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ABSTRACT Uncertainties caused by material variation can significantly impair the characteristics of
devices. Therefore, it is important to design devices whose performance is not significantly damaged
even when material variations occur. Robust optimization seeks for the optimal solutions that are robust
to fluctuations due to uncertainties caused by material variation, geometrical variation due to assembly
tolerances, and changes in physical properties over time in real-world problems. However, naive robust
optimization requires iterative calculations to compute the expected values, which need a huge computational
burden. This paper introduces a novel robust optimization method for magnetic devices using the covariance
matrix adaptation evolution strategy (CMA-ES). In this method, called RCMA-ES (robust CMA-ES), the
expected value of the objective function is evaluated using the local average of neighboring individuals
without increasing the computation cost. For validation, RCM-ES and robust genetic algorithm (RGA), one
of the robust optimization methods without increasing the computational load, was applied to the topology
optimization of a magnetic shield and actuator, considering the uncertainty in the BH characteristics. RCM-
ES was demonstrated to be particularly more effective for topology optimization with a large number of
dimensions compared to RGA and provides robust optimal shapes that are insensitive to variations in BH
characteristics.

INDEX TERMS Actuator, CMA-ES, magnetic hysteresis, magnetic shield, material variation, parameter
optimization, Preisach model, robust optimization, topology optimization.

I. INTRODUCTION
Uncertainties caused by material variation, geometrical vari-
ation due to assembly tolerances, and changes in physical
properties over time can significantly impair the character-
istics of devices and systems [1], [2]. If optimization is
performed without considering such uncertainties, the solu-
tion cannot be robust to fluctuations. Robust optimization
is required to obtain optimal solutions that are robust to
fluctuations due to uncertainties. One naive method for robust
optimization is based on the Monte–Carlo method, in which
the evaluation of an objective function is repeated to obtain
the expected value [3]. Although this method provides a
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solution that is highly robust to variation, it incurs a large
computational cost because the evaluation of the objective
function must be repeated many times. Therefore, robust
optimization methods that do not increase computational
load are required. For the genetic algorithm (GA), one of
the most widely used biology-based metaheuristic optimiza-
tion methods [4], there is an algorithm called robust GA
(RGA), which finds robust solutions without increasing the
computational load [5], [6]. Meanwhile, the search perfor-
mance of the covariance matrix adaptation evolution strategy
(CMA-ES) [7] has been confirmed to outperform GA in
real problems [8], [9]. CMA-ES, as in GA, is one of the
evolutionary algorithms and is classified as a biology-based
metaheuristic method [4]. Moreover, the recommended num-
ber of individuals for CMA-ES only increases proportionally
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TABLE 1. Summary of robust optimization methods.

to log n, where n is the number of optimization variables,
whereas that for GA increases proportionally to n. There-
fore, the former is more advantageous than the latter for
high-dimensional optimization problems. It is, therefore,
expected to be widely used in the future. However, there is no
effective method for obtaining robust solutions using CMA-
ES. In this study, we propose a robust CMA-ES (RCMA-ES),
a method that uses CMA-ES to find robust solutions for
changes in material properties due to manufacturing toler-
ances and environmental changes, as well as for fluctuations
in material properties. A comparison of the proposed method,
RCMA-ES, with other robust optimization methods is shown
in Table 1.
For validation, we solved the design optimization prob-

lems by considering material variation using RCMA-ES.
Because material properties often have uncertainties in real-
world problems, it is important to optimize the device
shape to account for material variation. Design optimization
can be classified into parameter and topology optimiza-
tion. Parameter optimization requires designers to set design
parameters in advance, whereas topology optimization does
not require setting design parameters and can produce novel
shapes.

In this paper, we propose RCMA-ES, which is a robust
optimization method based on CMA-ES, for the design of
magnetic devices. RCMA-ES was applied to the parameter
and topology optimization of the magnetic shield, and topol-
ogy optimization of the actuator was performed, considering
material variations. The effectiveness of RCMA-ES was ver-
ified by comparing the optimization results with those of
CMA-ES, GA, and RGA.

II. OPTIMIZATION METHOD
The nomenclature is summarized in Table 2.

A. RGA
RGA [5], [6] is an extension of GA to robust optimiza-
tion without increasing the computational load. A flowchart
of RGA is shown in Fig. 1. The Instead of varying the
parameter values for each individual to obtain the expected
values, RGA generates a single parameter value according to
a probability distribution, which is then used to evaluate the
individual. Because individuals are generated for each gener-
ation in GA, different variations are made to the parameters of
these individuals for evaluation. This effectively expresses the

TABLE 2. Nomenclature.

FIGURE 1. Flowchart of RGA.

variability in the characteristics due to uncertainty. In other
words, the Monte–Carlo method performs spatial averaging
to obtain the expected characteristic value, whereas RGA
performs time (generation) averaging to obtain the expected
characteristic value.

B. CMA-ES
CMA-ES is an evolutionary algorithm that generates indi-
viduals from a multivariate normal distribution N

(
m, σ 2

s C
)

and uses the evaluated value of those individuals to update
the distribution from which better individuals are generated.
m and C are updated as follows [7]:

m(g+1)
= m(g)

+σscm
λ∑
i=1

wix
(g+1)
i:λ

C(g+1)
= C(g)

+ cµ
λ∑
i=1

wi
(
x(g+1)
i:λ x(g+1)t

i:λ − C(g)
)
, (1)
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FIGURE 2. Flowchart of CMA-ES, method 1 and method 2. Method 2 is
proposed as RCMA-ES.

where xi:λ denotes the ith best individual out of λ individuals.
wi is the weight of each individual, giving greater weight to
superior individuals, such that w1 ≥ w2 ≥ · · · ≥ wλ . The
basic procedure is as follows:

i. Set hyperparameters.
ii. Generate individuals from the normal distribution.
iii. Evaluate the individuals.
iv. Update m and C of the normal distribution.
v. Repeat ii through iv.

A flowchart of CMA-ES is shown in Fig. 2 (a). We con-
sidered two methods to realize robust optimization based on
CMA-ES.

C. METHOD 1
In method 1, the objective function E is evaluated by
adding variation to the variables when evaluating individu-
als, as in RGA, which perturbs an optimization parameter
with a noise generated according to a probability distribu-
tion, which is then used to evaluate the individual. In the

FIGURE 3. Overview of method 2 (RCMA-ES).

final generation, the individuals are evaluated without vari-
ation, and the individual with the best evaluation value is
selected as the result. A flowchart of method 1 is shown
in Fig. 2 (b).

D. RCMA-ES
Simple random variation in the variables in the evalua-
tion of individuals in method 1 could make a negative
impact on the distribution update of CMA-ES. In method
2, considering this fact, robustness is considered during
the individual evaluation of CMA-ES without increasing
the computation cost. It consists of the following proce-
dure to evaluate the pseudo-expected value from neighboring
individuals:

i. Calculate the objective function value for individuals
x(g)i , Ei, by adding variation to the variables, as in
method 1.

ii. As shown in Fig. 3 (a), calculate the distance Dj
between individuals x(g)i and x(g−1)

j at generations g and
g− 1 from

Dj =

∥∥∥x(g−1)
j − x(g)

i

∥∥∥2 (2)

iii. Based on the k-nearest neighbor algorithm, select K
individuals x(g−1)

k , k = 1, ..,Nk , nearest to x(g)
i ,

as shown in Fig. 3 (b).
iv. Compute Eave

i defined by

Eave
i =

1
Nk

Nk∑
k=1

E (g−1)
k , (3)

where E (g−1)
k is the value of objective function for x(g−1)

k .
v. Update the value of the objective function as follows:

E (g)
i = αEi + (1 − α)Eave

i , (4)

where α is satisfying 0 ≤ α ≤ 1.
In the final generation, the individuals are evaluated with-

out variation, and the individual with the best evaluation
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TABLE 3. Computing environment.

TABLE 4. Analysis conditions for test problem 1.

FIGURE 4. Optimization results for test problem 1.

TABLE 5. Analysis conditions for test problem 2.

value is selected as the result. The above process is intended
to evaluate the robustness from the local average of the
neighbors in the previous generation. Because new func-
tion evaluations are not involved, the computing cost can
be kept almost the same as that for the original CMA-ES.
A flowchart of method 2 is shown in Fig. 2 (c). It would
also be possible to perform a similar robustness evalua-
tion using the individuals not in the previous generation
but in the current generation while the present algorithm is
simpler.

FIGURE 5. Optimization results for test problem 2.

E. SIMPLE TEST PROBLEMS
Methods 1 and 2 were applied to the following two simple
test problems [5] to verify their effectiveness:

1) Function fa [5]: It has one broad peak and one steep
peak, and is defined by

fa (x) =


1: −1 ≤ x ≤ 1
2: 1.5 ≤ x ≤ 1.7
0: otherwise,

(5)

where the domain of x was set to −3 ≤ x ≤ 3. When
evaluating the objective function to account for variation,
function fa (x + δ) was evaluated by adding Gaussian noise
δ ∼ N (0, 0.4) to x. In this study, we used the computer
with the configuration shown in Table 3. The optimizations
were performed 10 times each with varying random numbers
for CMA-ES, RGA, and methods 1 and 2, where the same
random seeds were used for each method. Table 4 summa-
rizes the analysis condition. For the crossover and mutation
rates of the RGA, the hyper parameters that lead to the best
results were adopted after trials. The optimization results are
shown in Fig. 4. As shown in Fig. 4 (a), all the solutions of
CMA-ES are at the global optimum (1.5 ≤ x ≤ 1.7, fa = 2).
From Fig. 4 (c), it can be observed that the optimization
results of method 1 have solutions distributed between the
globally optimal solution (1.5 ≤ x ≤ 1.7, fa = 2) and
the robust solution (−1 ≤ x ≤ 1, fa = 1). The poor
performance of this approach can be ascribed to the fact that
simply adding variation during the evaluation of the function
distorted the normal distribution for CMA-ES, resulting in
poor convergence. On the other hand, all solutions of RGA
and method 2 are in the robust-solution region with a wide
range of peaks (−1 ≤ x ≤ 1, fa = 1). Because RGA can
obtain the expected value of individuals by time (generation)
averaging, and method 2 can obtain the expected value from
the local average of the neighboring by previous individuals,
the algorithms converged to a robust solution.
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2) Function fb [5], [10]: It has five peaks in the range
−1 ≤ x ≤ 1, and is defined as

fb =

 e
−2(log 2)

(
x−0.1
0.8

)2
|sin (5πx)|0.5 : 0.4 < x ≤ 0.6

e
−2(log 2)

(
x−0.1
0.8

)2
sin6 (5πx) : otherwise,

(6)

where the domain of x was set to 0 ≤ x ≤ 1. The variation
considered in the robust methods was set to δ ∼ N (0, 0.065).
The optimizations were performed 10 times with varying
random numbers. Table 5 summarizes the analysis condi-
tions. The optimization results are shown in Fig. 5. CMA-ES
has nine solutions at the first peak from the left, which is
the global optimal solution, and one solution at the second
peak from the left. Similarly, method 1 has nine solutions
around the first peak and one solution at the second peak.
Because method 1 considers variation during the evaluation,
the solutions are distributed slightly off the first peak. How-
ever, method 1 has no solution in the third peak from the
left, which is the robust solution. Hence, it is concluded that
method 1 cannot find the robust solution. However, all the
solutions of RGA and method 2 are distributed around the
third peak; therefore, it is concluded that they are effective
for robust optimization, at least for a simple problem. Here,
method 2 uses the pseudo-expected value evaluated from
the neighboring individuals in the previous generation. For
this reason, the solution can slightly deviate from the peak
position as shown in Fig. 5 (d).
From the above discussion, method 2 is referred to

as RCMA-ES which is used in the subsequent design
optimization.

III. MATERIAL MODEL
A. PREISACH MODEL
The Preisach model is used to express the variation in BH
characteristics. It is a hysteresis model that is widely used in
finite element analysis and can express magnetization proper-
ties by adding up basic hysteresis loops. The Preisach model
expressesM as follows [11], [12]:

M =

∫∫
�

K (Hu,Hv)dHudHv +Mmin, (7)

where, � is a triangular domain in the Preisach plane that
satisfies −H s ≤ Hv ≤ Hu ≤ Hs.

B. CONSIDERATION OF MATERIAL VARIATION
In this study, to account for material variation, we assumed
a certain function form for the Preisach distribution function
K (Hu,Hv) in (7) containing three parameters (A, σ1, σ2) as
follows [12], [13]:

K =
A

2πσ1σ2
exp

−

(
Hu−Hv

2

)2
2σ 2

1

−

(
Hu+Hv

2

)2
2σ 2

2

 . (8)

FIGURE 6. Reference initial magnetization curve (original) and 6 initial
magnetization curves generated to account for variation (#1-#6).

FIGURE 7. Optimization model of the magnetic shield (1/4 model).

B is expressed as

B = µ0µ
out
r H +M , (9)

where M is obtained from the Preisach model based on (7).
The BH curves are expressed by identifying the unknown
variables (A, σ1, σ2, and µout

r ) in (8) and (9). In this study,
the values (A, σ1, σ2, µout

r ) = (0.81, 23.44, 24.50, 170.21)
identified in [13] were used as reference values. The BH
curves were generated with variations in the material param-
eters (A, σ1, σ2, andµout

r ). The resulting BH curves are shown
in Fig. 6. Here, the material parameters (A, σ1, σ2, and µout

r )
were generated by a Gaussian distribution with the mean as
the reference value and the standard deviation as 10% of the
reference value.

IV. PARAMETER OPTIMIZATION
A. OPTIMIZATION PROBLEM
We considered the optimization of the two-dimensional mag-
netic shielding system shown in Fig. 7 (a). The aim of this
optimization is to prevent the magnetic flux generated by the
coil from penetrating into the target area with as little mag-
netic material as possible. The magnetic flux was analyzed
by the finite element analysis, where the coil current and coil
turns were set to 10 A and 4000 turns, respectively. The BH
curve of the magnetic material of the analysis object was
calculated using (8) and (9). As shown in Fig. 7 (b), six design
parameters x were set in the design region, and parameter
optimization was performed for the double magnetic-shield
geometry, where x1 + x3 + x5 ≤ 50, x2 + x4 + x6 ≤ 50.
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TABLE 6. Analysis conditions for parameter optimization of magnetic
shield.

We consider the optimization problem to minimize Smag
while maintaining BTave below Bref, which is set to 0.16 mT as
an example, which corresponds to 0.145% of BTave when the
design region is air. The optimization problem is expressed
as follows:

F =
1

Sallmag
Smag → min., sub.to BTave ≤ Bref, (10)

Introducing the constraint as a penalty term P, we define the
objective function E as follows:

E = F + P → min.

P =

W1

∣∣∣∣BTave − Bref
Bref

∣∣∣∣+W2, if BTave > Bref

0, else,
(11)

whereW1 andW2 were both set to 1 in the following numer-
ical examples.

B. OPTIMIZATION RESULTS
By solving (11) using CMA-ES, RCMA-ES, GA, and RGA,
we optimized the design parameter x, where the material
model presented in Section III was used. Table 6 summarizes
the corresponding analysis conditions. The optimizations
were performed for five times each with different random
numbers, and the results with the smallest objective func-
tion E are adopted. The optimization results are shown in
Fig. 8. Compared to CMA-ES, the inner shield obtained using
RCMA-ES is thicker in the x-axis direction. In addition, the
outer shield obtained using RGA is thicker in the x-axis direc-
tion than that of GA. We can also find that since there is no
change in the base structure (double shield structure) in this
parameter optimization, there are no significant changes in
themagnetic flux density distribution andmagnetic flux lines.
The objective function E is better for the normal methods,
CMA-ES and GA, than for the robust methods, RCMA-ES
and RGA.

For the optimized shapes shown in Fig. 8, finite element
analysis was performed 500 times by varying the material
parameters, where the same random seeds were used for each
method. The results are summarized in Table 7. RCMA-ES
and RGA yielded robust solutions with a smaller mean and
deviation than those obtained using CMA-ES and GA. The
densities of E are plotted in Fig. 9 (a). It can be seen that
the distributions for RCMA-ES and RGA are more sharply
peaked in the small E region compared to CMA-ES and GA.

FIGURE 8. Optimized shapes of magnetic shield (parameter
optimization).

TABLE 7. Verification of variability of objective function E .

FIGURE 9. Density plots for magnetic shield (parameter optimization).

Furthermore, the densities ofBTave are plotted in Fig. 9 (b). The
optimal solutions obtained using RCMA-ES and RGA have
higher possibilities of satisfying the constraints than those
of CMA-ES and GA. The optimized shapes for RGA and
RCMA-ES are more robust owing to the thicker magnetic
shields.

From the above discussion, we conclude that RGA and
RCMA-ES provide robust solutions to material variability
fluctuations in parameter optimization without increasing
the computational load. In parameter optimization, the num-
ber of variables is relatively small, which allows sufficient
generations for convergence. In contrast, topology optimiza-
tion usually has a greater number of optimization variables.
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FIGURE 10. Contours of Gaussian functions.

TABLE 8. Analysis conditions for topology optimization of magnetic
shield.

The performance of these methods is discussed in the next
section.

V. TOPOLOGY OPTIMIZATION
A. FORMULATION
Next, we considered applying RCMA-ES to topology opti-
mization, where we used the NGnet on–off method [14].
In thismethod, the physical properties of the design region are
determined from the output of the following shape function:

y (p, x) =

NG∑
i=1

xibi(p), bi (p) = Gi (p) /

NG∑
j=1

Gj(p), (12)

Moreover, Gj (p) is the Gaussian functions given by

Gi (p) =
1

2πσG
exp

(
−

∣∣p− pi
∣∣2

2σ 2
G

)
(13)

where pi is the center of the ith Gaussian function. The
material attribute of element e is assumed to be magnetic
(air) if y

(
pe, x

)
≥ 0 (< 0), where pe is the position vec-

tor of the center of e. Topology optimization is reduced
to parameter optimization with respect to x in (12). This
topology-optimization method has been shown to be effective
for the design of electric motors [15], [16], [17] and wireless
power-transfer devices [18].

B. OPTIMIZATION RESULTS FOR MAGNETIC SHIELD
The magnetic-shield-design optimization problem discussed
in Section IV was solved using topology optimization,
where 96 Gaussian functions were placed in the design
region, as shown in Fig. 10, where σG was set to 7 mm.
Topology optimization of the magnetic shape was performed

FIGURE 11. Optimized shapes of magnetic shield (topology
optimization).

TABLE 9. Verification of variability of objective function E .

by solving (11) using CMA-ES, RCMA-ES, GA, and RGA
to determine the value of the weighting parameter x in (12).
Table 8 summarizes the analysis conditions. The optimiza-
tions were performed five times each with different random
numbers, and the results with the smallest objective func-
tion E were adopted. The optimization results are shown
in Fig. 11. The optimized result of CMA-ES has two sep-
arated thin shields. The optimized shape corresponding to
RCMA-ES has a thicker shield than that to CMA-ES, and
the inner and outer shields are connected at the bottom. This
geometry is thought to mitigate magnetic saturation owing
to the connection at the bottom. The objective function E is
the best for CMA-ES, suggesting that the optimized shape
obtained using CMA-ES is the best if the material variation
is not considered. The objective-function value in Fig. 11 (a)
is smaller than that in Fig. 8 (a), indicating that topology
optimization allowed us to find better shapes that could not
be obtained using parameter optimization.

Next, the robustness of the optimized shapes against mate-
rial variation was verified. For the optimized shapes shown in
Fig. 11, finite element analysis was performed 500 times by
varying the material parameters. The results are summarized
in Table 9. As shown in Table 9, RCMA-ES is a robust
solution with smaller mean and deviation values than those
obtained using the other methods. Note that RGA did not
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FIGURE 12. Density plots for magnetic shield (topology optimization).

FIGURE 13. Optimization model of the actuator (1/2 model).

yield a robust solution because of the large values of the
mean and standard deviation. The densities of E are plot-
ted in Fig. 12 (a). It can be observed that the distribution
corresponding to RCMA-ES has the sharpest peak in the
small E region, whereas the distribution of CMA-ES has the
lowest. This is because CMA-ES converges to the solution
that has the lowest value for E but is highly sensitive to
the material variation. The densities of BTave are plotted in
Fig. 12 (b). Although the peaks of all methods in Fig. 12 (b)
are close to 0.16 mT, RCMA-ES satisfies the constraints in
a wider domain than the other methods because the distri-
bution of RCMA-ES has less variance and is less affected
by the variations in material properties. The optimized shape
corresponding to RCMA-ES is more robust to the material
variation because the magnetic material area is slightly larger.

It is concluded that the proposed method, RCMA-ES,
provides robust solutions for topology optimization without
increasing the computational load, whereas the RGA is inef-
fective for this problem. Because topology optimization has
a large number of variables, RGA could not have a sufficient

TABLE 10. Analysis conditions for topology optimization of actuator.

number of generations for the number of individuals, and
thus, could not obtain the expected value of individuals by
time (generation) averaging. RCMA-ES could provide the
pseudo-expected values evaluated from the neighboring indi-
viduals in the previous generation, and thus, could obtain the
robust optimal structure.

C. OPTIMIZATION PROBLEM FOR ACTUATOR
Next, we considered the topology optimization problem for
the actuator [19] shown in Fig. 13 (a), where 181 Gaussian
functions were placed in the design region, as shown in
Fig. 13 (b), where σG was set to 1 mm. This problem aimed
to maximize the magnetic energy in the air gap using as small
amount of magnetic material as possible. We consider the
optimization problem for minimizing Smag while maintaining
BTave, which is related to themagnitude of themagnetic energy
in the gap, greater than Bref, where Bref is set to 80 mT which
corresponds to 187 times larger than the initial-shape BTave.
The optimization problem is expressed as follows:

E =
1

Sallmag
Smag + P → min.

P =

W1

∣∣∣∣BTave − Bref
Bref

∣∣∣∣+W2, if BTave < Bref,

0, else,
(14)

whereW1 andW2 were set to 50 and 1, respectively. Further-
more, the coil current and coil turns were set to 0.8 A and
200 turns, respectively.

D. OPTIMIZATION RESULTS FOR ACTUATOR
Topology optimization of the magnetic shape was performed
by solving (14) using CMA-ES, RCMA-ES, GA, and RGA
to determine the value of the weighting parameter x in (12).
Table 10 summarizes the analysis conditions. The optimiza-
tions were performed five times each with different random
numbers, and the results with the smallest objective func-
tion E were adopted. The optimization results are shown
in Fig. 14. The optimized shape corresponding to CMA-ES
has the magnetic material extending from the coil to the
target region, forming a fan shape to cover the gap, which
makes the magnetic field in the gap uniform. In addition,
the optimized shape obtained using RCMA-ES is thicker
than that obtained using CMA-ES. In Fig. 14 (c), the opti-
mized shape corresponding to GA has the region of air at
the bottom of the magnetic material. Because this problem
contains 181 variables which is large for GA, falling into a
local solution as in this case might happen by chance.
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FIGURE 14. Optimized shapes of actuator (topology optimization).

TABLE 11. Verification of variability of objective function E .

FIGURE 15. Density plots for actuator (topology optimization).

For the optimized shapes shown in Fig. 14, finite element
analysis was performed 500 times with varying material
parameters. The results are summarized in Table 11, and the
densities of E are plotted in Fig. 15 (a). As in the case of the
magnetic shield, RCMA-ES provides a robust solution with
smaller mean and deviation magnitudes than those obtained
using the other methods. The densities of BTave are plotted in
Fig. 15 (b). RCMA-ES satisfies the constraints in a wider
domain compared with the other methods.

In summary, RCMA-ES provides a robust solution for
actuator topology optimization with material variation,
without increasing the computational load.

VI. CONCLUSION AND FUTURE RESEARCH
In this study, we proposed a robust design method for mag-
netic devices. In this method, we evaluated the expected value
of the objective function without increasing the computation
cost using the local average of neighboring individuals.
We demonstrated that robust optimal structures for mag-
netic devices can be achieved using the proposed method.

We compared the performance of RCMA-ES with those of
GA, RGA, and CMA-ES for the parameter and topology opti-
mization of the magnetic shield and topology optimization
of the magnetic actuator. The conclusions of this study are
summarized as follows:
(a) RCMA-ES is effective especially for topology opti-

mization with a large number of variables to obtain
a device shape whose performance is robust against
possible changes in material property.

(b) Simple extension of CMA-ES adopted in method 1,
where variables are randomly variated as in RGA to
consider the robustness in method 1, does not work
well.

(c) RCMA-ES is more effective than RGA for large
optimization problems.

(d) Although the robustness for the solutions obtained by
RCMA-ES might be slightly compromised in compar-
ison with those obtained by the naïve robust optimiza-
tion method based on Monte–Carlo, the former works
much faster than the latter.

In the future, we will take into account the effects of
other variations, such as geometrical variations caused in
the manufacturing processes. The geometrical variation can
be considered by adding noise to the design parameters for
parameter optimization or to the weighting coefficients to the
Gaussian functions for TO using the NGnet on-off method.
One of the limitations of the proposed method is that, due
to the stochastic nature of the method, there is no guarantee
that the optimized device can maintain the required prop-
erty under the uncertainties. This needs to be verified, e.g.,
by Monte Carlo simulation after optimization.
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