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ABSTRACT Our proposed ranking model ranks conversation partners based on self-reported rapport levels
for each participant. The model is important for tasks that recommend interaction partners based on user
rapport built in past interactions, such as matchmaking between a student and a teacher in one-to-one
online language classes. To rank conversation partners, we can use a regression model that predicts rapport
ratings. It is, however, challenging to learn the mapping from the participants’ behavior to their associated
rapport ratings because a subjective scale for rapport ratings may vary across different participants. Hence,
we propose a ranking model trained via preference learning (PL). The model avoids the subjective scale bias
because the model is trained to predict ordinal relations between two conversation partners based on rapport
ratings reported by the same participant. The input of the model is multimodal (acoustic and linguistic)
features extracted from two participants’ behaviors in an interaction. Since there is no publicly available
dataset for validating the ranking model, we created a new dataset composed of online dyadic (person-
to-person) interactions between a participant and several different conversation partners. We compare the
ranking model trained via preference learning with the regression model by using evaluation metrics for
the ranking. The experimental results show that preference learning is a more suitable approach for ranking
conversation partners. Furthermore, we investigate the effect of each modality and the different stages of
rapport development on the ranking performance.

INDEX TERMS Affective state, dyadic interaction, multimodal signal processing, preference learning,
ranking model, rapport.

I. INTRODUCTION
The term rapport can be defined as a feeling of connection
and harmony with someone else [1]. Building rapport plays
an essential role in cultivating good relations with other
people. Previous studies have shown that a high level of
rapport improves learning gain in peer tutoring [2] and leads
to successful negotiations [3]. Much research in recent years
has focused on automatically measuring rapport levels from
social signals in human-human [4] and human-agent interac-
tions [5]. These rapport estimators can be applied to analyzing
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interpersonal relationships in interactions and to developing
socially aware conversational agents. Matsuyama et al. [6],
for example, proposed a robot assistant that can gener-
ate socially aware behavior due to an incorporated rapport
estimator.

We address the novel task of RAnking COnversation
Partners based on self-reported rapport levels (RACOP).
Many applications in rapport recognition can be formulated
as ranking conversation partners. In one-to-one online lan-
guage lesson services, for example, the evaluation of teachers
can be based on user rapport built in past lessons; this
is an important application area for RACOP. In these ser-
vices, a user is automatically assigned a teacher available
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at the requested time. To recommend a teacher, service
providers can use an ordered list of teachers created from
a user’s past lessons. RACOP is important for other appli-
cations, such as for the evaluation of virtual agents with
various personalities and for matchmaking in an online game
where a player communicates with other players via voice
chat.

To rank conversation partners based on self-reported rap-
port levels, we can use a regression model for directly
predicting rapport ratings. However, there are two concerns
with this approach. One concern is that it is challenging
to learn the mapping from participants’ behavior to rapport
ratings because regression models learn biases arising from
individual differences in rapport ratings. The second concern
is that the predicted rapport scores do not always corre-
spond to the order of ground-truth rapport scores because
regression does not learn ordinal relations. Martínez et al. [7]
noted that regression for predicting affect ratings should
be avoided because this approach introduces two biases—
nonlinear scale and subjectivity of ratings. As with affect
ratings, the difference between each point of rapport ratings
may not be uniform (nonlinear scale); the evaluation criteria
of the rapport ratings may vary across different participants
(subjectivity of ratings).

Preference learning (PL) is an attractive alternative frame-
work for avoiding two concerns and developing reliable and
valid models. Therefore, we propose a deep learning model
trained via PL for RACOP. The input of the model is multi-
modal (acoustic and linguistic) features extracted from two
participants’ behaviors in an interaction. The PL model is a
more suitable approach for RACOP than regression because
the PL model is directly trained to predict ordinal relations
between two conversation partners based on rapport ratings
reported by the same participants. Furthermore, transform-
ing rapport ratings into ordinal relations avoids the bias of
different subjective scales across participants because each
participant has consistent evaluation criteria to some extent.
In addition, the PL model is not affected by the nonlinear
scale bias because the model does not directly use scalar
values of rapport ratings.

Previous studies in affective computing [8], [9] showed that
ranking models trained via PL have considerable advantages
over regression models. In these studies, they constructed
models that rank samples according to levels of emotional
attributes; however, no studies have included the application
of PL to a rapport recognition model.

Since there was no suitable dataset for evaluating RACOP,
we collected online dyadic (person-to-person) interactions
between a participant and several different conversation part-
ners. To analyze the effect of the various stages of rapport
development on ranking performance, we recorded three
interactions for each pair of participants based on various top-
ics: 1) self-introductions, 2) introduction of positive and neg-
ative experiences, and 3) introduction of self-shortcomings.
After every interaction, participants reported rapport ratings
for their conversation partner.

The main contributions of this paper are as follows:

1) To our knowledge, this is the first study to address
ranking conversation partners based on rapport levels.

2) We create a dataset composed of interactions between
a participant and several different conversation partners
with self-reported rapport ratings.

3) We propose a ranking model to rank conversation part-
ners trained via preference learning. Then, we show
that preference learning is a more suitable approach
than regression for RACOP.

4) To understand RACOPmore thoroughly, we clarify the
effect of eachmodality and the various stages of rapport
development on ranking performance.

Section II presents a survey of the works related to our
study. Section III introduces our dataset and annotation meth-
ods. Section IV presents the methodology to address RACOP.
Section V describes our comparison method and experimen-
tal settings. Section VI shows the experimental results, and
we discuss them.

II. RELATED WORKS
First, we introduce the research related to analyzing and
to predicting rapport in interactions (Section II-A). Then,
we introduce the works that address annotation methods for
affective states and appropriate processing of the annotations
(Section II-B).

A. RAPPORT
In social psychology, rapport is considered to play an essen-
tial role in building good relationships with a conversation
partner. Early studies focused on illuminating nonverbal
cues that indicate rapport. Tickle-Degnen and Rosenthal [10]
investigated nonverbal behavior that correlated with rapport.
They also described rapport in terms of three compo-
nents: mutual attentiveness, positivity, and coordination.
Bernieri et al. [11] analyzed observable cues of rapport in two
contexts—adversarial and cooperative. Furthermore, Grahe
and Bernieri [12] showed that observers who accessed non-
verbal information evaluated rapport more accurately than
observers who accessed verbal information.

Much research in recent years has focused on auto-
matically measuring rapport levels from social signals in
human–human and human–agent interactions. Visual infor-
mation such as posture [4] and facial expressions [13]
are commonly used for predicting rapport. Furthermore,
Cerekovic et al. [5] used verbal and nonverbal cues to mea-
sure user rapport in human-agent interactions. Müller et al.
[14] proposed a model to detect low rapport in group inter-
actions. Sinha and Cassel [2] showed that high rapport with
a student improves learning gains in peer tutoring. Previ-
ous studies [15], [16], therefore, addressed the automatic
prediction of rapport in peer tutoring. Raphalen et al. [17]
also constructed a computational framework for identify-
ing hedges that are important for managing rapport in peer
tutoring.
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Attractive applications for the use of rapport estimators
are socially aware conversational agents and recommenda-
tion systems. Previous studies [1], [18] developed virtual
agents that promote a sense of rapport with a human speaker.
Furthermore, Matsuyama et al. [6] proposed a socially aware
robot assistant (SARA) to achieve both a task goal (recom-
mending information) and a social goal (building rapport).
SARA can generate socially aware behavior due to an incor-
porated rapport estimator. Abulimiti et al. [19] hypothesized
that off-task episodes raised rapport levels in peer tutoring.
They, therefore, proposed a planning model that allows a
virtual agent to generate off-task episodes according to user
rapport levels.

B. AFFECTIVE COMPUTING AND PREFERENCE LEARNING
To capture participants’ affective states, choosing an appro-
priate measurement is a key problem in affective computing.
An interval and an ordinal scale are often used to measure
levels of affective states. A popular tool for measuring the
interval scale is the FeelTrace software [20]; popular tools
for measuring the ordinal scale are the Likert scale question-
naire [21] and the Self-Assessment Manikin [22].

To automatically recognize the affective state reported by
these tools, many researchers have developed models to pre-
dict an intensity or a class via the regression/classification
framework. This approach, however, is problematic. The
regression model to predict affect ratings is unreliable
because the evaluation criteria of the annotation may vary
across different people [7]. In the previous studies [23], [24],
they noted that the self-reported affective evaluation process
is biased due to the factors of the environment, personal
experience, and individual perception. Furthermore, the ordi-
nal scale (e.g., Likert scale) is often treated as the ratio
scale for regression; however, Martínez et al. [7] discussed
that the implicit transformation from the ordinal scale to
the ratio scale introduces a nonlinear scale bias. Consider-
ing the 5-point Likert scale questionnaire, affect ratings are
not linear because the difference between each point may
not be uniform. For the above reasons, it is challenging to
learn the mapping from the participants’ behavior to their
affect ratings. The transformation from affect ratings to class
may mitigate the subjective and the nonlinear scale bias, but
Martínez et al. [7] also discussed that this practice adds a
new type of bias due to the class splitting criteria. As these
studies show, it is questionable whether the regression and
classification framework is a suitable method for predicting
affective states.

Preference learning (PL) is an appealing alternative frame-
work for developing reliable and valid models in affective
computing [25]. PL models are trained to predict the prefer-
ence among paired samples with ordinal labels. Given two
samples (sA and sB), the ordinal labels are represented as
follows: sA≻sB or sA≺sB. The symbols ‘‘≺’’/‘‘≻’’ express the
preceding/succeeding order of the samples. The PL model is
not affected by the nonlinear scale bias because the model

TABLE 1. Dataset summary.

does not directly use scalar values of levels of affective states.
Furthermore, when levels of affective states are transformed
into ordinal relations for each participant, the bias of differ-
ent subjective scales across participants is avoided because
each participant has consistent evaluation criteria to some
extent.

There are two approaches to collecting ordinal labels:
direct and indirect [25]. The direct approach is that anno-
tators are asked to report their preference between paired
samples. This approach has been applied to many tasks in
affective computing, such as music [26], sound [27], and
facial expression [28]. The indirect approach is that levels of
affective states (reported by the interval or the ordinal scale)
are transformed into ordinal labels. This approach has also
been applied inmany studies [8], [9], [29]; then, rankingmod-
els were trained via preference learning. Previous studies [8],
[9] showed that ranking models via preference learning have
significant advantages over conventional regression models.
Martínez et al. [7] also indicated that transforming affect
ratings into ordinal labels leads to more generalized mod-
els when compared to transforming the same ratings into a
class. Furthermore, Zoumpourlis and Patras [30] showed that
incorporating an auxiliary task of ordinal ranking leads to
consistent performance gains for the regression and classi-
fication tasks.

Inspired by studies in preference learning for affective
computing, we apply the PL framework to the model for
rapport recognition. Rapport ratings are affected by the sub-
jective scale bias as well as affect ratings. Nevertheless,
no studies have attempted to explore preference learning in
rapport recognition. We transform rapport ratings to ordinal
labels for each participant and develop a PL model to predict
the preference between two conversation partners.

III. A DATASET FOR DYAD INTERACTIONS
Since there was no suitable public dataset for evaluating
RACOP, we created a new dataset composed of online dyad
interactions with rapport ratings. The unique point of this
dataset is that we recorded dyad interactions between a
participant and several different conversation partners. Our
dataset consists of 288 interactions in Japanese. Each inter-
action lasted approximately 20 minutes, resulting in a total
of more than 96 hours. Table 1 summarizes the statistics of
our dataset. Since the dataset collected in this study contains
self-disclosure regarding the personal information of the par-
ticipants, we do not make the dataset public.

73026 VOLUME 11, 2023



T. Hayashi et al.: Ranking Model for Evaluation of Conversation Partners

A. INTERACTION SETTING
We recruited 69 Japanese-speaking participants (35 male,
34 female) through a recruitment agency. Participants were
divided into two categories according to recruitmentmethods.
Participants in the first category took part in the experiment
with three friends, and the number of these participants was
32 (16 male, 16 female); participants in the second category
took part in the experiment alone, and the number of these
participants was 37 (19 male, 18 female). The purpose of
recruiting according to two methods is not relevant to the
current work and is not discussed further.

Each participant in the first category was combined with
participants in the second category randomly to form a
same-gender pair of participants, resulting in a total of
96 pairs. We ensured that pairs of participants did not know
each other prior to the recording. Every participant in the first
category communicated with only three conversation part-
ners. The number of partners for participants in the second
category depended on the specific person and ranged from
one to six.

They communicated with each other in different rooms
through the video communication system. The data record-
ing took place in a quiet room equipped with a camera
and a microphone. They were able to recognize their part-
ners’ facial expressions and voices through a display and
an earphone. During the recording, we placed the cam-
era to show a participant’s entire face. Some visual-based
social signals—gestures and postures—are less easily con-
veyed to a conversation partner in online interactions than
in face-to-face interactions; however, it is worth measuring
rapport levels in online interactions because the frequency
of usage of video communication tools has increased during
the COVID-19 pandemic. All participants provided written
informed consent to participate, and the study was reviewed
and approved by the Research Ethics Committee of the NTT
Corporation.

B. CONVERSATION TOPICS AND SELF-DISCLOSURE
Tickle-Degnen and Rosenthal [10] suggested that the impor-
tance of three behavioral components—mutual attentiveness,
positivity, and coordination—for building rapport differs
according to the stage of rapport development, for example,
the first meeting or not. To investigate relationships between
the stage of rapport development and ranking performance,
we recorded three interactions based on various topics for
each pair of participants.

We selected three topics—a self-introduction, an introduc-
tion of positive and negative experiences, and an introduction
of self-shortcomings—to help pairs of participants develop
interpersonal relationships through self-disclosure. Essen-
tial to developing interpersonal relationships is breadth, the
variety of the topics discussed and depth, the degree of
intimacy that guides these interactions [31]. In the early
stages of a relationship, people share superficial information
such as self-introductions. As the relationship progresses,

people share more intimate information, such as thoughts
and emotions [32]. Sharing self-shortcomings is a particularly
intimate topic because of the fear of their partners’ negative
appraisal [33].

In the first interaction, both participants introduced them-
selves and discussed subjects such as how they liked to spend
their days off, their favorite foods, and their favorite artists.
In the second interaction, they told each other stories about
happy and sad moments in their life. In the last interaction,
they spoke about their personal shortcomings. Each inter-
action lasted 20 minutes, and there were a few minutes of
break time between interactions. To enhance interactions,
we instructed them to not only listen but also to actively react
and to ask questions while their conversation partners spoke.

C. SELF-REPORTED ANNOTATIONS
We instructed them to complete a questionnaire with
18 items after every interaction. The questionnaire was
proposed by Bernieri et al. [11] to measure participants’ rap-
port levels for their conversation partners. Translations of
18 items for Japanese speakers were created in a previ-
ous study, and its reliability is sufficient (α = 0.92) [34].
The 18 items are ‘‘well-coordinated’’, ‘‘boring’’, ‘‘coop-
erative’’, ‘‘harmonious’’, ‘‘unsatisfying’’, ‘‘uncomfortably
paced’’, ‘‘cold’’, ‘‘awkward’’, ‘‘engrossing’’, ‘‘unfocused’’,
‘‘involving’’, ‘‘intense’’, ‘‘unfriendly’’, ‘‘active’’, ‘‘positive’’,
‘‘dull’’, ‘‘worthwhile’’, and ‘‘slow’’. They rated each item on
an 8-point Likert scale as in the original study [11]. A value
of 1 corresponds to ‘‘strongly disagree’’, and a value of
8 corresponds to ‘‘strongly agree’’. We summed the values of
18 items after the values of negative questions were reversed.
We defined a rapport score as the total score.

The Pearson correlation coefficient between rapport scores
of participants in the first and the second category is 0.25.
This value indicates a weak positive correlation among pairs
of participants.

The mean values of rapport scores increase as the number
of interactions increases. The mean value of the first topic
is 108.60 (SD = 20.81), the second topic is 114.03 (SD =
19.80), and the last topic is 118.38 (SD = 20.45). Post hoc
comparisons using the t test with Bonferroni correction were
conducted to examine the statistical significance in the mean
values of rapport scores between three topics (significance
level is p < 0.001). The mean value of the first topic is
significantly different than the mean value of the second topic
(t = 7.41, p = 0.00, df = 191). The mean value of the second
topic is also significantly different than the mean value of the
last topic (t = 5.21, p = 0.00, df = 191).

We assume that there are two reasons for the results. One
is that the total interaction time of the pair of participants
increased as the number of interactions increased. Partici-
pants show an increased liking for their conversation partners
as they are exposed to their partners more. This phenomenon
is called the mere-exposure effect [35]. Another reason is
that they were required to reveal intimate information about
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FIGURE 1. An overview of our proposed method. During the training stage, output values of the preference learning
(PL) models are used for calculating a pairwise ranking loss (PRL). During the testing stage, we rank conversation
partners according to the output values.

themselves as the number of interactions increased. A previ-
ous study [36] demonstrated that self-disclosure contributes
to building rapport. However, not all participants benefited
from the three topics because there are individual differences
in the extent to which self-disclosure contributes to rapport
building [37].

IV. METHODOLOGY
In this study, we develop models that rank conversation part-
ners based on self-reported rapport levels. This problem can
be formulated as pairwise comparisons between two conver-
sation partners via the preference learning (PL) framework.
We use a PL algorithm inspired by RankNet [38] and multi-
modal (acoustic and linguistic) features for the model’s input.
Figure 1 presents an overview of our proposed method.

We first propose a problem definition (Section IV-A).
We then describe a loss function and a model architecture
(Section IV-B). Finally, we explain the details of the multi-
modal features used in this study (Section IV-C).

A. PROBLEM DEFINITION
We define a target user as a participant who gives rapport
ratings to their partner; we define a conversation partner as
a participant for whom the target user gives rapport ratings.
In the dyad interaction, rapport ratings are bidirectional;
accordingly, if we regard one participant as the target user,
we regard the other participant as the conversation partner and
vice versa.
C = [c1, c2, · · · , cn] is defined as the list of conversation

partners, where ci is the i-th partner of a target user, and n
is the number of their partners. Because the list C is created
individually for each target user and each topic (see Section
IV-B), all data D can be denoted as

D = {Cjk | j = 1, 2, · · · ,m, k = 1, 2, 3}, (1)

where j and k are the j-th target user and the k-th topic, respec-
tively. Let m be the number of target users. For conciseness
of notation, we omit jk in Cjk in the following section.

Each list C is associated with a list of features X =

[x1, x2, · · · , xn] and a list of scores Y = [y1, y2, · · · , yn].
Features xi are created from the target user’s features xuseri
and their partner’s features xpartneri in an interaction; therefore,
xi = (xuseri , xpartneri ). The score yi is defined as the rapport
score that a target user gives to their i-th partner.
In this study, we develop ranking models that rank con-

versation partners for each list C in the order of the rapport
scores. The training set T is constructed as follows: if two
samples cA and cB are chosen from the same list C , then a
paired sample ((xA, yA), (xB, yB)) is added to T . An ordinal
label (cA≻cB or cA≺cB) is determined according to ordinal
relations among yA and yB. During the training stage, the PL
model learns the mapping from the participants’ behavior in
each interaction (xA and xB) to the ordinal labels.

B. PREFERENCE LEARNING
1) PAIRWISE RANKING LOSS FUNCTION (PRL)
We use a pairwise ranking loss function proposed by Burges
et al. [38]. We consider a model f that maps the feature vector
x to the real value f (x). Given two samples cA and cB, the
probability that cA is preferred over cB is given by PAB:

PAB =
exp(oAB)

1+exp(oAB)
, (2)

where oAB = f (xA) − f (xB). During the training stage, the
target probability P̄AB is set according to the ordinal labels
between two samples. P̄AB = 0 implies that cB is preferred
over cA; P̄AB = 1 implies that cA is preferred over cB. We use
the cross-entropy loss function LAB:

LAB = −P̄AB logPAB −
(
1 − P̄AB

)
log (1 − PAB) . (3)

The loss is backpropagated to the network parameters.
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FIGURE 2. An architecture of our proposed model. Our PL model
consisted of unidirectional long short-term memory (LSTM) networks and
feedforward neural networks (FNN). The input of the LSTM is
multimodal—linguistic and acoustic—features extracted for each
utterance in an interaction.

2) MODEL ARCHITECTURE
Our PL model consists of unidirectional long short-term
memory (LSTM) networks and feedforward neural networks
(FNNs). Figure 2 illustrates the overview of the model
architecture. To model the sequence of multimodal features,
we used two-layer LSTM networks separately for two partic-
ipants in an interaction. In this study, we used the early fusion
method. Unimodal feature vectors (linguistic: 768 dim.,
acoustic: 88 dim.) were extracted from the participant’s t-
th utterances; then, these vectors were concatenated into a
multimodal feature vector ut (856 dim.). The inputs of the
LSTM networks were

xuser =
[
uuser1 ,uuser2 , · · · ,uuserT

]
, (4)

xpartner =

[
upartner1 ,upartner2 , · · · ,upartnerT ′

]
, (5)

where T is the number of users’ utterances and T ′ is the
number of their partner’s utterances in an interaction.We used
the output vector corresponding to the last utterance as the
embedding vector. The target user’s embedding vector huser

and the conversation partner’s embedding vector hpartner were
concatenated into the embedding vector h.

huser = LSTM
(
xuser

)
, (6)

hpartner = LSTM
(
xpartner

)
, (7)

h = huserT ⊕ hpartnerT ′ . (8)

To map the vector h to the output value fFNN(h), we used a
two-layer FNN:

fFNN (h) = FNN (h) . (9)

We represent equations (6)-(9) as one function f (x).
During the training stage, this output value was used for

calculating the loss (see IV-B). During the testing stage,
we considered that f (xA) > f (xB) implies cA≻cB; therefore,
if f (xA) > f (xB) > f (xC ), then the predicted global order list
is cA≻cB≻cC .

C. FEATURE EXTRACTION
1) ACOUSTIC FEATURES
We used OpenSMILE [39] software to extract acoustic fea-
tures from each utterance. The acoustic features correspond
to eGeMAPS [40], the de facto standard preset in speech
emotion recognition. The preset contains 88 parameters, such
as pitch and loudness. The acoustic features were extracted
from each utterance and normalized for each person using z
score normalization.

2) LINGUISTIC FEATURES
BERT [41] is a language representation model that achieves
state-of-the-art performance on many natural language pro-
cessing tasks. Recent studies have shown that BERT is also
helpful in emotion recognition in conversation [42], [43].
A model pretrained on only Japanese text was applied in this
study; the Japanese-BERT was developed at Tohoku Uni-
versity.1 The participants’ utterances were transcribed into
text data by an automatic speech recognition system; then,
we used the Japanese-BERT to extract features from each
utterance. We used the output vector corresponding to the
first token (the [CLS] token) as utterance features. This output
vector is 768-dimensional.

V. EXPERIMENTAL SETTINGS
A. COMPARISON MODEL (REGRESSION)
To compare the results with the ranking performance of the
preference learning (PL) model, we developed a regression
model built with neural networks. The architecture of the
regression model was the same as the PL model, and the
regression model also consisted of two-layer LSTM networks
and two-layer FNN. The regression model, however, predicts
the exact values of the rapport score for each interaction.
We used the mean squared error (MSE) as the loss function
in the regression. During the testing stage, we ranked conver-
sation partners for each target user in the order of predicted
rapport scores because predicted rapport scores of an ideal
regression model correspond to the order of ground-truth
rapport scores.

B. HYPERPARAMETER SETTINGS
For PL and regression, we set the batch size as 32 and the
number of epochs as 30 without early stopping. We also

1https://github.com/cl-tohoku/bert-japanese
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FIGURE 3. Ranking the performance of PL models (orange marker, right y-axis) and No. of paired samples (green, left y-axis) for various margin
thresholds (x-axis). The dotted lines indicate the performance of the unimodal model trained on acoustic features (A); it is the best regression model
among the regression models (see lines 6-8 of Table 2).

used the Adam optimizer. Hyperparameter optimization was
performed via Optuna; Optuna is an automatic hyperparam-
eter optimization software framework [44]. The number of
trials for searching a combination of hyperparameters was
10. We defined the range of possible values as follows:
the learning rate = [5e−5, 1e−5, 5e−6], the drop rate =

[0, 0.1, 0.3], and the number of hidden units (LSTM first-
layer, LSTM second-layer, FNN first-layer, FNN second-
layer) = [128, 256, 516].

C. EVALUATION METRIC
To evaluate ranking performance, we calculated Kendall’s
tau correlation coefficient (KTCC), the accuracy at the
highest-rapport conversation partner (A@H), and the accu-
racy at the lowest-rapport conversation partner (A@L).
KTCC measures the correlation between the predicted
ordered list and the ground-truth ordered list. A@Hmeasures
the accuracy of retrieving the highest-rapport conversation
partner in the ground-truth ordered list, and A@L measures
the accuracy of retrieving the lowest-rapport conversation
partner.

D. EVALUATION PROCEDURE
We evaluated models by a double cross-validation approach.
As the outer fold, we used leave-one-person-out cross-
validation (LOPOCV); as the inner fold, we used hold-out
validation. LOPOCV and hold-out validation ensure that all
interactions that were engaged in by a target user or their con-
versation partners in the testing (validation) set were excluded
from the training set. In hold-out validation, we randomly
chose two participants—male and female—as target users
from the training set, and we used their interactions as the
validation set for hyperparameter optimization. Fixed seed
values determined the combination of a target user for the
testing set and target users for the validation set. The combi-
nation was the same throughout a series of experiments. The

reason we used not cross-validation but hold-out validation
as the inner fold was to reduce computational cost.

Nineteen out of 69 participants communicated with two
or fewer conversation partners. We did not consider them
as the target user because short, ordered lists cause ranking
performance for the models to be overestimated or underesti-
mated. Three lists (three topics) were created from each fold
(50 target users), resulting in 150 (50 × 3) lists. We reported
the average ranking performance of 50 folds to evaluate the
generalization performance for the models.

For PL, we used the accuracy of pairwise comparison (AP)
as the evaluation metric for hyperparameter optimization.
AP is the accuracy for binary classification of ordinal labels
(cA≻cB or cA≺cB). The reason we used AP rather than rank-
ing metrics is described in Section V-E.

For regression, we used RMSE as the evaluation metric for
hyperparameter optimization. The reason we used RMSE is
that the goal of comparison between models is to compare
models trained via the PL framework with models trained via
the general regression framework. As a general practice in
training regression models, RMSE is used as the evaluation
metric.

E. MARGIN THRESHOLD
Lotfian and Busso [8] showed that the difference among
emotion levels of a paired sample improves the reliability of
the training set. We define themargin as the absolute value of
the difference among rapport scores: margin m = |yA − yB|,
where yA and yB are rapport scores. If the margin m is greater
than a given threshold, we used the paired sample as the input
of the PL model for training.

We hypothesize that a margin threshold increases the relia-
bility of the paired samples because the threshold reduces the
uncertainty in an ordinal relation of a paired sample. Even the
rapport score that is self-reported is slightly noisy. Metallinou
and Narayanan [24], for example, reported that raters modify
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TABLE 2. Ranking performances for PL models with the threshold set at
5 and regression models: A+L, acoustic and linguistic features
(multimodal); A, acoustic features; L, linguistic features. The random
baseline is the average performance over 100 trials.

their ratings when experimenters ask them to annotate once
more. This report suggested that the ordinal relations of the
paired sample with close rapport scores may vary due to
intrapersonal variability. In contrast, we can consider that the
ordinal relations of the paired sample with a large margin are
reliable and valid. The larger margin, however, reduces the
number of paired samples in the training set because fewer
paired samples satisfy the threshold.

To reduce uncertainty in the validation set, we also applied
the margin threshold to the validation set. Then, we used
AP as the evaluation metric for hyperparameter optimization
because we cannot calculate ranking performances for a sub-
set that consists of paired samples satisfying the threshold.

VI. RESULTS AND DISCUSSION
We first compare the preference learning (PL) model with the
regression model to validate our proposed method (Section
VI-A). We then investigate the contribution of each modal-
ity for RACOP on both PL and regression (Section VI-B).
Finally, we examine how the stage of rapport development
impacts ranking performance (Section VI-C).

A. COMPARISON OF PREFERENCE LEARNING AND
REGRESSION
We show that PL is a more suitable approach for RACOP than
regression. Then, we demonstrate that the margin threshold
improves the reliability of the training and validation sets.

First, we compare the multimodal PL model with the best
regression model. The 6-8 lines of Table 2 show the rank-
ing performance of regression models when using various
modalities. The best regression model is the unimodal model
trained on acoustic features (KTCC, 0.06; A@H, 33.33;
A@L, 37.33). For the PL model, we evaluated the ranking
performances in a range of margin thresholds from 0 to 7.
The reason for the range is that the number of paired samples
in the validation set is not enough in some folds when the
threshold is higher than 7. If we set the threshold as 8, the
number of paired samples in the validation set is less than or
equal to three pairs in some folds.

Figure 3 shows the ranking performance of the PL model
for each margin threshold (orange marker) and the best

regression model (dotted line). As the figure shows, the mul-
timodal PL model outperforms the best regression model for
all metrics as long as a sufficient threshold is set. For KTCC,
the multimodal PL model outperforms the best regression
model except form = 1; for A@H, the multimodal PL model
outperforms the best regression model for every threshold.
Although the accuracy of the two models is similar for A@L,
the multimodal PL model is slightly better as long as the
threshold is more than 1. The results show that PL is a
more suitable approach for RACOP than regression. One
explanation for the results is that PL is less affected by two
biases—nonlinear scale and subjectivity of ratings [7].

Second, we investigate the relationship between themargin
threshold and the ranking performance of the PL model.
Figure 3-(a) shows that KTCC improves with the increasing
threshold in the 1 to 5 range. The results suggest that a
margin threshold improves the reliability of the training and
validation sets. KTCC, however, drops when the margin is
greater than 6 because the large margin reduces the number
of paired samples that can be used for training. The green
bar indicates the number of paired samples that satisfy the
threshold out of all paired samples.

B. ANALYSIS OF EFFECTIVE MODALITIES
We investigate the contribution of each modality to RACOP.
First, we compare unimodal models trained on acoustic fea-
tures (A) with models trained on linguistic features (L) on
both PL and regression. In this experiment, we set the margin
threshold as 5 for PL. Table 2 shows that the PL model (A)
outperforms the PL model (L) for all ranking metrics; the
regression model (A) also outperforms the regression model
(L).We can therefore conclude that acoustic features aremore
effective for RACOP than linguistic features. The results
agree with other researchers who reported that nonverbal cues
aremore reliable than verbal cues because nonverbal behavior
occurs unconsciously [45]. Furthermore, the ranking perfor-
mance of the regression model (L) is lower than that of the
random baseline. In our datasets, linguistic features impair
the ranking performance of the regression model. The results
suggest that extracting linguistic cues to predict exact values
of rapport ratings is more difficult than extracting linguistic
cues to predict ordinal relations of them.

Second, the table shows the effectiveness of multimodal
features for PL. Among all models, the multimodal PL model
achieves the best performance for all metrics. The results
suggest that multimodal features by early fusion lead the PL
model to capture cues for the rapport levels that the unimodal
model does not capture. The performance of the multimodal
regression model, however, is lower than that of the unimodal
regression model (A) for all metrics.

C. THE STAGE OF RAPPORT DEVELOPMENT
We analyze the relationship between the stage of rapport
development and the ranking performance of PL models.
In our datasets, participants communicated with each other
based on three topics. Pairs of participants gradually built
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FIGURE 4. Ranking performances for each subset that consisted of interactions with one topic (color). Models were also trained on only each subset,
and there are three models as follows: the multimodal model trained on acoustic and linguistic features (A+L), the unimodal model trained on acoustic
features (A), and the unimodal model trained on linguistic features (L).

rapport as the number of interactions increased (see III-C).
We divided all data into three subsets according to topics.
Figure 4 shows the evaluation for each subset, and the models
were trained by only one subset. The experimental settings
are the same as previous experiments except that the dataset is
a subset. In this experiment, we are able to use only one-third
of the interactions for training; accordingly, we set the margin
threshold as 0 to use as many interactions as possible.

First, we focus on multimodal PL models (A+L).
As Figure 4 shows, the performance of KTCC and A@L for
the first topic is the highest, and the performance decreases
as the number of interactions increases. In contrast, the
performance of A@H for the first topic is the lowest, and
the performance increases as the number of interactions
increases.

For KTCC, the results show that it becomes more difficult
for our model to predict the order of rapport levels as pairs
of participants gradually build rapport. We considered that
there are two ways to interpret the results—assimilation and
the difficulty of capturing coordination cues.

One interpretation of the results is that the differences in
participants’ behavior according to rapport levels decrease
because rapport levels that participants rate for their partner
converge at a certain level as the number of interactions
increases. This convergence is called assimilation [46].
To validate this interpretation, we examined whether there
are significant differences in the mean margin of rapport
score between the paired sample among three topics. The
metrics indicate the extent to which a participant rates their
conversation partners in the same way. The mean margin
between paired samples for the first topic is 15.69 (SD =
13.18), the second topic is 15.19 (SD = 12.36), and the last
topic is 14.54 (SD = 13.76). The result shows that the mean
margin between paired samples decreases as the number of
interactions increases. The results of the t test with Bonferroni
correction (the significance level is p < 0.001), however,
showed that no significant differences are observed between

topics (the first topic–the second topic: t = 0.64, p = 0.53,
df = 206, the second topic–the last topic: t = 0.92, p = 0.36,
df = 206, the first topic–the last topic: t = 1.27, p = 0.21,
df = 206). Assimilation, therefore, is inadequate to explain
the decreasing performance of KTCC.

Another interpretation of the results is that our models
cannot capture cues of coordination in late interactions.
Tickle-Degnen and Rosenthal [10] suggested that the impor-
tance of three behavioral components—mutual attentiveness,
positivity, and coordination—for building rapport differs
according to the stage of rapport development. The pres-
ence of positivity, for example, plays a more important
role in developing rapport during early interactions (first-
time meeting), and the degree of coordination plays a more
important role during late interactions [10]. Cues indicating
coordination, for example, are interactional synchrony and
mirroring. Meta-analyses reported that the relations between
cues indicating coordination and positive social outcomes
(e.g., rapport) are robust during both verbal and nonverbal
behavior [47], [48]; furthermore, Natale [49] examined levels
of vocal intensity synchrony in three interactions for each
pair of participants. The results showed that levels of vocal
intensity synchrony are greater as the number of interac-
tions increases. These studies suggest that behavior related
to coordination is observed more frequently as rapport levels
increase. Cues indicating coordination may be difficult to
encode in our models because our model treats the sequence
of two participants in an interaction separately. On the other
hand, positivity—feelings of happiness and friendliness—
may be encoded more easily than coordination; therefore, the
KTCC of our models in early interactions is higher than the
KTCC in late interactions. From Figure 4-(a), we can infer
that cues indicating positivity are more clearly observed in
acoustic features than in linguistic features.

For A@H, the results show that the multimodal PL
model can determine the highest-rapport conversational
partner in late interactions more accurately than in early
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interactions. Even with an overall increase in the rapport
levels with conversation partners, there may be a clear dif-
ference between participants’ behaviors in interactions with
the highest-rapport partner and those with the other part-
ners. In contrast, for A@L, the multimodal PL model can
determine the low-rapport conversational partner in early
interactions more accurately than in late interactions; further-
more, we can observe similar changes in the unimodal PL
model (A). From this result, we can infer that cues indicating
low rapport in early interactions are more clearly observed in
acoustic features than in linguistic features.

For all ranking metrics of the first topic, the unimodal PL
model (A) outperforms the multimodal PL model. Our inter-
pretation of the results based on social penetration theory [32]
and our observations of some videos is as follows. On the first
topic (first-time meeting), the verbal content of utterances
may not only be ineffective for predicting rapport levels
but also be noise because participants share simple and safe
information according to social norms. On the other hand, for
intimate topics (e.g., the introduction of self-shortcomings),
the verbal content of utterances may be effective for predict-
ing rapport levels because participants share more intimate
information with their high-rapport partners and do not share
it with their low-rapport partners.

D. LIMITATIONS
As we have seen, the ranking performance of our model
in late interactions is less than the performance in early
interactions. One explanation for the results is that our mod-
els cannot capture cues of coordination that are important
for building rapport in late interactions. To capture cues of
coordination, we need to consider interspeaker influences in
interactions. To use interspeaker influences, researchers in
emotion recognition in conversation (ERC) developed mod-
els that use neural network architectures, such as recurrent
networks [50] and graph convolutional networks [51], [52].
Although these models achieve state-of-the-art performance
in multiple datasets for utterance-level emotion recognition,
the models cannot be applied to conversation-level rapport
recognition without alterations. Further studies of the model
architecture, therefore, are required to capture cues indicating
coordination.

We have not conducted a detailed analysis of the behavioral
patterns for each participant according to their conversation
partners with different rapport levels because it is beyond the
scope of our study. However, the findings from such analyses
are important not only for social signal processing but also
for social psychology. A recent study [53] showed that the
relationship between behavior and rapport levels is nonlinear
and complex. Tickle-Degnen [54] suggested that ‘‘optimal’’
levels of expressivity and coordination should bring pairs of
participants high levels of rapport. Although there are many
studies on levels of rapport and behavior patterns (e.g., [10]),
there is room for further investigation into how the same
participants change their behavior according to their conver-
sation partners with different rapport levels.

VII. CONCLUSION
This study addressed the novel task of ranking conversa-
tion partners based on self-reported rapport levels (RACOP).
Furthermore, we created a new dataset for RACOP. First,
we evaluated the ranking model trained via the preference
learning (PL) framework. The results showed that PL is a
more suitable approach for RACOP than regression. The
results also suggested that a margin threshold improves
the reliability of the training and validation sets. Second,
we investigated the effect of modality on RACOP. The results
indicated that acoustic features are more effective than lin-
guistic features in RACOP. Moreover, multimodal features
are most effective for PL models. Finally, we reported that
the PL model predicts ordered lists more accurately in early
interactions than in late interactions. The results suggested
that further studies of the model architecture are required to
encode cues of coordination in late interactions.
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