS.2020.3045492
http://dx.doi.org/10.3233/978-1-61499-843-3-583
http://dx.doi.org/10.3233/978-1-61499-843-3-583
http://dx.doi.org/10.1371/journal.pone.0108590


W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

[72] I. Ohmura, G. Morimoto, Y. Ohno, A. Hasegawa, and M. Taiji,
‘‘MDGRAPE-4: A special-purpose computer system for molecular
dynamics simulations,’’Philos. Trans. Roy. Soc. A,Math., Phys. Eng. Sci.,
vol. 372, Aug. 2014, Art. no. 20130387. [Online]. Available: https://pmc/
articles/PMC4084528/ and https://pmc/articles/PMC4084528/?report=
abstract and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084528/,
doi: 10.1098/RSTA.2013.0387.

[73] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, ‘‘Enabling
FPGAs in hyperscale data centers,’’ in Proc. IEEE 12th Int. Conf. Ubiq-
uitous Intell. Comput., IEEE 12th Int. Conf. Autonomic Trusted Comput.
IEEE 15th Int. Conf. Scalable Comput. Commun. Associated Workshops
(UIC-ATC-ScalCom), Aug. 2015, pp. 1078–1086. [Online]. Available:
https://ieeexplore.ieee.org/document/7518378/, doi: 10.1109/UIC-ATC-
ScalCom-CBDCom-IoP.2015.199.

[74] Xilinx. (2016). Xilinx and IBM to Enable FPGA-Based Acceleration
Within SuperVessel OpenPOWER Development Cloud. [Online].
Available: https://www.xilinx.com/news/press/2016/xilinx-and-ibm-to-
enable-fpga-based-acceleration-within-supervessel-openpower-
development-cloud.html

[75] F. Abel, J. Weerasinghe, C. Hagleitner, B. Weiss, and S. Paredes,
‘‘An FPGA platform for hyperscalers,’’ in Proc. IEEE 25th Annu.
Symp. High-Perform. Interconnects (HOTI), Aug. 2017, pp. 29–32.
[Online]. Available: http://ieeexplore.ieee.org/document/8071053/, doi:
10.1109/HOTI.2017.13.

[76] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, ‘‘Disag-
gregated FPGAs: Network performance comparison against bare-metal
servers, virtual machines and Linux containers,’’ in Proc. Int. Conf.
Cloud Comput. Technol. Sci. (CloudCom), Dec. 2016, pp. 9–17, doi:
10.1109/CLOUDCOM.2016.0018.

[77] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey, ‘‘Pro-
gramming reconfigurable heterogeneous computing clusters using MPI
with transpilation,’’ in Proc. IEEE/ACM Int. Workshop Heterogeneous
High-Perform. Reconfigurable Comput. (H2RC), Nov. 2020, pp. 1–9, doi:
10.1109/H2RC51942.2020.00006.

[78] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey,
‘‘ZRLMPI: A unified programming model for reconfigurable hetero-
geneous computing clusters,’’ in Proc. IEEE 28th Annu. Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM), May 2020, p. 220, doi:
10.1109/FCCM48280.2020.00051.

[79] H. Shahzad, A. Sanaullah, and M. Herbordt, ‘‘Survey and future
trends for FPGA cloud architectures,’’ in Proc. IEEE High Per-
form. Extreme Comput. Conf. (HPEC), Sep. 2021, pp. 1–10, doi:
10.1109/HPEC49654.2021.9622807.

[80] C. Bobda et al., ‘‘The future of FPGA acceleration in datacenters and
the cloud,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 15, no. 3,
Sep. 2022, Art. no. 34, doi: 10.1145/3506713.

[81] R. Sass, W. V. Kritikos, A. G. Schmidt, S. Beeravolu, and
P. Beeraka, ‘‘Reconfigurable computing cluster (RCC) project:
Investigating the feasibility of FPGA-based petascale computing,’’
in Proc. 15th Annu. IEEE Symp. Field-Program. Custom Comput.
Mach. (FCCM), Apr. 2007, pp. 127–140. [Online]. Available:
https://ieeexplore.ieee.org/document/4297250, doi: 10.1109/FCCM.
2007.62.

[82] A. G. Schmidt, W. V. Kritikos, S. Datta, and R. Sass, ‘‘Reconfigurable
computing cluster project: Phase I brief,’’ in Proc. 16th Int. Symp.
Field-Program. Custom Comput. Mach., Apr. 2008, pp. 300–301, doi:
10.1109/FCCM.2008.12.

[83] AMD Xilinx. (Oct. 2022). Aurora 64B/66B LogiCORE IP Prod-
uct Guide. [Online]. Available: https://docs.xilinx.com/r/en-US/pg074-
aurora-64b66b

[84] R. G. Jaganathan, K. D. Underwood, and R. Sass, ‘‘A configurable
network protocol for cluster based communications using modular
hardware primitives on an intelligent NIC,’’ in Proc. ACM/IEEE
Conf. Supercomput., Nov. 2003, p. 22, doi: 10.1145/1048935.
1050173.

[85] HPC Open. (2022).Open MPI: Open Source High Performance Comput-
ing. [Online]. Available: https://www.open-mpi.org/

[86] K. Datta and R. Sass, ‘‘RBoot: Software infrastructure for a remote
FPGA laboratory,’’ in Proc. 15th Annu. IEEE Symp. Field-Program.
Custom Comput. Mach. (FCCM ), Apr. 2007, pp. 343–344, doi:
10.1109/FCCM.2007.53.

[87] Staff. (Jul. 2005). FPGA High-Performance Computing Alliance
(FHPCA). [Online]. Available: http://www.fhpca.org

[88] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons,
A. Simpson, A. Trew, A. McCormick, G. Smart, R. Smart, A. Cantle,
R. Chamberlain, and G. Genest, ‘‘Maxwell—A 64 FPGA supercom-
puter,’’ in Proc. 2nd NASA/ESA Conf. Adapt. Hardw. Syst. (AHS),
Aug. 2007, pp. 287–294. http://ieeexplore.ieee.org/document/4291933/,
doi: 10.1109/AHS.2007.71.

[89] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons,
A. Simpson, A. Trew, A. McCormick, G. Smart, R. Smart, A. Cantle,
R. Chamberlain, and G. Genest, ‘‘The FPGA high-performance comput-
ing alliance parallel toolkit,’’ inProc. 2ndNASA/ESAConf. Adapt. Hardw.
Syst. (AHS), Aug. 2007, pp. 301–307, doi: 10.1109/AHS.2007.104.

[90] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman, W. Luk, M. Y. Wong,
and P. H. W. Leong, ‘‘Cube: A 512-FPGA cluster,’’ in Proc.
5th Southern Conf. Program. Log. (SPL), Apr. 2009, pp. 51–57.
[Online]. Available: http://ieeexplore.ieee.org/document/4914907/, doi:
10.1109/SPL.2009.4914907.

[91] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen,
R. Pennington, andW.-M. Hwu, ‘‘QP: A heterogeneous multi-accelerator
cluster,’’ in Proc. 10th LCI Int. Conf. High-Perform. Clustered Comput.,
Boulder, CO, USA, Mar. 2009, pp. 1–8.

[92] Xilinx. (2013). ISE Design Suite. [Online]. Available:
https://www.xilinx.com/products/design-tools/ise-design-suite.html

[93] A. Pant, H. Jafri, and V. Kindratenko, ‘‘Phoenix: A runtime environment
for high performance computing on chip multiprocessors,’’ in Proc.
17th Euromicro Int. Conf. Parallel, Distrib. Netw.-Based Process., 2009,
pp. 119–126, doi: 10.1109/PDP.2009.41.

[94] K. H. Tsoi and W. Luk, ‘‘Axel,’’ in Proc. 18th Annu. ACM/SIGDA Int.
Symp. Field Program. Gate Arrays, New York, NY, USA, Feb. 2010,
p. 115. http://portal.acm.org/citation.cfm?doid=1723112.1723134, doi:
10.1145/1723112.1723134.

[95] Adaptive Computing Enterprises. (2015). TORQUE Resource Man-
ager Administrator Guide 4.2.10. [Online]. Available: http://www.
adaptivecomputing.com

[96] (2014). Maui Scheduler Administrator’s Guide. [Online]. Available:
http://docs.adaptivecomputing.com/maui/

[97] A. George, H. Lam, and G. Stitt, ‘‘Novo-G: At the forefront of scal-
able reconfigurable supercomputing,’’ Comput. Sci. Eng., vol. 13, no. 1,
pp. 82–86, Jan. 2011. [Online]. Available: http://ieeexplore.ieee.org/
document/5678570/, doi: 10.1109/MCSE.2011.11.

[98] A. D. George, M. C. Herbordt, H. Lam, A. G. Lawande, J. Sheng,
and C. Yang, ‘‘Novo-G#: Large-scale reconfigurable computing with
direct and programmable interconnects,’’ in Proc. IEEE High Per-
form. Extreme Comput. Conf. (HPEC), Sep. 2016, pp. 1–7. [Online].
Available: http://ieeexplore.ieee.org/document/7761639/, doi: 10.1109/
HPEC.2016.7761639.

[99] Xilinx. (Oct. 2017). Interlaken 150G. [Online]. Available:
https://docs.xilinx.com/v/u/en-US/pg212-interlaken-150g

[100] R. Giorgi, ‘‘AXIOM: A 64-bit reconfigurable hardware/software plat-
form for scalable embedded computing,’’ in Proc. 6th Medit. Conf.
Embedded Comput. (MECO), Jun. 2017, pp. 1–4. http://ieeexplore.ieee.
org/document/7977173/, doi: 10.1109/MECO.2017.7977117.

[101] C. Álvarez et al., ‘‘The AXIOM software layers,’’ Microprocessors
Microsyst., vol. 47, pp. 262–277, Nov. 2016, doi: 10.1016/J.MICPRO.
2016.07.002.

[102] R. Giorgi, M. Procaccini, and F. Khalili, ‘‘AXIOM: A scalable,
efficient and reconfigurable embedded platform,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 480–485, doi:
10.23919/DATE.2019.8715168.

[103] A. Filgueras, M. Vidal, M. Mateu, D. Jiménez-González, C. Alvarez,
X. Martorell, E. Ayguadé, D. Theodoropoulos, D. Pnevmatikatos, P. Gai,
S. Garzarella, D. Oro, J. Hernando, N. Bettin, A. Pomella, M. Procaccini,
and R. Giorgi, ‘‘The AXIOM project: IoT on heterogeneous embedded
platforms,’’ IEEE Design Test, vol. 38, no. 5, pp. 74–81, Oct. 2021, doi:
10.1109/MDAT.2019.2952335.

[104] AMD-Xilinx. (2021). Xilinx Adaptive Compute Clusters (XACC)
Academia-Industry Research Ecosystem | HACC Resources. [Online].
Available: https://www.amd-haccs.io/adapt_2021.html

[105] (2016). Heterogeneous Accelerated Compute Clusters | HACC
Resources. [Online]. Available: https://www.amd-haccs.io/index.html

[106] T. Prickett. (2018). Forging a Hybrid CPU-FPGA Supercomputer.
[Online]. Available: https://www.nextplatform.com/2018/09/25/forging-
a-hybrid-cpu-fpga-supercomputer/

VOLUME 11, 2023 67703

http://dx.doi.org/10.1098/RSTA.2013.0387
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199
http://dx.doi.org/10.1109/HOTI.2017.13
http://dx.doi.org/10.1109/CLOUDCOM.2016.0018
http://dx.doi.org/10.1109/H2RC51942.2020.00006
http://dx.doi.org/10.1109/FCCM48280.2020.00051
http://dx.doi.org/10.1109/HPEC49654.2021.9622807
http://dx.doi.org/10.1145/3506713
http://dx.doi.org/10.1109/FCCM.2007.62
http://dx.doi.org/10.1109/FCCM.2007.62
http://dx.doi.org/10.1109/FCCM.2008.12
http://dx.doi.org/10.1145/1048935.1050173
http://dx.doi.org/10.1145/1048935.1050173
http://dx.doi.org/10.1109/FCCM.2007.53
http://dx.doi.org/10.1109/AHS.2007.71
http://dx.doi.org/10.1109/AHS.2007.104
http://dx.doi.org/10.1109/SPL.2009.4914907
http://dx.doi.org/10.1109/PDP.2009.41
http://dx.doi.org/10.1145/1723112.1723134
http://dx.doi.org/10.1109/MCSE.2011.11
http://dx.doi.org/10.1109/HPEC.2016.7761639
http://dx.doi.org/10.1109/HPEC.2016.7761639
http://dx.doi.org/10.1109/MECO.2017.7977117
http://dx.doi.org/10.1016/J.MICPRO.2016.07.002
http://dx.doi.org/10.1016/J.MICPRO.2016.07.002
http://dx.doi.org/10.23919/DATE.2019.8715168
http://dx.doi.org/10.1109/MDAT.2019.2952335


W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

[107] Paderborn Center for Parallel Computing (PC2). (2022). PC2—
Noctua 2 (Universität Paderborn). [Online]. Available: https://pc2.uni-
paderborn.de/hpc-services/available-systems/noctua2

[108] Intel. (2022). OneAPI: A New Era of Heterogeneous Computing.
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/tools/oneapi/overview.html

[109] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He,
N. Hossle, D. Korolija, M. Licciardello, K. Martsenko, R. Achermann,
G. Alonso, and T. Roscoe, ‘‘Enzian: An open, general, CPU/FPGA
platform for systems software research,’’ in Proc. 27th ACM Int. Conf.
Architectural Support Program. Lang. Operating Syst., Feb. 2022, p. 18,
doi: 10.1145/3503222.3507742.

[110] A. D. Ioannou, K. Georgopoulos, P. Malakonakis, D. N. Pnevmatikatos,
V. D. Papaefstathiou, I. Papaefstathiou, and I. Mavroidis, ‘‘UNILOGIC:
A novel architecture for highly parallel reconfigurable systems,’’ ACM
Trans. Reconfigurable Technol. Syst., vol. 13, no. 4, pp. 1–32, Dec. 2020,
doi: 10.1145/3409115.

[111] Cygnus Consortium. (2018). About Cygnus. [Online]. Available: https://
www.ccs.tsukuba.ac.jp/wp-content/uploads/sites/14/2018/12/About-
Cygnus.pdf

[112] T. Boku, N. Fujita, R. Kobayashi, and O. Tatebe, ‘‘Cygnus—World first
multihybrid accelerated cluster with GPU and FPGA coupling,’’ in Proc.
ICPP Workshops. New York, NY, USA: Association for Computing
Machinery, Aug. 2022, p. 1, doi: 10.1145/3547276.3548629.

[113] K. Kikuchi, N. Fujita, R. Kobayashi, and T. Boku, ‘‘Implementation
and performance evaluation of collective communications using CIRCUS
on multiple FPGAs,’’ in Proc. HPC Asia Workshops. New York, NY,
USA: Association for Computing Machinery, Feb. 2023, p. 1523, doi:
10.1145/3581576.3581602.

[114] RIKEN Center for Computational Science. (2020). Fugaku: Riken’s
Flagship Supercomputer. [Online]. Available: https://www.fugaku-
riken.jp/

[115] K. Sano, A. Koshiba, T. Miyajima, and T. Ueno, ‘‘ESSPER: Elastic
and scalable FPGA-cluster system for high-performance reconfigurable
computing with supercomputer Fugaku,’’ in Proc. Int. Conf. High
Perform. Comput. Asia–Pacific Region (HPC Asia). New York, NY,
USA: Association for Computing Machinery, 2023, pp. 140–150, doi:
10.1145/3578178.3579341.

[116] J. Davis et al., ‘‘BEE3: Revitalizing computer architecture research,’’
Microsoft, Apr. 2009. [Online]. Available: https://www.microsoft.com/
en-us/research/publication/bee3-revitalizing-computer-architecture-
research/

[117] K. Kuusilinna, C. Chang, M. J. Ammer, B. C. Richards, and
R. W. Brodersen, ‘‘Designing BEE: A hardware emulation engine for
signal processing in low-power wireless applications,’’ EURASIP J. Adv.
Signal Process., vol. 2003, no. 6, pp. 502–513, Dec. 2003. [Online].
Available: https://www.mathworks.com

[118] S. C. Jain, S. Kumar, and A. Kumar, ‘‘Evaluation of various rout-
ing architectures for multi-FPGA boards,’’ in Proc. VLSI Design
Wireless Digit. Imag. Millennium 13th Int. Conf. VLSI Design.
Washington, DC, USA: IEEE Computer Society, 2000, pp. 262–267.
[Online]. Available: http://ieeexplore.ieee.org/document/812619/, doi:
10.1109/ICVD.2000.812619.

[119] C. Chang, K. Kuusilinna, B. Richards, and R. W. Brodersen, ‘‘Imple-
mentation of BEE: A real-time large-scale hardware emulation engine,’’
in Proc. ACM/SIGDA 11th Int. Symp. Field Program. Gate Arrays,
Feb. 2003, pp. 91–99, doi: 10.1145/611817.611832.

[120] C. Chang, J. Wawrzynek, and R. W. Brodersen, ‘‘BEE2: A high-end
reconfigurable computing system,’’ IEEE Design Test Comput., vol. 22,
no. 2, pp. 114–125, Feb. 2005, doi: 10.1109/MDT.2005.30.

[121] A. G. Schmidt, B. Huang, R. Sass, and M. French, ‘‘Check-
point/restart and beyond: Resilient high performance computing with
FPGAs,’’ in Proc. IEEE 19th Annu. Int. Symp. Field-Program. Cus-
tom Comput. Mach., May 2011, pp. 162–169, doi: 10.1109/FCCM.
2011.22.

[122] S. Buscemi and R. Sass, ‘‘Design and utilization of an FPGA cluster
to implement a digital wireless channel emulator,’’ in Proc. 22nd Int.
Conf. Field Program. Log. Appl. (FPL), Aug. 2012, pp. 635–638, doi:
10.1109/FPL.2012.6339253.

[123] S. Buscemi and R. Sass, ‘‘Design of a scalable digital wireless chan-
nel emulator for networking radios,’’ in Proc. Mil. Commun. Conf.,
Nov. 2011, pp. 1858–1863. [Online]. Available: http://ieeexplore.ieee.
org/document/6127583/, doi: 10.1109/MILCOM.2011.6127583.

[124] D. A. Patterson, ‘‘RAMP: Research accelerator for multiple
processors—A community vision for a shared experimental
parallel HW/SW platform,’’ in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw., Mar. 2006, p. 1, doi: 10.1109/ISPASS.2006.
1620784.

[125] Wirbel Loring. (May 2010). Berkeley Emulation Engine Update—EDN.
[Online]. Available: https://www.edn.com/berkeley-emulation-engine-
update/

[126] J. Rothman and C. Chang, ‘‘BEE technology overview,’’ in Proc. Int.
Conf. Embedded Comput. Syst. (SAMOS). Samos, Greece: Institute
of Electrical and Electronics Engineers, Jan. 2013, p. 277, doi:
10.1109/SAMOS.2012.6404186.

[127] EDN. (Jun. 2010). DESIGN TOOLS—BEEcube Launches BEE4, a Full-
Speed FPGA Prototyping Platform—EDN. [Online]. Available: https://
www.edn.com/design-tools-beecube-launches-bee4-a-full-speed-fpga-
prototyping-platform/

[128] M. Lin, ‘‘Hardware-assisted large-scale neuroevolution for multiagent
learning,’’ Dept. Elect. Comput. Eng., Univ. Central Florida, Orlando,
FL, USA, Dec. 2014. [Online]. Available: https://apps.dtic.mil/sti/
citations/ADA621804

[129] I. Sokol. (Apr. 2015). NIs BEEcube Acquisition Drives 5G Communi-
cations | Microwaves & RF. [Online]. Available: https://www.mwrf.
com/technologies/systems/article/21846169/nis-beecube-acquisition-
drives-5g-communications

[130] National Instruments. (2022). What is FlexRIO?—NI. [Online].
Available: https://www.ni.com/it-it/shop/electronic-test-instrumentation/
flexrio/what-is-flexrio.html

[131] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti,
M. Tehrani-Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder,
A. Bagga, P. Patel, V. Petkov, M. Seltser, F. Restuccia, A. Gosain,
K. R. Chowdhury, S. Basagni, and T. Melodia, ‘‘Colosseum: Large-
scale wireless experimentation through hardware-in-the-loop network
emulation,’’ in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw.
(DySPAN), Dec. 2021, pp. 105–113, doi: 10.1109/DYSPAN53946.2021.
9677430.

[132] Ettus. (2014). USRP Hardware Driver and USRP Manual: USRP
X3x0 Series. [Online]. Available: https://files.ettus.com/manual/page_
usrp_x3x0.html

[133] NI. (2022). ATCA Overview—NI. [Online]. Available: https://www.
ni.com/docs/en-US/bundle/atca-3671-getting-started/page/overview.
html

[134] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
‘‘HyperX: Topology, routing, and packaging of efficient large-scale net-
works,’’ in Proc. Conf. High Perform. Comput. Netw., Storage Anal.
(SC), New York, NY, USA, 2009, p. 1. [Online]. Available: http://
dl.acm.org/citation.cfm?doid=1654059.1654101, doi: 10.1145/1654059.
1654101.

[135] S. Gupta et al. (2022). Getting Started With RFNoC in UHD 4.0—
Ettus Knowledge Base. [Online]. Available: https://kb.ettus.com/Getting_
Started_with_RFNoC_in_UHD_4.0

[136] A. Chaudhari and M. Braun, ‘‘A scalable FPGA architecture for flexible,
large-scale, real-time RF channel emulation,’’ in Proc. 13th Int. Symp.
Reconfigurable Commun.-Centric Syst.-on-Chip (ReCoSoC), Jul. 2018,
pp. 1–8. [Online]. Available: https://ieeexplore.ieee.org/document/
8449390/, doi: 10.1109/ReCoSoC.2018.8449390.

[137] J. J. Dongarra and A. J. van der Steen, ‘‘High-performance computing
systems: Status and outlook,’’ Acta Numerica, vol. 21, pp. 379–474,
May 2012, doi: 10.1017/S0962492912000050.

[138] L. M. Al Qassem, T. Stouraitis, E. Damiani, and I. M. Elfadel,
‘‘FPGAaaS: A survey of infrastructures and systems,’’ IEEE Trans. Ser-
vices Comput., vol. 15, no. 2, pp. 1143–1156, Mar. 2022, doi: 10.1109/
TSC.2020.2976012.

[139] A. George, H. Lam, A. Lawande, C. Pascoe, and G. Stitt, ‘‘Novo-
G: A view at the HPC crossroads for scientific computing,’’ in Proc.
ERSA, 2010, pp. 21–30. [Online]. Available: http://plaza.ufl.edu/poppyc/
ERS5029.pdf

[140] D. Gratadour et al., ‘‘Prototyping AO RTC using emerging high
performance computing technologies with the green flash project,’’ Proc.
SPIE, vol. 10703, pp. 404–418, Jul. 2018. [Online]. Available: https://
www.spiedigitallibrary.org/conference-proceedings-of-spie/10703/1070
318/Prototyping-AO-RTC-using-emerging-high-performance-computin
g-technologies-with/10.1117/12.2312686.full%20, doi: 10.1117/12.
2312686.

67704 VOLUME 11, 2023

http://dx.doi.org/10.1145/3503222.3507742
http://dx.doi.org/10.1145/3409115
http://dx.doi.org/10.1145/3547276.3548629
http://dx.doi.org/10.1145/3581576.3581602
http://dx.doi.org/10.1145/3578178.3579341
http://dx.doi.org/10.1109/ICVD.2000.812619
http://dx.doi.org/10.1145/611817.611832
http://dx.doi.org/10.1109/MDT.2005.30
http://dx.doi.org/10.1109/FCCM.2011.22
http://dx.doi.org/10.1109/FCCM.2011.22
http://dx.doi.org/10.1109/FPL.2012.6339253
http://dx.doi.org/10.1109/MILCOM.2011.6127583
http://dx.doi.org/10.1109/ISPASS.2006.1620784
http://dx.doi.org/10.1109/ISPASS.2006.1620784
http://dx.doi.org/10.1109/SAMOS.2012.6404186
http://dx.doi.org/10.1109/DYSPAN53946.2021.9677430
http://dx.doi.org/10.1109/DYSPAN53946.2021.9677430
http://dx.doi.org/10.1145/1654059.1654101
http://dx.doi.org/10.1145/1654059.1654101
http://dx.doi.org/10.1109/ReCoSoC.2018.8449390
http://dx.doi.org/10.1017/S0962492912000050
http://dx.doi.org/10.1109/TSC.2020.2976012
http://dx.doi.org/10.1109/TSC.2020.2976012
http://dx.doi.org/10.1117/12.2312686
http://dx.doi.org/10.1117/12.2312686


W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

[141] A. Mondigo, T. Ueno, K. Sano, and H. Takizawa, ‘‘Comparison
of direct and indirect networks for high-performance FPGA clus-
ters,’’ in Applied Reconfigurable Computing. Architectures, Tools, and
Applications (Lecture Notes in Computer Science: Including Sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 12083. Springer, 2020, pp. 314–329. [Online].
Available: http://link.springer.com/10.1007/978-3-030-44534-8_24, doi:
10.1007/978-3-030-44534-8_24.

[142] J. D. D. Gazzano, M. L. Crespo, A. Cicuttin, and F. R. Calle,
Field-Programmable Gate Array (FPGA) Technologies for High Perfor-
mance Instrumentation. Hershey, PA, USA: IGI Global, Jul. 2016, doi:
10.4018/978-1-5225-0299-9.

[143] J. P. Orellana, M. B. Caminero, and C. Carrión, ‘‘Diseño de una arqui-
tectura heterogénea para la gestión eficiente de recursos FPGA en un
cloud privado,’’ in Aplicaciones e Innovación de la Ingeniería en Cien-
cia y Tecnología. Quito, Ecuador: Abya-Yala, 2019, pp. 165–199, doi:
10.7476/9789978104910.0007.

[144] M. Southworth. (Oct. 2021). Choosing the best processor for the job.
Curtis-Wright. [Online]. Available: https://www.curtisswrightds.com/
sites/default/files/2021-10/Choosing-the-Best-Processor-for-the-Job-
white-paper.pdf

[145] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones,
‘‘Comparing energy efficiency of CPU, GPU and FPGA implementations
for vision kernels,’’ in Proc. IEEE Int. Conf. Embedded Softw. Syst.
(ICESS), Jun. 2019, pp. 1–8, doi: 10.1109/ICESS.2019.8782524.

[146] A. Cicuttin, M. L. Crespo, K. S. Mannatunga, J. G. Samarawickrama,
N. Abdallah, and P. B. Sabet, ‘‘HyperFPGA: A possible general purpose
reconfigurable hardware for custom supercomputing,’’ in Proc. Int. Conf.
Adv. Electr., Electron. Syst. Eng. (ICAEES), Nov. 2016, pp. 21–26, doi:
10.1109/ICAEES.2016.7888002.

[147] A. Tomori and Y. Osana, ‘‘Kyokko: A vendor-independent high-
speed serial communication controller,’’ in Proc. 11th Int. Symp.
Highly Efficient Accel. Reconfigurable Technol. New York, NY, USA:
Association for Computing Machinery, Jun. 2021, pp. 1–6. [Online].
Available: https://doi-org.ezproxy.cern.ch/10.1145/3468044.3468051,
doi: 10.1145/3468044.3468051.

[148] T. Ueno and K. Sano, ‘‘VCSN: Virtual circuit-switching network for
flexible and simple-to-operate communication in HPC FPGA cluster,’’
ACM Trans. Reconfigurable Technol. Syst., vol. 16, no. 2, pp. 1–32,
Jun. 2023, doi: 10.1145/3579848.

[149] T. El-Ghazawi et al., ‘‘Exploration of a research roadmap for
application development and execution on field-programmable gate
array (FPGA)-based systems,’’ George Washington Univ., Washington,
DC, USA, Tech. Rep. ADA494473, Oct. 2008. [Online]. Available:
https://apps.dtic.mil/sti/citations/ADA494473

[150] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanovic, ‘‘Chisel: Constructing hardware in
a scala embedded language,’’ in Proc. Design Autom. Conf., 2012,
pp. 1216–1225, doi: 10.1145/2228360.2228584.

[151] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, ‘‘Reusabil-
ity is FIRRTL ground: Hardware construction languages, compiler
frameworks, and transformations,’’ in IEEE/ACM Int. Conf. Comput.-
Aided Design Dig. Tech. Papers. Piscataway, NJ, USA: Institute of
Electrical and Electronics Engineers, Nov. 2017, pp. 209–216, doi:
10.1109/ICCAD.2017.8203780.

[152] C. Baaij, ‘‘CλasH: From Haskell to hardware,’’ Fac. EEMCS. Com-
put. Archit. Embedded Syst., Univ. Twente, Enschede, The Netherlands,
Dec. 2009.

[153] M. Kooijman, ‘‘Haskell as a higher order structural hardware descrip-
tion language,’’ Fac. EEMCS, Comput. Archit. Embedded Syst., Univ.
Twente, Enschede, The Netherlands, Dec. 2009. [Online]. Available:
http://essay.utwente.nl/59381/

[154] M.Mariotti, D.Magalotti, D. Spiga, and L. Storchi, ‘‘The bondmachine, a
moldable computer architecture,’’ Parallel Comput., vol. 109, Mar. 2022,
Art. no. 102873, doi: 10.1016/J.PARCO.2021.102873.

[155] R. S. Molina, V. Gil-Costa, M. L. Crespo, and G. Ramponi,
‘‘High-level synthesis hardware design for FPGA-based accelerators:
Models, methodologies, and frameworks,’’ IEEE Access, vol. 10,
pp. 90429–90455, 2022, doi: 10.1109/ACCESS.2022.3201107.

[156] Y. Zhou, D. Vercruyce, and D. Stroobandt, ‘‘Accelerating FPGA routing
through algorithmic enhancements and connection-aware paralleliza-
tion,’’ ACMTrans. Reconfigurable Technol. Syst., vol. 13, no. 4, pp. 1–26,
Dec. 2020, doi: 10.1145/3406959.

[157] M. A. Zapletina and D. A. Zheleznikov, ‘‘The acceleration tech-
niques for the modified pathfinder routing algorithm on an island-
style FPGA,’’ in Proc. Conf. Russian Young Res. Electr. Electron.
Eng. (ElConRus), Jan. 2022, pp. 920–923. [Online]. Available: https://
ieeexplore.ieee.org/document/9755536/, doi: 10.1109/ElConRus54750.
2022.9755536.

[158] A. Vaishnav, K. D. Pham, and D. Koch, ‘‘A survey on FPGA
virtualization,’’ in Proc. 28th Int. Conf. Field Program. Log. Appl.
(FPL). Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers, Aug. 2018, pp. 131–138, doi: 10.1109/FPL.2018.
00031.

[159] K. Fleming, H. Yang, M. Adler, and J. Emer, ‘‘The LEAP FPGA
operating system,’’ in Proc. 24th Int. Conf. Field Program.
Log. Appl. (FPL), Sep. 2014, pp. 1–8, doi: 10.1109/FPL.2014.
6927488.

[160] L. Clausing and M. Platzner, ‘‘ReconOS64: A hardware oper-
ating system for modern platform FPGAs with 64-bit support,’’
in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops
(IPDPSW), May 2022, pp. 120–127, doi: 10.1109/IPDPSW55747.2022.
00029.

[161] D. Korolija, T. Roscoe, and G. Alonso, ‘‘Do OS abstractions make
sense on FPGAs?’’ in Proc. 14th USENIX Symp. Operating Syst.
Design Implement., 2020, pp. 991–1010. [Online]. Available: https://
www.usenix.org/conference/osdi20/presentation/roscoe, doi: 10.5555/
3488766.3488822.

[162] S. Möller et al., ‘‘Community-driven development for computational
biology at sprints, hackathons and codefests,’’ BMC Bioinf., vol. 15,
Dec. 2014, Art. no. S7, doi: 10.1186/1471-2105-15-S14-S7.

[163] M. Pathan et al., ‘‘A novel community driven software for func-
tional enrichment analysis of extracellular vesicles data,’’ J. Extra-
cellular Vesicles, vol. 6, no. 1, Dec. 2017, Art. no. 1321455, doi:
10.1080/20013078.2017.1321455.

[164] M. Kühbach, A. J. London, J. Wang, D. K. Schreiber, F. M. Martin,
I. Ghamarian, H. Bilal, and A. V. Ceguerra, ‘‘Community-driven
methods for open and reproducible software tools for analyzing datasets
from atom probe microscopy,’’ Microsc. Microanal., vol. 28, no. 4,
pp. 1038–1053, Aug. 2022. [Online]. Available: https://www.cambridge.
org/core/product/identifier/S1431927621012241/type/journal_article,
doi: 10.1017/S1431927621012241.

[165] R. D. Chamberlain, M. A. Franklin, E. J. Tyson, J. H. Buckley, J. Buh-
ler, G. Galloway, S. Gayen, M. Hall, E. F. B. Shands, and N. Singla,
‘‘Auto-pipe: Streaming applications on architecturally diverse systems,’’
Computer, vol. 43, no. 3, pp. 42–49, Mar. 2010, doi: 10.1109/MC.
2010.62.

[166] Y. Osana, T. Imahigashi, and A. Tomori, ‘‘OpenFC: A portable toolkit
for custom FPGA accelerators and clusters,’’ in Proc. 8th Int. Symp.
Comput. Netw. Workshops (CANDARW), Nov. 2020, pp. 185–190, doi:
10.1109/CANDARW51189.2020.00045.

[167] G. Chirkov and D. Wentzlaff, ‘‘SMAPPIC: Scalable multi-FPGA archi-
tecture prototype platform in the cloud,’’ in Proc. 28th ACM Int. Conf.
Architectural Support Program. Lang. Operating Syst. New York, NY,
USA: Association for Computing Machinery, Jan. 2023, pp. 733–746,
doi: 10.1145/3575693.3575753.

WERNER FLORIAN SAMAYOA received the
B.S. degree in electronics engineering from the
University of San Carlos, Guatemala, in 2018.
He is currently pursuing the Ph.D. degree
in industrial and information engineering with
the Multidisciplinary Laboratory (MLab), The
Abdus Salam International Center for Theoretical
Physics, Universitã degli Studi di Trieste, under the
Joint-Supervision Program. His research interest
includes scalable reconfigurable supercomputing.

VOLUME 11, 2023 67705

http://dx.doi.org/10.1007/978-3-030-44534-8_24
http://dx.doi.org/10.4018/978-1-5225-0299-9
http://dx.doi.org/10.7476/9789978104910.0007
http://dx.doi.org/10.1109/ICESS.2019.8782524
http://dx.doi.org/10.1109/ICAEES.2016.7888002
http://dx.doi.org/10.1145/3468044.3468051
http://dx.doi.org/10.1145/3579848
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://dx.doi.org/10.1016/J.PARCO.2021.102873
http://dx.doi.org/10.1109/ACCESS.2022.3201107
http://dx.doi.org/10.1145/3406959
http://dx.doi.org/10.1109/ElConRus54750.2022.9755536
http://dx.doi.org/10.1109/ElConRus54750.2022.9755536
http://dx.doi.org/10.1109/FPL.2018.00031
http://dx.doi.org/10.1109/FPL.2018.00031
http://dx.doi.org/10.1109/FPL.2014.6927488
http://dx.doi.org/10.1109/FPL.2014.6927488
http://dx.doi.org/10.1109/IPDPSW55747.2022.00029
http://dx.doi.org/10.1109/IPDPSW55747.2022.00029
http://dx.doi.org/10.5555/3488766.3488822
http://dx.doi.org/10.5555/3488766.3488822
http://dx.doi.org/10.1186/1471-2105-15-S14-S7
http://dx.doi.org/10.1080/20013078.2017.1321455
http://dx.doi.org/10.1017/S1431927621012241
http://dx.doi.org/10.1109/MC.2010.62
http://dx.doi.org/10.1109/MC.2010.62
http://dx.doi.org/10.1109/CANDARW51189.2020.00045
http://dx.doi.org/10.1145/3575693.3575753


W. F. Samayoa et al.: Survey on FPGA-Based Heterogeneous Clusters Architectures

MARIA LIZ CRESPO is currently a ResearchOffi-
cer with The Abdus Salam International Centre
for Theoretical Physics (ICTP) and an Associate
Researcher with the Italian National Institute of
Nuclear Physics (INFN), Trieste, Italy. She is also
coordinating the Research and Training Program,
Multidisciplinary Laboratory (MLab), ICTP. She
has organized several international schools and
workshops on fully programmable systems on chip
for nuclear and scientific instrumentation. She

is the coauthor of more than 100 scientific publications in prestigious
peer-reviewed journals. Her research interests include advanced scientific
instrumentation for particle physics experiments and experimental multidis-
ciplinary research.

ANDRES CICUTTIN received the degree in
physics from the National University of La Plata,
Argentina, in 1992, and the Laurea degree in fisica
from the University of Trieste, Italy, in 1993.
He is currently a Technical Assistant with the
Multidisciplinary Laboratory, The Abdus Salam
International Centre for Theoretical Physics, and
an Associate Researcher with the Italian National
Institute for Nuclear Physics (INFN). He has
organized and directed numerous international

workshops on programmable logic devices for scientific instrumentation and
high education.

SERGIO CARRATO received the master’s degree
in electronic engineering and the Ph.D. degree in
signal processing from the University of Trieste,
Trieste, Italy. Then, he was with Ansaldo Com-
ponenti and Sincrotrone Trieste in the field of
electronic instrumentation for applied physics.
He joined the Department of Electronics, Univer-
sity of Trieste, where he is currently an Associate
Professor in electronic devices.

Open Access funding provided by ‘Università degli Studi di Trieste’ within the CRUI CARE Agreement

67706 VOLUME 11, 2023


