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ABSTRACT In the existing of traditional iterative learning control (ILC) results for two-dimensional
(2-D) discrete systems with time-domain based analysis approach, fixed boundary states do not affect the
complete convergence of P-type ILC law. However, it does affect the ILC convergence properties in the
frequency domain. This paper first investigates the frequency-domain ILC tracking problem for 2-D discrete
systems with different boundary states. An extended P-type ILC law is designed and a sufficient convergence
condition of which can be derived through a rigorous mathematical proof. A simulation example is given to
verify the effectiveness and validation of the proposed extended P-type ILC law. Finally, some comparison
results on traditional P-type ILC law and D-type ILC law are presented.

INDEX TERMS Frequency-domain iterative learning control (ILC), two-dimensional (2-D) discrete sys-
tems, an extended P-type ILC law.

I. INTRODUCTION
Iterative learning control [1], [2], [3] is capable to addressing
the trajectory tracking tasks repetitively over a finite time
interval and shows excellent characteristic for 2-D discrete
systems, such as heater exchanger [4], [5], multi-function
robotics [6], and 2-D ladder circuits [7]. To date, there has
been some fruitful ILC results on 2-D discrete systems in
[8], [9], and [10]. In [8], a high-order internal model (HOIM)
ILC law for 2-D linear discrete systems is designed to achieve
the precise tracking on 2-DHOIM-based reference trajectory.
In [9], a two-gain ILC law is presented to deal with the
prefect tracking for 2-D linear discrete systems with fixed
boundary states. The literature [10] investigates an adap-
tive ILC algorithm for 2-D nonlinear discrete systems with
nonuniform trial lengths. It is worth noting that the previously
mentioned achievements use the time-domain based analysis
approach, such as the lifting technique. From an engineering
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perspective, the frequency-domain based ILC techniques are
sometimes favoured because they exhibit superior spectral
characteristics of system signals and provide the lower com-
putation burden for convolution and lifting operation of
time-domain signals. However, compared with the fruitful
ILC results for 2-D discrete systems in time domain, the
frequency-domain based ILC designs are not yet available.

Recently, frequency-domain based ILC achievements
for 1-D systems have been extensively reported in
[11], [12], [13], [14], and [15]. In [11], the convergence
characteristics of the first-order and second-order PD-type
ILC schemes for linear time-invariant systems in discrete
spectrum is investigated. In [13], frequency domain analysis
and design of anticipatory-type ILC were addressed for SISO
linear systems by providing an engineering design procedure
and a guideline for self-tuning for anticipatory-type ILC.
In [15], the ILC problem for linear time-invariant systems
with input delay is investigated in the frequency domain and
three different ILC schemes are proposed to guarantee the
zero tracking error. To our knowledge, the frequency domain
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analysis method plays an important role in the application
of ILC. The frequency analysis plays a crucial role in ILC
applications, mainly due to relaxation on the convergence
condition from the infinite frequency bandwidth to a finite
frequency bandwidth. Also, the tracking control problem
of 2-D systems is more complex than that of 1-D systems,
especially in frequency domain [16]. Correspondingly, a fre-
quency domain-based spatial ILC in [28] has been used to
a practical additive manufacturing (AM) systems utilizing a
raster trajectory.

Motivated by these interesting observations, this paper first
investigates the frequency-domain based ILC tracking prob-
lem of 2-D linear discrete systems. Under iteration-dependent
boundary states, a frequency-domain based convergence con-
dition can be obtained by using the traditional P-type ILC
law and the selection guideline for the learning gain is given
theoretically. It is proved that the final ILC tracking error is
bounded, the bound of which continuously depends on the
boundary states. Specifically, under fixed boundary states,
the traditional P-type ILC law is very difficult to achieve
zero tracking error. Therefore, the extended P-type ILC law
is designed to achieve the precise tracking on 2-D reference
trajectory. Simulation tests are provided.

The structure of this paper is shown in the following.
Section II presents the problem formulation. Robust conver-
gence analysis on the P-type ILC law (3) in the frequency
domain is provided in section III. Simulation example is
exhibited in Section IV. The corresponding conclusion is
displayed in Section V.
Notations: In this paper, let {h1}

H1−1
0 = {0, 1, 2, · · · ,H1−

1} and {h1}∞0 = {0, 1, 2, · · · }. Rm and C, respectively,
represent the m-dimensional Euclidean space and complex
space. Rm×n denotes real matrices withm×n dimension. ∥·∥

stands for any compatible matrix/vector norm. | · | indicates
the magnitude of the frequency domain response.

II. PROBLEM FORMULATION
Consider the following 2-D discrete systems [4], which are
required to repetitively perform tracking tasks over a finite
region {h1}

H1−1
0 and {h2}

H2−1
0 :

xm(h1 + 1, h2 + 1) = A1xm(h1 + 1, h2) + A2xm(h1, h2)

+ A3xm(h1, h2 + 1) + Bum(h1, h2)
(1)

ym(h1, h2) = Cxm(h1, h2) (2)

where {m}
∞

0 denotes the iteration number. um(h1, h2) ∈ R,
xm(h1, h2) ∈ Rn, and ym(h1, h2) ∈ R, respectively, denote
control input, state, and output; A1, A2, A3, B, and C are
real matrices to be estimated. Many practical systems can
be described as the 2-D systems (1)-(2), such as thermal
process [17], target echoes collected by a radar [18], and servo
systems [19].
Remark 1: Actually, some ILC results for 2-D systems

(1)-(2) have already been emerged in [4] and [5]. The
main result on convergence analysis of [4, Theorem 1 with

H (q−1) = 1, 5, Theorem 1 with K = 0] is summarized and
there is the following proposition.
Proposition 1: Consider the 2-D systems (1)-(2) under

boundary states xm(h1, 0) = x0(h1, 0), {h1}
H1
0 and

xm(0, h2) = x0(0, h2), {h2}
H2
1 , and let the P-type ILC law be

given as

um+1(h1, h2) = um(h1, h2) + 0em(h1 + 1, h2 + 1). (3)

If the learning gain 0 is satisfied as ρ(Ip − CB0) < 1, then,
the ILC tracking error converges to zero.

In Proposition 1, the ILC results are obtained by using the
lifting-technique based analysis approach in the time-domain.
Under the same condition, if the frequency-domain analysis
method is used, zero ILC tracking error is difficult to obtain,
which is investigated in next section.

For ease of analysis the ILC tracking problem in
the frequency domain, the following Definition 1 and
Assumptions 1-2 are given.
Definition 1 ([17]): For a discrete 2-D function f (h1, h2)

satisfying f (h1, h2) = 0 for h1 < 0 or h2 < 0, its 2-D
Z -transform F(z1, z2) is defined by

F(z1, z2) = Z [f (h1, h2)]

=

∞∑
h1=0

∞∑
h2=0

f (h1, h2)z
−h1
1 z−h22 . (4)

Similarly, there is

F(z1 + 1, z2 + 1)

= z1z2F(z1, z2) − z1z2

H2∑
h2=1

f (0, h2)z
−h2
2

− z1z2

H1∑
h1=0

f (h1, 0)z
−h1
1 − z1z2f (0, 0) (5)

The derivation process of which is shown in the Appendix.
According to the Definition 1, the 2-D systems (1)-(2) is
reformulated as the form of

z1z2Xm(z1, z2) − z1z2Xm(0, z2) − z1z2Xm(z1, 0)

+ z1z2xm(0, 0)

= [z1A1 + A2 + z2A3]Xm(z1, z2) + BUm(z1, z2)

− z1A1xm(0, h2) − z2A3xm(h1, 0) (6)

Ym(z1, z2) = CXm(z1, z2). (7)

Rearranging (6) and (7), it generates

Ym(z1, z2)

= Gp(z1, z2)Um(z1, z2) − Ĝp(z1, z2)z1A1xm(0, h2)

− Ĝp(z1, z2)z2A3xm(h1, 0) − Ĝp(z1, z2)z1z2xm(0, 0)

+ Ĝp(z1, z2)z1z2Xm(0, z2) + Ĝp(z1, z2)z1z2Xm(z1, 0) (8)

where Gp(z1, z2) = C(z1z2In − z1A1 − A2 − z2A3)−1B
and Ĝp(z1, z2) = C(z1z2In − z1A1 − A2 − z2A3)−1.
Its frequency response is expressed as Gp(ejωh , ejωv ) =
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∣∣Gp(ejωh , ejωv )∣∣ ej̸ Gp(ejωh ,ejωv ), where
∣∣Gp(ejωh , ejωv )∣∣ and

̸ Gp(ejωh , ejωv ) denote the magnitude and phase characteris-
tics, respectively.

For an achievable reference trajectory yd (h1, h2), {h1}
H1
0 ,

{h2}
H2
0 , assume that there exists a unique input ud (h1, h2),

{h1}
H1−1
0 , {h2}

H2−1
0 such that

yd (h1, h2) = gp(h1, h2)ud (h1, h2) (9)

where gp(h1, h2) denotes the impulse response. Accordingly,
let the tracking error em(h1, h2) be given as

em(h1, h2) = yd (h1, h2) − ym(h1, h2). (10)

Taking the 2-D Z -transform on (10), it yields

Em(z1, z2) = Yd (z1, z2) − Ym(z1, z2) (11)

where Yd (z1, z2) is a Z -transform function of yd (h1, h2).
Assumption 1: Let the 2-D transfer function Gp(z1, z2)

in (8) be open-loop stable, minimum-phase and its relative
degree is one.
Assumption 2: Assume that

∥xm(h1, 0)∥ ≤ bx1, {h1}
H1
0 , ∥xm(0, h2)∥ ≤ bx2, {h2}

H2
1

where bx1 ≥ 0 and bx2 ≥ 0 are unknown constants. From
Assumption 2, we know

∥em(h1, 0)∥ = ∥yd (h1, 0) − ym(h1, 0)∥

= ∥yd (h1, 0) − Cxm(h1, 0)∥ ≤ be1
∥em(0, h2)∥ = ∥yd (0, h2) − ym(0, h2)∥

= ∥yd (0, h2) − Cxm(0, h2)∥ ≤ be2

where be1 ≥ 0 and be2 ≥ 0 are unknown constants.
Remark 2: Assumption 1 requires that all the zeros and

poles of Gp(z1, z2) lie in the region |z1| < 1 and |z2| < 1,
and can be widely found in [15], [23], and [24]. Additionally,
Assumption 2, as a fundamental and reasonable assumption
in robustness ILC analysis, shows the boundedness of bound-
ary states, which is presented in [10].
Lemma 1: Give two nonnegative functions Em(z1, z2) ∈ C

and bm(z1, z2) ∈ C over a finite frequency bandwidth z1 ∈ C
and z2 ∈ C satisfying:

|Em+1(z1, z2)| ≤ γ |Em(z1, z2)| + |bm(z1, z2)|.

Under lim supm→∞ |bm(z1, z2)| ≤ b′, if 0 ≤ γ < 1 holds,
there is

lim sup
m→∞

|Em(z1, z2)| ≤
b′

1 − γ
.

Particularly, when limm→∞ |bm(z1, z2)| = 0, it implies that

lim
m→∞

|Em(z1, z2)| = 0.

The proof process of Lemma 1 can be referred to [25].
To our knowledge, if the following traditional P-type ILC

laws

um+1(h1, h2) = um(h1, h2) + 0em(h1 + 1, h2)

um+1(h1, h2) = um(h1, h2) + 0em(h1, h2 + 1)

um+1(h1, h2) = um(h1, h2) + 0em(h1, h2)

are applied to the 2-D systems (1)-(2), the complete tracking
on 2-D reference trajectory cannot be met. Since the relative
degrees of the 2-D systems (1)-(2) in the horizontal direction
h1 and vertical direction h2 are equal to be one in [21],
respectively. To this end, the P-type ILC law (3) is used in
this paper and its Z -transform form is given as

Um+1(z1, z2) = Um(z1, z2) + 0z1z2Em(z1, z2) − 0z1z2

× em(0, 0) − 0z1z2

H2−1∑
h2=1

em(0, h2)z
−h2
2

− 0z1z2

H1−1∑
h1=1

em(h1, 0)z
−h1
1 . (12)

Remark 3: From (3), it can be seen that these uncontrol-
lable boundary errors em(h1, 0) and em(0, h2) are not affect
the ILC convergence characteristics in the time domain (see
more details in [8] and [9]). However, they can have an
impact on trajectory tracking in the frequency domain, which
is explained in (12) and the subsequent proof.

III. ROBUST CONVERGENCE ANALYSIS ON THE P-TYPE
ILC LAW (3) IN THE FREQUENCY DOMAIN
Next, wewill investigate the robustness property of the P-type
ILC law (3) for 2-D systems (1)-(2) in the frequency domain.
The following Theorem 1 is presented.
Theorem 1: For the 2-D systems (1)-(2), under Assump-

tions 1 and 2, the P-type ILC law (3) is used. If there exists
the learning gain 0 to make

|1 − 0Gp(z1, z2)z1z2| < 1, (13)

where Gp(z1, z2) is given in (8), then, the tracking error
em(h1, h2) is bounded related to bx1, bx2, be1, and be2
described in Assumption 2.
Proof: Using (7), it generates

Ym+1(z1, z2) − Ym(z1, z2)

= Gp(z1, z2)Um+1(z1, z2) + Ĝp(z1, z2)z1A1xm+1(0, h2)

+ Ĝp(z1, z2)z2A3xm+1(h1, 0) + Ĝp(z1, z2)z1z2

× xm+1(0, 0) + Ĝp(z1, z2)z1z2
H2∑
h2=1

xm+1(0, h2)z
−h2
2

− Gp(z1, z2)Um(z1, z2) − Ĝp(z1, z2)z1A1xm(0, h2)

− Ĝp(z1, z2)z2A3xm(h1, 0) − Ĝp(z1, z2)z1z2xm(0, 0)

− Ĝp(z1, z2)z1z2
H2∑
h2=1

xm(0, h2)z
−h2
2

= Gp(z1, z2)[Um+1(z1, z2) − Um(z1, z2)]Ĝp(z1, z2)z1A1

× [xm+1(0, h2) − xm(0, h2)] + Ĝp(z1, z2)z2A3

× [xm+1(h1, 0) − xm(h1, 0)] + Ĝp(z1, z2)z1z2
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× [xm+1(0, 0) − xm(0, 0)] + Ĝp(z1, z2)z1z2
H2∑
h2=1

× [xm+1(0, h2) − xm(0, h2)]z
−h2
2 + Ĝp(z1, z2)z1z2

×

H1∑
h1=1

[xm+1(h1, 0) − xm(h1, 0)]z
−h1
1 . (14)

Substituting the ILC law (3) into (14), we have

Ym+1(z1, z2) − Ym(z1, z2)

= Gp(z1, z2)0z1z2Em(z1, z2) + Ĝp(z1, z2)z1A1[xm+1(0, h2)

− xm(0, h2)] + Ĝp(z1, z2)z2A3[xm+1(h1, 0) − xm(h1, 0)]

+ Ĝp(z1, z2)z1z2[xm+1(0, 0) − xm(0, 0)] + Ĝp(z1, z2)z1z2

×

H2∑
h2=1

[xm+1(0, h2) − xm(0, h2)]z
−h2
2 + Ĝp(z1, z2)z1z2

×

H1∑
h1=1

[xm+1(h1, 0) − xm(h1, 0)]z
−h1
1 − Ĝp(z1, z2)0z1z2

× em(0, 0) − Ĝp(z1, z2)0z1z2
H2−1∑
h2=1

em(0, h2)z
−h2
2

− Ĝp(z1, z2)0z1z2
H1−1∑
h1=1

em(h1, 0)z
−h1
1 . (15)

On the other hand, using (11), it follows that

Em+1(z1, z2) − Em(z1, z2)

= Yd (z1, z2) − Ym+1(z1, z2) − Yd (z1, z2) + Ym(z1, z2)

= −Ym+1(z1, z2) + Ym(z1, z2). (16)

Inserting (15) into (16), we obtain

Em+1(z1, z2) − Em(z1, z2)

= −Gp(z1, z2)0z1z2Em(z1, z2) − Ĝp(z1, z2)z1A1

× [xm+1(0, h2) − xm(0, h2)] − Ĝp(z1, z2)z2A3

× [xm+1(h1, 0) − xm(h1, 0)] − Ĝp(z1, z2)z1z2

× [xm+1(0, 0) − xm(0, 0)] − Ĝp(z1, z2)z1z2

×

H2∑
h2=1

[xm+1(0, h2) − xm(0, h2)]z
−h2
2 − Ĝp(z1, z2)z1z2

×

H1∑
h1=1

[xm+1(h1, 0) − xm(h1, 0)]z
−h1
1

+ Gp(z1, z2)0z1z2em(0, 0) + Gp(z1, z2)0z1z2

×

H2−1∑
h2=1

em(0, h2)z
−h2
2 + Gp(z1, z2)0z1z2

×

H1−1∑
h1=1

em(h1, 0)z
−h1
1 . (17)

Rearranging (17), there is

Em+1(z1, z2)

= [1 − Gp(z1, z2)0z1z2]Em(z1, z2) − Ĝp(z1, z2)z1A1

× [xm+1(0, h2) − xm(0, h2)] − Ĝp(z1, z2)z2A3

× [xm+1(h1, 0) − xm(h1, 0)] − Ĝp(z1, z2)z1z2

× [xm+1(0, 0) − xm(0, 0)] − Ĝp(z1, z2)z1z2

×

H2∑
h2=1

[xm+1(0, h2) − xm(0, h2)]z
−h2
2 − Ĝp(z1, z2)z1z2

×

H1∑
h1=1

[xm+1(h1, 0) − xm(h1, 0)]z
−h1
1 + Gp(z1, z2)0z1

× z2em(0, 0) + Gp(z1, z2)0z1z2
H2−1∑
h2=1

em(0, h2)z
−h2
2

+ Gp(z1, z2)0z1z2
H1−1∑
h1=1

em(h1, 0)z
−h1
1 . (18)

Taking the norm or magnitude operation on two sides of (18),
we have

|Em+1(z1, z2)|

≤ |1 − Gp(z1, z2)0z1z2||Em(z1, z2)| + |Ĝp(z1, z2)z1|

× ∥A1∥∥xm+1(0, h2) − xm(0, h2)∥ + |Ĝp(z1, z2)z2|

× ∥A3∥∥xm+1(h1, 0) − xm(h1, 0)∥ + |Ĝp(z1, z2)z1z2|

× ∥xm+1(0, 0) − xm(0, 0)∥ + |Ĝp(z1, z2)z1z2|

×

H2∑
h2=1

∥xm+1(0, h2) − xm(0, h2)∥|z2|−h2

+ |Ĝp(z1, z2)z1z2|
H1∑
h1=1

∥xm+1(h1, 0) − xm(h1, 0)∥

× |z1|−h1 + |Gp(z1, z2)0z1z2||em(0, 0)|

+ |Gp(z1, z2)0z1z2|
H2−1∑
h2=1

|em(0, h2)||z2|−h2

+ |Gp(z1, z2)0z1z2|
H1−1∑
h1=1

|em(h1, 0)||z1|−h1 . (19)

In (19), we know from Assumption 2 that |em(0, h2 + 1)|,
|em(h1+1, 0)|, ∥xm+1(0, h2)−xm(0, h2)∥, and ∥xm+1(h1, 0)−
xm(h1, 0)∥ are bounded. Applying Lemma 1 to (19), if the
learning gain 0 is selected to satisfy (13), we get

lim sup
m→∞

|Em(z1, z2)| ≤
b̄

1 − |1 − Gp(z1, z2)0z1z2|
,

where b̄ > 0 is relevant to bx1, bx2, be1 and be2 given in
Assumption 2. According to inverse Z -transform, we obtain
that the ILC tracking error em(h1, h2) is bounded for {h1}

H1
1

and {h2}
H2
1 .

This completes the proof of Theorem 1.
Remark 4: It is worth noting that the convergence condi-

tion (13) of Theorem 1 is given in the form of

|1 − 0Gp(ejωh , ejωv ))ejωhejωv |
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= |1 − 0|Gp(ejωh , ejωv )|ej̸ Gp(ejωh ,ejωv )ejωhejωv |

= |1 − 0|Gp(ejωh , ejωv )|ejφ(e
jωh ,ejωv )

|,

where φ(ejωh , ejωv ) = ̸ Gp(ejωh , ejωv ) + ωh + ωv. According
to the Euler Theorem, we have

|1 − 0|Gp(ejωh , ejωv )|ejφ(e
jωh ,ejωv )

|

= |1 − 0|Gp(ejωh , ejωv )|[cos(φ(ejωh , ejωv ))

+ j sin(φ(ejωh , ejωv ))]

= |1 − 0|Gp(ejωh , ejωv )| cos(φ(ejωh , ejωv ))

− j0|Gp(ejωh , ejωv )| sin(φ(ejωh , ejωv ))| < 1. (20)

Taking the square on both sides of (20), the above inequality
is equivalent to

02
|Gp(ejωh , ejωv )| < 20 cos(φ(ejωh , ejωv )).

To guarantee the error convergence, if there exists the learning
gain 0 > 0, the following condition should be satisfied:

0|Gp(ejωh , ejωv )| < 2 cos(φ(ejωh , ejωv )). (21)

Remark 5: To satisfy (13), it is necessary that for all ωh ∈

[0, ∞) and ωv ∈ [0, ∞), there is

−
π

2
< ̸ Gp(ejωh , ejωv ) + ωh + ωv <

π

2
. (22)

To our knowledge, for most of 2-D systems, the conditions
(21) and (22) are difficult to be guaranteed for all frequencies
ωh ∈ [0, ∞) and ωv ∈ [0, ∞). For example, when ωh → ∞

andωv → ∞, the inequality cos(̸ Gp(ejωh , ejωv )+ωh+ωv) >

0 no longer holds. Hence, the frequency region ωh and ωv
needs to be reduced into a learnable band [13] and [15].
Therefore, the learnable band is required to satisfy ωh ∈[
ωmin
h , ωmax

h

]
and ωv ∈

[
ωmin
v , ωmax

v
]
.

We can see from Theorem 1 that the bounded ILC tracking
objective can be achieved by depending on boundary states
and errors. Under the desired boundary states and errors, the
complete ILC tracking on 2-D reference trajectory can be
obtained. There is the following Corollary 1.
Corollary 1: For the 2-D systems (1)-(2) with Assumption

1, and boundary states xm(h1, 0) = xd (h1, 0) and xm(0, h2) =

xd (0, h2), the P-type ILC law (3) is used. If the learning gain0

is selected to satisfy (13), then, the tracking error em(h1, h2)
is convergent progressively, i.e., limm→∞ |em(h1, h2)| = 0,
{h1}

H1
1 , {h2}

H2
1 .

Remark 6: In Corollary 1, with a fixed boundary states
xm(h1, 0) = x0(h1, 0) and xm(0, h2) = x0(0, h2), we still can-
not get the precise tracking. This is in contrast to traditional
time-domain based ILC analysis for 2-D discrete systems
in [8] and [9]. To this end, the following extended P-type ILC
law is presented as

um+1(h1, h2)

= um(h1, h2) + 0em(h1 + 1, h2 + 1) + 0z1z2
1 − z1−1

1 − z1−H1

× em(0, h2) + 0z1z2
1 − z2−1

1 − z2−H2
em(h1, 0)

+ 0z1z2
1 − z1−1

1 − z1−H1

1 − z2−1

1 − z2−H2
em(0, 0) (23)

where {h1}
H1−1
0 and {h2}

H2−1
0 . Taking the Z -transform on

(23), there is

Um+1(z1, z2) = Um(z1, z2) + 0z1z2Em(z1, z2). (24)

Theorem 2: For the 2-D systems (1)-(2) under Assump-
tion 1, boundary states xm(h1, 0) = x0(h1, 0) and xm(0, h2) =

x0(0, h2), the extended P-type ILC law (23) is used. If the
learning gain 0 is chosen to make (13) satisfied, then, the
tracking error em(h1, h2) is convergent progressively, i.e.,
limm→∞ |em(h1, h2)| = 0, {h1}

H1
1 , {h2}

H2
1 .

Proof: Using (23) and considering xm(h1, 0) = x0(h1, 0) and
xm(0, h2) = x0(0, h2), (18) can be reformulated as

Em+1(z1, z2) = [1 − Gp(z1, z2)0z1z2]Em(z1, z2). (25)

Taking the norm or magnitude operations on two sides of
(25), we obtain

|Em+1(z1, z2)| ≤ |1 − Gp(z1, z2)0z1z2||Em(z1, z2)|. (26)

For (26), applying Lemma 1, if the learning gain 0 is selected
to meet (13), it can be concluded that limm→∞ |em(h1, h2)| =

0, {h1}
H1
1 , {h2}

H2
1 .

The proof of Theorem 2 is completed.

IV. ILLUSTRATIVE EXAMPLE
This section gives some simulation results to illustrate the
effectiveness of the extended P-type ILC law (23). The 2-D
transfer function of (1)-(2) in [4] and [23] is given as

Gp(z1, z2) =
0.8

z1z2 − 0.1z1 + 0.03 − 0.3z2
.

The poles of Gp(z1, z2) are computed as z1 = 0.3 and
z2 = 0.1, which satisfy the Assumption 1. According to
Remark 5, we select the horizontal interval frequency and
vertical interval frequency ωh ∈ [0, π

4 ] and ωv ∈ [0, π
4 ],

and the horizontal sampling rate and vertical sampling rate
π
80 . The magnitude characteristics of Gp(ejωh , ejωv ) and phase
characteristics of ̸ Gp(ejωh , ejωv ) + ωh + ωv are presented
in Figs. 1 and 2, respectively. Let the 2-D desired reference
trajectory yr (h1, h2) be given as

yr (h1, h2) = cos(0.2πh1) + cos(0.2πh2), {h1}200 , {h2}200

which is shown in Fig 3. Let the boundary outputs be
described as ym(h1, 0) = 0.5 sin(0.2πh1), {h1}200 and
ym(0, h2) = sin(0.2πh2), {h2}201 . Under the initial control
input u0(h1, h2) = 0, {h1}190 , {h2}190 in the extended P-type
ILC law (23), we select the learning gain 0 = 0.3, which
satisfies the convergence condition (13). The sum of tracking
error index EEm is used to evaluate the accuracy of ILC
tracking:

EEm =

20∑
h1=1

20∑
h2=1

|yr (h1, h2) − ym(h1, h2)|

62184 VOLUME 11, 2023



K. Wan, H. Xie: Frequency-Domain Based Iterative Learning Control for 2-D Discrete Systems

FIGURE 1. The magnitude characteristics of Gp(ejwh , ejwv ).

FIGURE 2. The phase characteristics of ̸ Gp(ejωh , ejωv ) + ωh + ωv .

FIGURE 3. The 2-D reference trajectory yr (h1, h2), {h1}20
0 , {h2}20

0 .

FIGURE 4. Under the extended P-type ILC law (23), the ILC tracking error
em(h1, h2) for m = 2, 4, 6, 20.

which does not include the uncontrollable boundary outputs
ym(0, h2) and ym(h1, 0). As a result, Fig. 4 presents the ILC
tracking error em(h1, h2) at m = 2, 4, 6, 20. Fig. 5 depicts
the profile of ILC tracking index EEm with iteration number
m. Obviously, it can be observed from Figs. 4-5 that the
effectiveness of the extended P-type ILC law (23) is validated.

FIGURE 5. Under the extended P-type ILC law (23), the profile of EEm
with m.

FIGURE 6. Under the D-type ILC law in [20], the profile of EEm with m.

FIGURE 7. Under the D-type ILC law in the horizontal direction h1 in [26]
and [27], the profile of EEm with m.

FIGURE 8. Under the D-type ILC law in the vertical direction h2 in [26]
and [27], the profile of EEm with m.

Discussions: In this section, we will provide some com-
parison results with D-type ILC laws in [20], [26], and [27],
which are given as:

(1) D-type ILC law in [20]:

um+1(h1, h2) = um(h1, h2) + 0.3[em(h1 + 1, h2 + 1)

− em(h1, h2)], (27)

(2) D-type ILC law in the horizontal direction h1 in [26]
and [27]:

um+1(h1, h2) = um(h1, h2) + 0.4[em(h1 + 1, h2 + 1)

− em(h1, h2 + 1)], (28)
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(3) D-type ILC law in the vertical direction h2 in [26]
and [27]:

um+1(h1, h2) = um(h1, h2) + 0.4[em(h1 + 1, h2 + 1)

− em(h1 + 1, h2)]. (29)

Fig. 6 show the profile of ILC tracking index EEm under
the D-type ILC law (27), respectively. Apparently, it can be
seen from Fig. 6 that D-type ILC law cannot make the ILC
tracking error converge to zero. This is mainly due to the
fact that the relative degrees of 2-D systems (1)-(2) in the
horizontal direction and vertical direction is one. To further
illustrate the inadequacy of the D-type ILC law, we continue
to use the D-type ILC law in the horizontal direction h1 and
in the vertical direction h2 in [26] and [27], respectively, to
2-D systems (1)-(2), simulation results on EEm of which are
displayed on Figs. 7-8.

V. CONCLUSION
Compared with D-type and P-type ILC laws, the pro-
posed extended P-type ILC law in this paper can well
handle the tracking problem on 2-D reference trajec-
tory in the frequency-domain. This brief investigates the
frequency-domain ILC for 2-D linear discrete systems with
iteration-dependent boundary states and boundary errors.
Different from time-domain based ILC approach for 2-D sys-
tems, frequency ILC approach is more sensitive to boundary
states and errors. In the future work, frequency-domain ILC
analysis will be used to solve the iteration-varying reference
trajectory.
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