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ABSTRACT As a critical step in 3D scene understanding, semantic segmentation of point clouds has broad
application scenarios, including intelligent driving, augmented reality, smart factories, etc. Point cloud data
is complex and irregular, and traditional machine learningmethods are difficult to achieve ideal segmentation
results. Deep learning techniques have yielded remarkable outcomes for researchers, leading to a surge
in interest in investigating the semantic segmentation of point clouds. This article begins by examining
the difficulties involved in segmenting point clouds by analyzing the inherent structural characteristics
of point clouds. Then, commonly used datasets for point cloud semantic segmentation and evaluation
metrics for assessing segmentation performance were introduced. Subsequently, an exploration was carried
out on extracting semantic information from different data forms in point cloud semantic segmentation.
Based on these findings, the experimental results of these methods on publicly available datasets are
compared quantitatively. Lastly, several outlooks are presented regarding the future development of semantic
segmentation techniques for 3D point clouds. The point cloud semantic segmentation techniques summarized
in this paper are mainly from the state-of-the-art methods presented at top international conferences. The
goal is to provide a comprehensive overview of this field’s state of the art and can be used as a reference for
researchers and beginners.

INDEX TERMS 3D point cloud, deep learning, public datasets, semantic segmentation.

I. INTRODUCTION
The task of point cloud semantic segmentation entails assign-
ing a pre-defined semantic category to each point in the
point cloud data, such as pedestrians, cars, buildings, etc. (as
demonstrated in Fig.1, which exhibits the semantic segmen-
tation outcomes of point clouds in various scenarios). This
technology is the basis for fields such as autonomous driving
[1], [2], indoor navigation [3], [4], and built environment
analysis [5], [6], which can help computers better understand
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the environment and make more accurate decisions, and thus
has a wide range of application scenarios.

Driven by the demand for practical applications, research
on point clouds is gradually becoming popular due to the
increasingly convenient acquisition and processing of point
cloud data with the widespread use of sensors such as LiDAR
and stereo cameras. The importance of point cloud semantic
segmentation is that it can provide a high-precision under-
standing and analysis of the 3D environment. For example,
point cloud semantic segmentation in autonomous driving
can help vehicles identify roads, pedestrians, and obstacles
better and thus make more accurate decisions.
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TABLE 1. Structural characteristics of 3D point clouds and the corresponding solutions proposed by researchers for these challenges on the semantic
segmentation task.

FIGURE 1. The segmentation results of the public datasets using the
PointNet++ [7] semantic segmentation network are shown, where
different colors indicate different semantic categories, and the same color
indicates the same categories in the Fig.. (a): The segmentation results for
a conference room in area 5 of the S3DIS [8] dataset. (b): The
segmentation result for an urban area of the large outdoor dataset
SensatUrban [9].

Because of the unique attributes of point cloud data,
conventional 2D image processing techniques [10] are not
directly transferable to 3D data. The primary obstacles that
impede the semantic labeling of point clouds are their struc-
ture with permutation invariance, rotation invariance, and
density inconsistency. The structural characteristics of point
clouds are briefly described below, and some corresponding
solutions are summarized, and Table 1 shows the corre-
spondence between structural characteristics and specific
solutions.

Permutation invariance refers to swapping the position
of any point in the point cloud without affecting the object
expressed by the point cloud, as shown in Fig.2(a), which
requires algorithms that can learn consistent features from
many permutations. Some existing network models address
permutation invariance in the point clouds by four main
classes of methods. The first class uses symmetric functions
to obtain global or local features from point clouds. Net-
work models through this approach include PointNet [11]

and RSNet [12]. PointNet [11] uses symmetric functions
to obtain global information of all points in a point cloud
and then splices this global feature behind each point for
semantic segmentation. RSNet [12] performs a maximum
pooling operation on the points within a slice to generate
a global feature representation in each slice, and all slice
information constitutes a feature vector ordered sequence.
The second type is the ordered representation achieved by
transforming the unordered point cloud. In order to be
able to deal with unordered 3D point cloud data directly,
Rethage et al. [13] transformed the point cloud internally into
an ordered structure by 3D convolution before semantic
segmentation processing. SO-Net [14] employed a Self-
Organizing Map [30] to Simulate the spatial arrangement of
the points. This method compresses the point cloud into an
isolated feature vector, ensuring the feature vectors’ permu-
tation invariance in theory. The third category is to propose
new convolution operators. The χ -conv operator is proposed
in PointCNN [15], which can consider the shape of the point
clouds and arrange them into a potential canonical order. Sim-
ilarly, in DensePoint [31], the new operator defined extends
the regular grid CNN to irregular point cloud operations while
satisfying local connectivity and weight sharing. In addition,
Wang et al. [16] proposed the convolution operator EdgeConv
based on GCNs. The EdgeConv is designed to be invariant to
the order of its neighbors and thus has permutation invariance.
The fourth category is the proposed sampling operation with
permutation invariance. Yang et al. [17] proposed Gumbel
Subset Sampling to solve the permutation invariance problem
from the sampling perspective.

Rotation invariance means that the coordinates of almost
all points change after rotating the point cloud but still rep-
resent the same object. Random directional perturbations of
point clouds can make deep learning methods less effective
and thus can limit the generalization in practical appli-
cations. Generally, three categories of approaches can be
employed to address the issue of rotation invariance. The
first category eliminates the effect of point cloud rotation
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by learning the rotation invariance feature. PointNet [11]
rotates the point cloud to a suitable position by adding a
T-Net module and then semantically segments it. You et al.
[18] propose a Pointwise Rotation-Invariant Network that
addresses the rotation invariance of point clouds in spher-
ical space from a deep learning perspective. In SPHNet
[19], the idea of learning invariance from data is abandoned,
and different spherical harmonics kernels are proposed. The
second category addresses rotation invariance by mapping
the points in the point cloud to a specific space. SRINet
[20] obtains a rotation-invariant representation of the 3D
point cloud by mapping the 3D coordinates to a 4D projec-
tion feature space. Also, based on projection, SFCNN [21]
maps the original points to discrete spheres, which helps the
model resist rotations and perturbations while maximizing
the preservation of the input 3D shape details. The third
category of approaches to address rotational invariance is
to use the potential geometric relationships in point clouds.
Zhang et al. [22] proposed the RIConv operator to acquire
rotationally invariant low-level geometric features. Aided
by relational learning, Relational Shape Convolution [23],
developed by Liu et al., can incorporate the geometric inter-
dependence of points. The resulting RS-CNN network built
on this operator can withstand rotational disturbances due to
the sturdy geometric topological relationships between the
learned points.

Density inconsistency is manifested as the point cloud
in the target scene is dense at some locations and sparse
at others, which is more common in autonomous driving
scenes, as shown in Fig.2(b). Possible reasons for this situ-
ation include the relative position between the object surface
and the point cloud sampling device, the color of the object
surface, and other factors. The researchers addressed the
density inconsistency problem in three aspects. The first type
of approach utilizes the idea of sampling, which is the most
frequently used method. KPConv [24] combines the radius
neighborhood with the conventional subsampling strategy to
ensure the efficiency and robustness of point cloud data with
different densities. Similarly, in GACNet [25], a directed
graph is constructed for a given point cloud data and ran-
domly sampled within a radius ρ to form a neighborhood,
ensuring that the neighborhood is independent of the point
density. In RandLA-Net [26], random sampling is used for
point selection to reduce the computational complexity of
high-density and large-scale point cloud scenarios and atten-
uate the efficiency impact due to inconsistent point cloud
densities. The second type of method to addressing den-
sity inconsistency in point clouds involves filling in missing
surface data through a process known as completing incom-
plete point cloud surfaces. For the problem of domain gaps
in 3D point clouds acquired by different LiDAR sensors,
Yi et al. [27] recovered the underlying 3D surface from
sparse and incomplete LiDAR point clouds by using a sparse
voxel completion network (SVCN). Furthermore, the domain
adaptation problem was converted to a 3D surface com-
pletion task. The third type of method deals with density

FIGURE 2. Structural characteristics of point clouds, where (a) shows the
permutation invariance of the point cloud. For the three points in the
figure, six different permutations exist, but the shapes they express are
the same. (b) demonstrates the density inconsistency of the LIDAR point
cloud for autonomous driving, where the points in the red box in the
figure are dense, while the points in the blue box are sparse, which is
caused by the different distance between the sensor and the target
location.

inconsistency by modifying the convolution kernel. Sparse
invariant Interpolated Convolution (InterpConv) [28] oper-
ation was proposed by Mao et al. to normalize the points
in the neighborhood of each kernel weight vector, ensuring
the density invariance of InterpConv. The utilization of the
fuzzy mechanism in the 3D point cloud spherical convolution
kernel was proposed by Lei et al. [29]. They designed a fuzzy
kernel that eliminates the traditional discrete spherical kernel
weight assignment problem and exhibits natural robustness to
missing data and point density.

The semantic segmentation methods proposed from the
structural characteristics of point clouds have solved some
of the problems of poor segmentation caused by struc-
tural characteristics. In order to enhance the comprehension
of semantic information contained within point clouds,
numerous exceptional methodologies have been proposed
by researchers from diverse perspectives. This paper will
organize and analyze these approaches in the upcoming sec-
tions. The succeeding parts of this paper will be presented
in the following sequence: Section II introduces the public
datasets and the evaluation metric for point cloud segmen-
tation. Section III explores semantic information extraction
from different data forms in point cloud semantic segmen-
tation. Section IV is devoted to the quantitative analysis of
the experimental results obtained from the methods discussed
in the preceding sections. Furthermore, Section V presents
several perspectives on the shortcomings of the current point
cloud semantic segmentation and provides an outlook on
future development.

II. DATASETS AND INDICATORS
This section introduces the commonly used 3D point cloud
semantic segmentation datasets and gives the point cloud
segmentation evaluation indicators. These datasets include
indoor scenes, urban streets, and autonomous driving scenes,
providing data support for developing point cloud segmen-
tation models. For datasets with different scenarios, diverse
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TABLE 2. Basic information on common public datasets for point cloud semantic segmentation. Data quantity in the table is measured in millions. ‘‘-’’
indicates that data is unavailable.

evaluation metrics are essential to more accurately assess the
excellence of semantic segmentation models. Efficient and
diverse datasets and targeted evaluation metrics can provide
a solid foundation for theoretical research and facilitate the
emergence of new methods.

A. DATASETS
Dedicated to the development of point cloud segmentation
techniques, several research institutions provide open and
reliable datasets. This subsection presents several datasets
most commonly used by researchers, including S3DIS [8],
ScanNet [32], Semantic3D [33], and SemanticKITTI [34].
Table 2 lists the basic information of these datasets.

S3DIS: [8] The S3DIS dataset significantly contributes
to computer vision, specifically for indoor scene analysis.
Developed by a dedicated research group at Stanford Uni-
versity, it comprises five vast indoor areas spanning three
distinct buildings, encompassing 6020 square meters and fea-
turing over 215 million data points. The dataset offers diverse
scenes, and Fig.3(a) represents a conference room scenario
for Area-5 of this dataset. The dataset utilizes a Matterport
scanner to scan 272 rooms and automatically generate point
clouds for the site. The semantic tag is divided into 12 seman-
tic categories, i.e., structural elements (ceiling, floor, walls,
beams, windows, doors), ordinary furniture (tables, chairs,
sofas, bookcases, wood paneling), and clutter, for a total of
13 categories.

ScanNet: [32] The ScanNet dataset is valuable for com-
puter vision and 3D modeling research. It was developed
jointly by Princeton University, Stanford University, and the
Technical University of Munich. It is a dataset of indoor
scenes in a natural environment, and Fig.3(b) shows an indoor
scene from this dataset. This dataset is widely used for
semantic voxel annotation, 3D object classification, and CAD
model retrieval. It has 20 object class labels for the semantic
segmentation task and 1 class for free space; each object class
label corresponds to a furniture class.

Semantic3D: [33] The Semantic3D dataset is a large out-
door LiDAR dataset developed by researchers at ETHZurich,
Switzerland. The dataset comprises 30 ground-based LiDAR
scans, including about 4 billion manually labeled points. Sev-
eral scenes, including farms, town halls, sports fields, castles,
and market squares, are covered, and some of the scene visu-
alization results are shown in Fig.3(c). Semantic3D contains
eight semantic categories, such as vegetation, buildings, cars,

FIGURE 3. Visualization of point clouds semantic segmentation dataset.
(a) a conference room in the S3DIS dataset [8], (b) a living room in the
ScanNet dataset [32], (c) a street scene in the Semantic3D dataset [35],
and (d) an autonomous driving scene in the SemanticKITTI [34].

etc., and is one of the largest cloud semantic segmentation
datasets available for outdoor attractions.

SemanticKITTI: [34]The SemanticKITTI dataset is a
large outdoor scene dataset based on automotive LiDAR con-
structed by researchers at the University of Bonn, Germany.
It shows traffic in the city center of Karlsruhe, Germany,
residential areas, freeway scenes, and rural roads. The dataset
was annotated with 19 semantic categories, and the annotated
scene is shown in Fig.3(d). The data collection comprises
22 sequences, with the first 11 sequences (0 to 10) designated
for use in training and the remaining 11 sequences (11 to 21)
reserved for testing.

B. INDICATORS
In order to fairly reflect the superiority of the model,
the effectiveness of point cloud segmentation needs to be
evaluated from different aspects using some well-known
evaluation metrics. Commonly adopted performance mea-
sures in prior studies encompass Overall Accuracy (OA),
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TABLE 3. Comparison of the advantages and disadvantages of different types of point cloud semantic segmentation methods.

Mean Intersection over Union (mIoU), memory consump-
tion, and computation duration. Equations(1), (2), and (3)
show the mathematical expressions of OA, IoU, and mIoU,
respectively.

OA =
1
N

k∑
i=0

TPi (1)

IoU =
TP

TP + FP + FN
(2)

mIoU =
1

k + 1

k∑
i=0

IoUi (3)

TP, FN, and FP in (2) represent true positives, false
negatives, and false positives, respectively. Expressly, for a
given category α, T and F represent correct and incorrect
classification, P and N represent a classification into α and
non-α categories, respectively, i.e., In the context of point
cloud segmentation, TP denotes the number of points that
are accurately classified as category α, while FP represents
the number of points that belong to category non-α but are
incorrectly predicted as α. On the other hand, FN represents
the number of non-α points that are correctly predicted as
such. N is the total number of points in the point cloud,
and k denotes the number of semantic categories. Although
Overall Accuracy (OA) can provide an overall assessment
of the classification performance, it could be biased towards
categories with more points in the scene. This is because the
impact of a wrong prediction for a class with fewer points
is very small for OA evaluation criteria, while a correct
prediction for a class with fewer points is very important.
To mitigate this issue, the Mean Intersection over Union
(mIoU) is more suitable as it captures the prediction accuracy
of each semantic category, regardless of its point count.

III. SEGMENTATION METHOD
Due to advancements in deep learning technology, point
cloud segmentation algorithms have improved accuracy in
recent years compared to traditional machine learning meth-
ods [36], [37], [38]. This section categorizes current point
cloud segmentation methods based on deep learning, consid-
ering the data processing format. The categorization includes
four groups: methods based on dimensionality reduction,
methods based on voxelization, methods based on primitive
points, and methods based on multiple data formats. The
advantages and disadvantages of these four types of methods

TABLE 4. Overall description of the dimensionality reduction-based
methods presented in this subsection.

are summarized in Table 3. Fig.4 depicts a detailed classi-
fication of these methods; Fig.5 shows a general network
structure for extracting semantic information using four dif-
ferent forms of point cloud representation. The following
subsections classify and summarize representative network
models proposed in recent years.

A. METHODS BASED ON DIMENSIONALITY REDUCTION
The point cloud segmentation methods based on dimen-
sionality reduction benefit from the maturity of 2D image
segmentation techniques. These methods reduce the 3D point
cloud data into 2D image data that can be processed directly
using mature 2D image segmentation methods and then
remap the segmentation results into 3D space for point cloud
segmentation. These methods can be further classified into
two categories: one is dimensionality reduction by projec-
tion, and the other is multi-view dimensionality reduction.
Table 4 lists the overall description of the dimensionality
reduction-based methods presented in this subsection.

1) PROJECTION-BASED METHOD
The most frequently employed projection for point cloud
segmentation are spherical projection, bird’s eye view pro-
jection, and hybrid projection. Spherical projection maps
the point cloud onto a sphere surrounding it; the bird’s eye
view projection method involves projecting the point cloud
onto a two-dimensional plane from a top-down perspective;
hybrid projection techniques combine multiple projection
techniques to generate a more comprehensive representation
of the 3D point cloud.

Spherical projection is a dimensionality reduction method
by mathematically processing spherical coordinates to obtain
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FIGURE 4. An overall overview of all methods. The methods are divided into four categories according to the data processing format,
where each category further refines these methods according to the segmentation technique.

FIGURE 5. A comprehensive outline for performing semantic segmentation using four different types of point cloud representations,
highlighting their structural characteristics.

pixel coordinates. Wu et al. [39] introduced SqueezeSeg,
a novel end-to-end network that employs SqueezeNet [52] as
the base architecture. The network projects the LiDAR point

cloud onto a sphere (Fig.6), producing a dense grid-based rep-
resentation that serves as the input to the CNN. The first few
layers in the SqueezeSeg [39] network significantly impact
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segmentation accuracy due to dropout noise, so the new
Context AggregationModule (CAM) is proposed in Squeeze-
SegV2 [40] to reduce the sensitivity to dropout noise. A mask
channel is added to the projection image to further improve
the model’s accuracy. Due to the significant variation in fea-
ture distribution across different image locations in LiDAR
images and the limitation of standard 2D convolution in
capturing only local features in specific regions of the image,
SqueezeSegV3 [41] introduces a novel technique called SAC.
SAC utilizes different filters to extract projected image fea-
tures for different parts of the image, allowing the network
to capture the varied features present in the LiDAR images
effectively. Based on SqueezeSeg [39] and SqueezeSegV2
[40],Milioto et al. [42] used an efficient GPU-based k-nearest
neighbor search post-processing step to alleviate discretiza-
tion errors and fuzzy inference output to address the bleeding
phenomenon when transferring semantic labels from 2D pro-
jection images to 3D point clouds. Xiao et al. [43] conducted
a study and discovered thatmodality gaps exist in the different
message images produced by spherical projection. Conse-
quently, directly overlaying these channels as regular images
often leads to sub-optimal segmentation results. An end-to-
end network based on spherical projection, FPS-Net, was
designed to solve this problem. Unlike the above methods,
FPS-Net uses an entirely new structure where each channel
image is first learned individually. Then the learned features
are fused and applied to the LIDAR point cloud segmentation.

Spherical projections are prone to quantization errors, such
as different points in a point cloud being projected onto the
same 2D grid, even if they are far apart. Such errors can
reduce the accuracy of subsequent processing. In order to
tackle this issue, Beltrán et al. [53] proposed the utilization of
the Bird’s Eye View (BEV) projection, which can somewhat
alleviate the factor mentioned above. The BEV projection
provides a top-down view of the point cloud while preserving
scale and distance information. It is widely used in LIDAR
detection [54], [55], [56] and recently in point cloud seg-
mentation. Drawing on the method of VoxelNet [57] and
the idea of bird’s-eye projection, the LiDAR point cloud is
represented as a voxel grid map in VolMap [44]. Then the
points on the X- and Y-axis component planes are discretized
into a projection grid with a specific resolution, the Z-axis
is represented as a channel layer of the projected image to
avoid losing height features, and the visualization results are
shown in Fig.6(a). Aksoy et al. [45] proposed a projection-
agnostic model, SalsaNet, which can input both spherical
and bird’s eye view projections for semantic segmentation.
For the first time, comparative experiments demonstrated the
effectiveness of a bird’s eye view and spherical projections
in segmenting different objects. Because of the more com-
pact spherical projection, small objects are better when using
spherical projection for semantic segmentation. In contrast,
large objects perform better by the bird’s-eye view projec-
tion as an input. To improve the effectiveness of bird’s-eye
view projection for segmenting fine-grained semantic classes,
Zhang et al. [46] proposed a new 2D representation of point

FIGURE 6. The 3D structure of the point cloud is transformed into a 2D
format by different projection methods. Where (a) is the spherical
projection method used by SqueezeSeg [39], and (b) is the bird’s eye
projection method used by VolMap [44].

FIGURE 7. The pipeline of MPF [47]. The upper branch of the MPF is
responsible for performing semantic segmentation on the original point
cloud using spherical projection, while the lower branch employs bird’s
eye view projection for the same purpose. The final output of the MPF is
the semantic segmentation of the original input point cloud, achieved by
integrating the results obtained from both branches.

cloud data, the polar coordinate bird’s-eye view representa-
tion, which distributes points more evenly and reduces the
burden on the predictor.

While spherical-based and bird’s-eye view-based projec-
tion techniques demonstrate effectiveness, the information
projected onto the 2D plane by the spherical projection
and the bird’s-eye view projection differs. Based on this
assumption, a Multi-Projection Fusion (MPF) framework
was proposed by Alnaggar et al. [47] to compensate for
the intrinsic information loss in single-projection methods
by fusing multiple projections (Fig.7). The framework uses
two independent and efficient 2D full convolutional mod-
els to segment the spherical projection and the bird’s eye
view projection, respectively, with MobileNetV2 [48] as the
lightweight skeleton for the spherical projection model net-
work and a lightweight modification of U-Net [49] as the
skeleton for the bird’s eye view model. Finally, a soft vot-
ing mechanism is used to fuse the segmentation results of
the spherical and bird’s-eye projections. The experimental
findings indicate that mixed projection techniques can yield
superior segmentation results compared to single projection
techniques.

2) MULTI-VIEW METHOD
The multi-view method obtains a series of 2D views con-
taining different side information from different directions
of the point cloud by simulating different perspectives of
human observation of the object. Semantic segmentation is
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FIGURE 8. Multi-view reduced-dimensional point cloud. Where (a) is
SnapNet [50] acquiring a 2D snapshot of a 3D target from different views
by multiple virtual cameras, and (b) is tangent convolutions [51]
downscaling the surrounding points with the views of different points in
the point cloud.

performed at the pixel level based on these views using
a mature 2D segmentation framework. Finally, the labels
obtained from the segmentation on the 2D views are
back-projected onto the 3D point cloud to achieve the effect
of the point clouds’ semantic segmentation.

To avoid the limitations of 3D CNN, Lawin et al. [48]
projected point clouds into multiple virtual camera views for
the first time based on the idea of multi-view dimensionality
reduction. In order to provide more spatial and textural infor-
mation to the point cloud semantic segmentation, information
such as color, depth, and surface normals are also added
to the projection view. Using the same projection strategy,
Boulch et al. [49] proposed SnapNet, which generates a
composite image of RGB views and geometric features by
selecting many suitable snapshots of the point cloud (the
selection of snapshot views is shown in Fig.8), then using a
fully convolutional network to label each group of 2D snap-
shots pixel by pixel and finally back-projecting the semantic
segmentation results into the original point cloud. Based
on SnapNet [49], Guerry et al. [50] proposed an improved
multi-view convolutional neural network, SnapNet-R. In con-
trast to the above approach, Tatarchenko et al. [51] form a
series of virtual tangent planes using each point in the point
cloud as a tangent point and project the local points onto these
virtual tangent planes to produce a set of tangent images, each
of which is treated as a regular 2D mesh supporting planar
convolution(As shown in Fig.8(b)), and then use the proposed
tangent convolution to segment the point cloud.

The point clouds’ segmentation method based on dimen-
sionality reduction has the advantages of fast speed and low
memory consumption, so it is often used in some embedded
applications that require high real-time performance, such as
autonomous driving. At the same time, the point cloud after
dimensionality reduction also brings the following problems:
(1) several different points in the space may be projected
onto the same grid in the 2D plane, and (2) the spatial geo-
metric structure of the point cloud will be damaged. Due to
these problems, the accuracy of point cloud segmentation is
reduced.

TABLE 5. Overview of the semantic segmentation method for point
clouds based on voxelisation.

B. METHODS BASED ON VOXELISATION
Given the excellent results of CNNs in image semantic
segmentation and the similarity between voxels and pixels
regarding data organization, the point clouds were converted
into voxels by researchers, who subsequently introduced
some 3D-based neural network models to perform seman-
tic segmentation on the point clouds, which is known as
voxel-based methods. In the voxel-based methodology, the
initial step involves breaking down the entire point cloud
into some voxels, followed by utilizing a 3D convolutional
neural network (3D CNN) to extract features and employ
the employment of voxels as the fundamental unit for pre-
dictive classification. The voxel-based techniques can be
categorized into traditional and improved voxel methods. The
voxel-based point cloud semantic segmentation approaches
introduced in this subsection are enumerated in Table 5.

1) TRADITIONAL VOXEL METHODS
The traditional dense voxel-based methods aim to divide the
3D space containing point clouds into ordered voxels and then
perform convolutional operations using standard 3D CNN to
extract point cloud features. When segmenting voxels, the
points within the same voxel are divided into the same seman-
tic labels. VoxNet [68] dominates this class of methods, but
it is used for object recognition. Later researchers proposed a
series of traditional dense voxel-based semantic segmentation
methods for 3D point clouds.

Inspired by the success of deep learning of 2D images and
the 3D CNN proposed by Ji et al. [69] for human action
recognition in video data, Huang et al. [58] first proposed a
full 3D voxel-based convolutional neural network for solving
the point cloud labeling problem. To improve the accuracy
of voxel segmentation, the authors also propose that when
sufficient computational resources are available, the centers
can be shifted, the segmentation process can be re-run, and
finally, a voting mechanism is used to decide which label to
assign to each point. To address the coarse voxel prediction of
Huang’s method, Tchapmi et al. [59] introduced SEGCloud
to effectively combines neural networks, trilinear interpola-
tion [70], and FC-CRF to achieve point-level segmentation
of the 3D point cloud. The proposed network architecture,
as depicted in Fig.9, is thoughtfully designed to optimize
semantic segmentation performance. Typically, each voxel
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FIGURE 9. Segcloud’s pipeline [59]. First, the point cloud is voxelized, and
then coarsely semantically annotated at the voxel level by 3D FCNN. This
coarse output is transferred back to the original 3D point representation
by Trilinear Interpolation, and the obtained 3D point scores are used for
3D FC-CRF inference to produce the final fine-grained results.

contains only Boolean occupancy states (i.e., occupied or
unoccupied) and not other detailed point distributions, so only
little details can be captured. Therefore, Meng et al. [60]
proposed a new point cloud segmentation network, VV-Net,
whose key idea is to efficiently encode the point distribution
within each voxel.

2) IMPROVED VOXEL METHODS
Although representing point clouds as voxels to solve point
cloud segmentation is conceptually simple, many potential
challenges still need proper algorithmic optimization. Firstly,
a traditional dense voxel representation would quickly exceed
the memory limit of a computer, and secondly, it would
consume too much computational time. Therefore, the main
goal of later research is to address the extensive time overhead
and memory cost, with specific research results including
efficient data structure representations [61], [62], sparse
convolution operations [63], [64], and new voxelization tech-
niques [65], [66].

The high activation of the traditional dense voxel method
occurs only near the object’s boundary. At the same time, the
3D data is usually sparse, and the computational resources
consumed by each voxel are equal, so the traditional dense
voxel method is challenging to extend to high-resolution
voxel scenes. In order to focus the calculation on valuable
areas, Riegler et al. [61] proposed a new structural rep-
resentation of point cloud data, the octree representation,
shown in Fig.10(a). In octree representation, the deeper the
tree is in the place with high point density, the smaller the
voxels are divided in the place with high point density so
that the computing power can be concentrated in the place
with dense points. In addition to improving the structure of
voxels, some researchers can also improve the convolution
operation to reduce the computation. Graham et al. [63]
introduced Submanifold Sparse Convolutional (SSC) to per-
form sparse point clouds. Unlike previous implementations of
sparse convolutional networks [71], [72], this convolutional
operation has the same number of active loci at each layer,
so sparsity remains constant, thus avoiding the ‘‘submani-
fold’’ dilation phenomenon, and it is feasible to train deep
networks using this operator. The LiDAR point cloud of
outdoor scenes shows that the density in the immediate area is

FIGURE 10. Improved point cloud voxel partitioning. (a) describes an
octree representation [61] to divide voxels, which allows more and
smaller voxels to be obtained where points are denser so that computing
power can be focused on proper places. (b) describes the way of dividing
voxels by cylinders [66], which ensures a more uniform distribution of
points within each voxel in the case of varying densities between distant
and near point clouds of the autonomous driving environment.

much larger than in the outlying area. Suppose the traditional
equal volume voxel is used to divide the LiDAR point cloud
of outdoor scenes will be an uneven distribution of more
points in the near-area voxels and fewer points in the far-area
voxels. To solve the above phenomenon, Zhou et al. [66] pro-
posed a new voxelization method, i.e., 3D cylinder partition,
as shown in Fig.10(b), which can allocate more voxels to the
dense points in the near region. Based on this, Cylinder3D
is developed, whose 3D convolution operation is inspired
by the sparse convolution technique employed in SECOND
[73], resulting in a reduction of the computational resources
required for feature extraction. Based on cylinder voxel seg-
mentation, Feng et al. [67] proposed LessNet to better encode
voxel features by aggregating point features within voxels
without querying neighboring points to improve the semantic
information.

The existing voxel-based semantic segmentation models
address the disordered and unstructured characteristics of
point clouds. However, voxel-based methods have many
drawbacks, such as the size of voxels cannot be readily deter-
mined, high arithmetic power and memory requirements,
and blurred segmentation boundaries, which limit the further
development of voxel-based methods.

C. METHODS BASED ON PRIMITIVE POINTS
Since dimensionality reduction-based methods are prone to
spatial structure loss, and voxel-based methods are computa-
tionally resource intensive and require highmemory capacity,
in recent years, primitive point-based methods guided by
PointNet [11] do not require excessive pre-processing of
point cloud data have become a new research hotspot.
Primitive point-based methods can be classified into the
following five categories: feature fusion methods, graph con-
volution methods, optimized convolution methods, attention
mechanism methods, and incomplete supervised methods.
A summary of the ideas of these five categories of primitive
point-based methods and some representative specific meth-
ods corresponding to each type of technology are shown in
Table 6.
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TABLE 6. The classification of methods based on primitive points, the approximate idea of each category, and the corresponding representative methods
of recent years.

1) FEATURE FUSION METHODS
In order to better achieve fine-grained point cloud segmen-
tation, the structural features between points are the critical
consideration. At present, a multitude of network models has
been devised to capture the intrinsic connections within point
clouds. These models leverage techniques such as aggregat-
ing information from neighboring points and fusing regional
features across different levels to enhance the accuracy of
semantic segmentation for point clouds.

PointNet [11] is the first network model that uses primi-
tive points for point cloud segmentation. However, they only
partially consider the point clouds’ local features and only
splice a global feature obtained bymaximumpooling after the
feature vector of each point, resulting in some fine-grained
wrong segmentation in the segmentation results. PointNet++

[7] addresses this problem using a layered neural network
with many set abstraction levels (Fig.11). In PointNet++,
the sampling&grouping layer selects a subset of points from
the input data, which are then organized into a localized
region for further processing. The local region is transformed
into a feature vector using mini-PointNet within the Pointnet
layer. Like the idea of CNN, the ‘‘seen’’ range of ‘‘local
area’’ becomes broader after multi-level feature extraction,
and the fusion from local features to global features is
gradually completed. Using PointNet [11] and PointNet++

[7] as a reference, researchers later proposed many feature
fusion methods by combining local and global features.
Cheng et al. [74] introduced a novel cascaded non-local
network model composed of three types of non-local blocks
(Neighborhood-level, Superpoint-level, and Global-level),
which collaboratively aggregate local features to enhance
point cloud semantic segmentation performance. Drawing
upon the advancements made in SalsaNet [45], Cortinhal
et al. [75] proposed a novel module that adds a residual
dilated convolution stack to the front end of the encoder in
the network pipeline. This module effectively fuses receptive
fields at multiple scales to capture a comprehensive range of

contextual information. Similarly, Qiu et al. [35] introduced
a bilateral block to perceive the structural features of nearby
points, which enhances the local environment by using the
geometric and semantic features of the surrounding points.
During the downsampling of point clouds, it is common for
the local structure to be compromised. The DFC module,
developed by Zhao et al. [76], enables retaining important
features as point sets decrease in size. This module is com-
bined with the GCMmodule to learn long-term dependencies
and compensate for the lack of general perceptual informa-
tion in local features. The resulting LG-Net, consisting of
these two modules, is particularly effective for point cloud
detail segmentation. To investigate how to effectively inte-
grate features at different scales and stages in a point cloud
segmentation network, Nie et al. [77] devised a scale pyra-
mid architecture that allows information to flow more freely
and systematically. To address the aggregation of different
category points, Lu et al. [78] suggest utilizing distinct aggre-
gation methods for data within the same category and across
different categories and present a customized module called
Category Guided Aggregation. The fusion of multi-scale fea-
tures in large-scale point clouds has been an active research
area, with notable successes achieved by researchers. Fan et
al. [79] introduced a learnable module SCF, which effectively
extracts spatial contextual features from voluminous point
clouds. SCF comprises three key constituent blocks: the LPR
block and the DDAP block, which capture distinct local
features, and the GCF block, which extracts global semantic
features. Lin et al. [80] introduced LGENet, which employs
2D and 3D point convolution to extract features and learn
local geometries for ALS point cloud segmentation, followed
by a global encoder to utilize this contextual information.

2) GRAPH CONVOLUTION METHODS
Point clouds and graphs share similarities in being unstruc-
tured and sparse. The graph convolution method combines
convolution operations with graph structure representation to
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FIGURE 11. The pipeline of PointNet++ [7]. Firstly, the point cloud
features are aggregated to the sampled partial points by multiple Set
Abstraction levels, then these points with overall features are combined
with the original points for interpolation operation, and finally, the
semantic class of each point in the original point cloud is obtained.

enable convolution neural networks to operate on the graph
structure and capture dependency relationships, leading to a
more comprehensive understanding of the underlying rela-
tionships.

With the development of graph convolutional neural net-
works (GCNs), several researchers have used GCNs for the
segmentation task of point clouds. Te et al. [81] first used
GCNs for point cloud segmentation tasks and proposed the
RGCNN. RGCNN takes the features of points as graph sig-
nals, with the point cloud feature matrix and adjacencymatrix
as inputs. Due to the complexity of the graphs constructed
using point clouds, Landrieu et al. [82] introduced the concept
of a Super Points Graph (SPG) for effectively addressing
semantic segmentation challenges associated with processing
massive point clouds. SPG considers each geometric shape
after geometric partitioning as a super point to construct
a super point graph. It can provide a detailed description
of the interconnections between adjacent targets, effectively
solving the problems of too-independent operation of each
point and lack of contact between points. Liu et al. [83]
propose a dynamic point aggregation module based on GCNs
to overcome the limitations of previous methods that only
sample and group points in Euclidean space resulting in lim-
ited adaptability to different scenarios. This approach allows
for a more flexible and robust hierarchical point set learning
model than those relying on fixed point aggregation strate-
gies. To tackle the vanishing gradients issue that restricted
traditional GCNs, Li et al. [84] introduced innovative con-
cepts such as residual connections, dense connections, and
dilated convolutions into GCNs. These techniques enable the
creation of deeper graph neural network models better suited
for complex data. Combining the idea of multi-scale feature
fusion, Lin et al. [85] designed a novel graph max pooling
operation based on GCNs and applied it to the 3D-GCN
network they constructed to summarize features at differ-
ent scales. Due to the shape and weights of each kernel in
3D-GCN being learnable during training, it is robust to the
movement and scaling changes of 3D point clouds. Point
cloud semantic segmentation models based on GCNs tend
to have an enormous time complexity, and later, researchers
have proposed methods dedicated to improving the training

speed of the models. Based on the improvement of DGCNN
[16], Zhang et al. [86] removed the transform network in
DGCNN to reduce the size of the network and proposed
a linked dynamic graph CNN (LDGCNN) to classify and
segment the point clouds directly. Aimed at the disorder
and non-uniformity of point clouds, Xie et al. [87] proposed
MuGNet, a framework with graph convolution that effec-
tively converts point clouds into graphical representations
with reduced computational requirements. The computa-
tional effort is reduced by using the GCNs on preformed point
cloud graphs, and the segmentation accuracy is maintained
by using bidirectional networks that fuse different resolution
feature embeddings. From amathematical theory perspective,
Li et al. [88] proposed an improved KNN search and MLP
algorithm to optimize the computational process of GCNs,
which reduces the time and space complexity of existing
GCNs.

3) OPTIMISED CONVOLUTION METHODS
Thanks to its local connectivity and weight sharing, the
standard convolutional neural network performs remarkably
well in tasks such as image recognition. However, applying
them to 3D point clouds that lack stable structure is still
challenging. To address this situation, some researchers have
developed convolutional operations for irregular point clouds
to perform point cloud segmentation tasks by improving tra-
ditional convolutional processes.

Many researchers have modified traditional CNNs to adapt
to unique structures and extract features from point clouds
better. To address the challenge of extending the convolu-
tion operation from regular lattices to irregular point sets,
Xu et al. [89] proposed a new convolution operation called
SpiderConv. The SpiderCNN, composed of SpiderConv,
incorporates a filter design that combines a simple step func-
tion and a Taylor polynomial, with the step function capturing
local geodesic information and the Taylor polynomials ensur-
ing expressiveness. Wang et al. [90] proposed a new operator
for operating on non-grid structured data, Parametric Contin-
uous Convolution (PCC), whose convolution kernel function
is parameterized by a multilayer perceptron and spans the
entire continuous domain. Komarichev et al. [91] introduce
annular convolution to perform feature extraction directly on
3D point clouds. This new convolution operator can define
an arbitrary kernel size on each local annular region and
better specify the annular structure and orientation in the
computation to accurately depict the geometric properties of
the local neighborhood, helping to capture a better geometric
representation of the 3D shape. Kumawat et al. [92] proposed
the ReLPV block, as a replacement for the conventional 3D
convolutional layer, involves extracting phase information
from the 3D local neighborhood, resulting in a more effi-
cient capture of phase information and an improved feature
representation of the input data. Wu et al. [93] proposed
PointConv, which treats the convolution kernel as a non-linear
function incorporating local coordinates of each 3D point,
accurately approximates filter weights and density functions,
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and achieves both permutation and translation invariance,
making it an efficient operation for 3D point cloud feature
extraction. Unlike the above methods, Lei et al. [94] con-
structed a new data structure using the sparsity of irregular
point clouds and proposed an octree-guided neural network
architecture to segment 3D point clouds directly. The octree
in this structure differs from the octree in the voxel repre-
sentation [61], which improves the algorithm’s efficiency by
coarsening the data hierarchically and avoiding searching for
domain points using the KNN algorithm. Lin et al. [95] con-
sidered the existence of regular inductive bias through local
point feature learning and proposed a new graph convolution
method called ‘‘difference graph convolution’’ (diffConv),
which includes techniques such as density-dilated ball query,
Laplace smoothing, and masked attention. By using these
techniques, diffConv can achieve better feature learning per-
formance without the constraints of the regular view.

4) ATTENTION MECHANISM METHODS
Recent deep learning tasks have widely adopted attention
mechanisms, whose basic idea is to enable neural networks to
ignore irrelevant information and focus on crucial details for
the study. This technique has been shown to have significant
effects in practice. For point cloud segmentation tasks, many
researchers have also introduced attention mechanisms to
focus on point clouds’ fine-grained and critical features, thus
improving the segmentation accuracy.

Exploiting the fine-grained semantic features of point
clouds is essential for improving the segmentation accuracy.
Chen et al. [96] embed a graphical attention mechanism in
stacked MLP layers to better note the fine-grained features of
point clouds. Zhiheng et al. [97] designed two new modules,
Graph Embedding Module (GEM) use the covariance matrix
to explore the relationships between points to enhance the
local feature representation of the network, and Pyramid
Attention Network (PAN) assigns robust semantic features to
each point to preserve the delicate geometric features. Fur-
thermore, he proposed PyramNet based on these twomodules
to better learn point clouds’ spatial local geometric features.
To highlight the importance of different scale regions in the
local division of point clouds, Liu et al. [98] proposed an
RNN-based sequence model Point2Sequence. This model
divides each local area intomulti-scale regions and introduces
an attention mechanism to improve the critical regional scale
features.

In addition to focusing on the fine-grained features of
the point cloud, some attention-based methods also aim to
fuse local features with those of the larger region. Feng et
al. [99] introduced a point-wise spatial attention module to
adaptively integrate local point features and long-range con-
textual information. Likewise, Chen et al. [100] introduced
the DAPnet, which incorporates the point attention module
(PAM) and the group attention module (GAM). The PAM
utilizes the inter-region correlation of point clouds to assign
varying weights, while the GAM enhances the inter-group
correlation.

Taking inspiration from the achievement of the Trans-
former model [116] in both natural language and image
processing, Zhao et al. [101] applied it to point cloud pro-
cessing and proposed the Point Transformer. Point clouds are
a collection of vectors in space, matching the Transformer’s
self-attention operator, which makes Point Transformer nat-
urally superior to other convolutional models for point cloud
processing. Cheng et al. [102] proposed S3Net, a novel
approach that utilizes a Transformer encoder-decoder struc-
ture for point cloud semantic segmentation while employing
SIntraAM and SInterAM to capture intra- and inter-feature
information. Additionally, the method utilizes the Sparse
Residual Tower to process the obtained detailed information
and extract global features. Also, based on the encoder-
decoder structure, Tang et al. [103] proposed a voxel-based
encoder for local and global feature extraction, decoding
features and segmenting point clouds by cross-attention and
self-attention in a Transformerd-based decoder.

5) INCOMPLETE SUPERVISED METHODS
With the development of point cloud acquisition devices,
the acquisition of large-scale point clouds has become more
accessible; however, annotating this data at the point level is
difficult. Therefore, in recent years, many researchers have
started to use incompletely labeled or Coarse-grained scene
class-level labeled point cloud segmentation datasets for
incompletely supervised model training. They have achieved
results comparable to supervised learning methods.

Performing semantic segmentation on sparsely labeled
points is the most common incompletely supervised method,
and the commonly used strategies include self-training and
pre-training. Liu et al. [104] put forward a weakly super-
vised point cloud semantic segmentation model based on
self-training, borrowing from self-training in 2D image
understanding. The network performs label expansion by
iteratively executing the graph transfer module and combines
‘‘Relation Net’’ to learn similar features among super-voxel
of complex 3D structures. So only one point per object needs
to be labeled for the input point cloud to achieve good seg-
mentation results. To establish the topology of labeled and
unlabeled points and to perform efficient information prop-
agation, Zhang et al. [105] introduce perturbation branching
and context-aware modules. By constraining the prediction
consistency between the perturbed and original data and
with the help of the context-aware module, the GCNs is
driven to establish the fine-grained graph topology of the
point cloud. Building on the success of contrastive loss
in self-supervised learning, Jiang et al. [106] introduced
guided point contrastive loss, a novel approach that aims to
improve feature representation and model generalization in
a semi-supervised setting. Similarly, Li et al. [107] propose
a hybrid contrastive regularization (HybridCR) framework
in a weakly supervised environment. Influenced by the idea
of pre-training, Yang et al. [108] improve the shortcoming of
failing to integrate spatial information well in PointContrast
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[117] and improve efficient learning of 3D data by clustering
pre-trained point features in limited annotations scenarios
with fine-tuning and active labeling strategies. Based on
similar ideas, Zhang et al. [109] used the color information
of the point cloud as a self-supervised signal to learn prior
knowledge, combined it with local perceptual regularization
to learn contextual knowledge, and then initialized theweakly
supervised network using pre-trained encoder parameters.
Shi et al. [110] introduced a novel approach for training
segmentation models on outdoor 3D point cloud sequences
with extremely sparse annotations (i.e., only 0.001% of points
are labeled). Their approach is based on a spatio-temporal
framework that comprises two main modules: the first mod-
ule is a temporal dimensional matching module, enabling the
propagation of pseudo labels across different frames, while
the second module is a spatial dimensional graph propagation
module facilitating information propagation from the pseudo
labels to each frame’s point cloud. These modules allow
effective training segmentation models on sparsely annotated
3D point cloud sequences. From the perspective of reducing
the cognitive uncertainty of unlabeled points, Lee et al. [111]
proposed the GaIA, the main idea of which is to reduce the
category uncertainty of unlabeled points by the reliable infor-
mation of labeled points. The specific approach is to calculate
the relative entropy between the target point’s entropy and its
neighbors’ entropy to represent the information’s reliability
by graphical information gain. Furthermore, combined with
the proposed ArcPoint loss, embed those unlabeled points
with high entropy values into reliable labeled points to reduce
the entropy value and then increase the information relia-
bility of unlabeled points. To facilitate the development of
Scribble-Supervised methods for point cloud segmentation
tasks, Unal et al. [112] published ScribbleKITTI, the first
scribble annotation dataset for LiDAR semantic segmenta-
tion. Furthermore, it proposed a weakly supervised LiDAR
semantic segmentation pipeline based on scribble annotation.

Learning point-level labels using subcloud-level or scene-
level labels is one of the incompletely supervised methods
for point clouds, which significantly reduces the labeling
requirements of the dataset compared to supervised learning.
Wei et al. [113] employed a sub-cloud annotation strategy
to annotate 3D point cloud datasets and proposed a novel
approach to training point cloud semantic segmentation by
utilizing weak labels at the cloud level in the original 3D
space. This method represents the first instance of using
cloud-level weak labels to train point cloud semantic seg-
mentation. Ren et al. [114] combine semantic segmentation
and target detection using scene-level labeling, coupling their
predictions through cross-task consistency loss to obtain sig-
nificantly better results than a single-task baseline.

Learning semantic information about point clouds in tags
that contain a few errors is also a form of incomplete super-
vised learning. To address the effect of mislabelling in the
dataset on the performance of segmentation models, Ye et al.
[115] proposed the Point Noise-Adaptive Learning (PNAL)
framework to address this problem. PNAL is noise-rate blind

TABLE 7. Overall description of the multiple data formats methods
presented in this subsection.

to deal with the unique problem of noise-rate variation
in point clouds. The framework generates the best possi-
ble labels by introducing point-wise confidence selection,
cluster-wise label correction, and voting strategies.

Compared with themethod based on dimensionality reduc-
tion and the method based on voxels, the method based on
primitive points does not require data transformation and
avoids the loss of information and computational complex-
ity. However, semantic segmentation using point cloud data
directly requires a higher quality of point cloud data, which
is susceptible to noise and missing data. Multiple data repre-
sentations or multimodal data can be utilized to compensate
for the impact of data quality so that the information can
complement each other.

D. METHODS BASED ON MULTIPLE DATA FORMATS
For the same segmentation scene, different forms of data
representation often contain information that is not parallel.
Using multiple data formats as input to a point cloud segmen-
tation model allows meaningful information to be extracted
from various sources, which significantly helps improve the
segmentation accuracy of the point cloud. We further divide
such methods into multi-representational and multi-modal
methods. The specific method for multiple data formats
described in this subsection is shown in Table 7.

1) MULTI-REPRESENTATIONAL METHODS
In recent years, some researchers have combined the rep-
resentation of point clouds with different forms of images,
voxels, and point sets and proposed hybrid data input
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models that have contributed significantly to improving the
segmentation accuracy of point clouds, which we call multi-
representation methods.

Previously, researchers performed semantic segmenta-
tion by projecting point clouds as pictures, converting
them to voxels, or directly using the original point cloud.
The voxel representation of the point cloud grows cubi-
cally with the increase of the input resolution in memory
usage. The original point representation requires much time
structuring unordered sparse data before feature extraction.
Liu et al. [118] proposed Point-Voxel CNN (PVCNN) to
combine both advantages, using low-resolution voxel-based
branching to extract coarse-grained neighborhood informa-
tion and high-resolution point-based branching to extract
fine-grained point features as a complement to the voxel
features. By utilizing a sparse and irregular point represen-
tation, this technique achieves efficient representation of 3D
input data, while the dense and regular voxel representation
is employed for convolution, which dispels the misconcep-
tion that voxel-based convolution is inherently inefficient.
Tang et al. [119] argue that PVCNN [118] can only pro-
vide limited voxel representation in large scenes while small
objects occupy few voxels, so learning helpful information
on voxel-based branches isn’t easy. Combining the idea that
sparse convolution can provide higher resolution than reg-
ular volume convolution [64] and the dual branching of
PVCNN, Sparse Point-Voxel Convolution (SPVConv) was
proposed to equip the sparse voxel-based branch with a high-
resolution point-based branch that can effectively capture
intricate details present in vast environments. Inspired by
PVCNN [118] and SPVNet [119], Ye et al. [120] proposed
DRINet, shown in Fig.12, which consists of two modules,
SPVFE and SVPFE. The role of SVPFE is to generate point
features from voxel features using the attention aggregation
layer, and the role of SPVFE is to generate target-scale voxel
features from point features using the multiscale pooling
layer. The network inherits the advantages of the Point-Voxel
two-branch representation. It runs both branches to itera-
tively aggregate and propagate point and voxel features to
finally learn an advanced feature representation. In addition
to fusing voxel and point features, Xu et al. [121] incorpo-
rated the range image representation of point clouds into the
fusion framework and proposed the RPVNet. This frame-
work transforms pixel and voxel features into point features.
This methodology utilizes interactive learning to dynamically
choose the optimal feature representation for each point,
which is then fused onto points and transferred back to range
images and voxels to enhance the features mutually benefi-
cially. Compared with the above methods, RPVNet performs
feature interaction at each feature extraction stage rather than
through a final simple fusion, making themodel more capable
of learning.

2) MULTI-MODAL METHODS
Multimodal learning, machine learning using informa-
tion from multiple modalities, allows the aggregation of

FIGURE 12. The pipeline of DRINet [120]. The upper branch of this model
is Sparse Point-Voxel Feature Extraction (SPVFE), and the lower branch is
Sparse Voxel-Point Feature Extraction (SVPFE). By iteratively running
these two branches, the semantic features are transformed several times
in the representation of points and voxels to refine the segmentation
results gradually.

information from multiple data sources to make the repre-
sentation learned by the model more complete. Over the past
few years, there has been a growing interest in the application
of multimodal learning techniques to point cloud segmenta-
tion tasks in the field of autonomous driving. This surge in
interest can be attributed to the practical implications of these
techniques.

Multiple types of sensors for autonomous cars can com-
pensate for the shortcomings of a single sensor capturing
environmentally relevant information, thus ensuring robust
sensing in challenging environments. Most modern com-
mercial autonomous vehicles are equipped with two com-
plementary sensors, a camera, and a LIDAR, with the
camera sensor providing color and the LIDAR providing
depth information. To make fuller use of this information,
Madawi et al. [122] convert RGB images into a polar-grid
mapping representation to fuse the color information with
the depth information from LIDAR. To better merge RGB
images with LiDAR point clouds, Krispel et al. [123] pro-
posed FuseSeg, which represents LiDAR point clouds as
range images and fuses multi-modal data using only the
standard 2D CNN. The feature warping module in FuseSeg
warps the features extracted from the MobileNetV2 [127]
branch to the SqueezeSeg [39] branch layer by layer and then
splices the warped RGB features with the features from the
range image for segmentation. Zhuang et al. [124] argued that
the method of Madawi et al. [122] to project images’ pixel
coordinate into the LiDAR coordinate would result in the loss
of appearance information and therefore proposed perspec-
tive projection. Then the proposed TSNet is used to learn
features from RGB images and projected point cloud, and
like FuseSeg, TSNet also fuses features layer by layer by two
independent branches. When employing multimodal-based
approaches for point cloud segmentation, it is often neces-
sary to access both point clouds and images while ensuring
a precise point-to-pixel mapping between the two modal-
ities. The in-vehicle LIDAR has a 360-degree perception
range, while the front camera has a narrower viewpoint per-
ception. Yan et al. [125] proposed the 2DPASS method to
perform semantic segmentation without strict multi-modal
pairing constraints. The method by the MSFSKD block
efficiently transfers complimentary 2D features into a 3D
network, and the semantic segmentation is done by a pure 3D

61942 VOLUME 11, 2023



A. Zhang et al.: Exploring Semantic Information Extraction From Different Data Forms

TABLE 8. Semantic segmentation performance on S3DIS [8]. ‘‘*’’ indicates the result of cross-validation using 6-fold on that dataset, and ‘‘+’’ indicates the
result of validation using ‘‘Area-5’’ on that dataset. ‘‘-’’ indicates that no experiments were performed on that data in the original paper. In the incomplete
supervised method, the percentage inside ‘‘[]’’ indicates the percentage of annotation on the dataset.

TABLE 9. The table shows the experimental results of some methods on the Semantic3D [33] dataset, where ‘‘-’’ indicates that the data did not
experiment in the original paper, and the percentage in ‘‘[]’’ in the incomplete supervised methods indicates the percentage of labeled data of the data.

tagging supervised modal-specific decoder. There are uncon-
trollable changes in the natural environment, and models
learned from previous datasets may not perform well in the
new environment. In multi-modal 3D semantic segmentation,
Shin et al. [126] proposed MM-TTA to allow models to learn
new ‘‘knowledge’’ continuously. The model does not need
to access source domain training data but quickly adapts to
multi-modal test data. It is implemented by introducing two
modules: Intra-PG, which updates the modal data models at
different rates and generates reliable pseudo labels within
each modality, and Inter-PR, which adaptively selects pseudo
labels from both modalities. Together, these two modules
generate the final cross-channel pseudo label to help test-time
adaptation.

IV. EXPERIMENTAL RESULTS
In the previous section, we analyzed the idea of segmentation
of point clouds qualitatively in several ways but did not con-
sider the quantitative results of these methods. In this section,

the effectiveness of these methods will be analyzed quanti-
tatively based on the commonly used datasets presented in
section II, and conclusions will be analyzed based on these
experimental results.

S3DIS is a large-scale indoor scene dataset, and the per-
formance of some of the methods presented in this paper on
this dataset is shown in Table 8. For the two primary evalua-
tion criteria, mIoU and OA, the feature fusion and attention
mechanism-based approaches perform relatively well com-
pared to the traditional voxelization approaches. This result
occurs because the S3DIS dataset is an indoor scene dataset,
and since there aremany details and complex geometric struc-
tures, traditional voxel-based methods may have difficulty
capturing these details and structures and therefore perform
poorly. In contrast, methods based on attention mechanisms
and feature fusion can better capture the details and struc-
tures in the point cloud because they can handle each point
more flexibly, which leads to better extraction of local and
global features, thus improving the accuracy of segmen-
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TABLE 10. Comparison of quantitative results for some methods on the SemanticKITTI [34] dataset. The blue font in the incompletely supervised
methods represents the percentage of annotated data.

tation. In addition, the attention mechanism can help the
model focus more on essential points and features and reduce
the interference of noise and redundant information, thus
improving the robustness and generalization ability of the
model.

Semantic3D is a large-scale LiDAR point cloud dataset
for outdoor scenes, and Table 9 shows the performance of
some newly proposed methods on this dataset in recent years.
Similar to the results on the indoor scene point cloud seman-
tic segmentation dataset S3DIS, notable performance was
achieved using feature fusion methods, as such methods can
combine local features and global structure information in
the point cloud for semantic segmentation. Notably, the graph
convolution-based approach SPG achieved a mIoU score of
76.2% in 2018 alone, possibly because point clouds under
the graph structure representation fit their structural features
more closely, combined with the graph convolution using the
neighborhood information of the point cloud for convolution
operations to obtain higher-level features through multi-layer
convolution. On the contrary, the performance is poor in
multi-view-based methods because these methods cannot
capture the stereo structure information of the point cloud
well, leading to information loss and error accumulation, thus
affecting segmentation accuracy. Although multi-view-based
methods cannot beat other methods in terms of segmentation
effect, they have the advantage of fast speed. Since incom-
pletely supervised methods do not require many manual
labels, these methods have achieved good development in
recent years, as can be seen from Table 9, by labeling about

1% of the points to achieve the effect that many completely
supervised methods are challenging to achieve.

SemanticKITTI dataset is a large outdoor scene dataset
based on automotive LiDAR point clouds, which is mainly
used to research algorithms related to the autonomous driving
domain. Table 10 shows the quantitative results of some of
the methods on this dataset. Due to the relative complexity
of the outdoor road scene situation, the mIoU score of the
SemanticKITTI dataset is relatively low compared to the
experimental results of several datasets above. Due to the high
real-time requirements of autonomous driving applications
and the fast computational speed of projection-based meth-
ods, many of the methods on this dataset can be found to be
projection-based. However, purely projection-based methods
result in relatively low final mIoU scores due to the loss of
spatial structure. Utilizing multi-representation methods or
multi-modal data can reduce this impact. Encouraging results
have recently been achieved with multi-data format methods,
which will be a future direction as the computational power
of embedded chips increases.

V. DISCUSSION AND PROSPECT
This paper summarizes four aspects of recent deep learning-
based 3D point cloud segmentation methods and compares
their performance on the corresponding datasets. Deep learn-
ing methods are more efficient in data feature extraction
than traditional machine learning methods and achieve better
segmentation accuracy. However, from the current research,
there are still many unresolved issues, and how to solve these
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unresolved problems is the focus of future research. Based on
the review of point cloud segmentation methods in the above
sections, we will then present a few of our views on the future
development of point clouds.

• Diverse datasets in different fields. Existing 3D
point cloud datasets are mostly limited to object parts,
indoor scenes, and urban street scenes. These limited
datasets are insufficient for the diverse development
of point cloud segmentation technology. Establishing
more data-rich, effective, and comprehensive datasets
is a prerequisite for developing point cloud segmen-
tation technology. For example, the establishment of
digital workshop point cloud datasets can promote the
development of smart factories, the establishment of
urban remote sensing point cloud datasets can encourage
the construction of smart cities, and the establishment
of farm point cloud datasets can promote the produc-
tion of smart farms. In addition, the establishment of
diverse annotated datasets is also a measure to facilitate
the development of different point cloud segmentation
methods.

• Open-world point cloud segmentation. Current
closed-set point cloud segmentation methods are not
robust enough for applications such as autonomous driv-
ing because the network’s input can only be trained with
specific class labels. New classes must be mislabelled,
which can have disastrous consequences in complex and
changing road scenarios. In order to facilitate more prac-
tical applications, a new research direction is to develop
a class of Open-world point cloud segmentationmethods
that can be better adapted to the ‘‘new environment.’’

• Enhancing the effect of boundary segmentation.
Clear segmentation boundaries between different cate-
gories are essential for a good algorithm in segmentation
tasks. 3D point clouds are prone to confusion during
feature fusion between different categories of points that
are similar in appearance or spatially adjacent, result-
ing in poor boundary segmentation. However, because
there are relatively few points at the boundary, its seg-
mentation effect only contributes a little to the existing
commonly used evaluation criteria such as mIoU or
OA. The segmentation impact at the border is far more
significant than elsewhere, so proposing new measures
for assessing the effectiveness of boundary segmentation
and new methods that work well for boundary segmen-
tation is an urgent problem.

• Domain adaptive learning. The semantic segmentation
models of point clouds are usually trained in a specific
scene and used in this scene, for example, the models
trained in indoor scenes are difficult to be applied to
outdoor scenes, and the domain adaptive learning meth-
ods can be explored in the future to make the models
applicable to point cloud data in different scenes and
improve the generalization ability of the models.

• More incomplete supervision methods. Segmentation
task has a finer granularity of labels than classification

tasks and is very time-consuming and labor-intensive
for collecting training datasets. Segmentation of point
clouds is not only limited to public datasets. More
specific applications require researchers to collect
domain-specific point cloud data, and labeling hundreds
of millions of points would take far more time than
the algorithm itself. Incompletely supervised methods
will be the focus of future research in large-scale and
very large-scale point cloud segmentation because they
require only a few points or weak types of object class
labels to be labeled. They can be used for segmenting
point clouds, and such methods can also help produce
supervised method datasets.

• Multi-source data fusion methods. Equipping
autonomous vehicles with different data acquisition
devices like LiDAR and cameras can provide more
comprehensive scene understanding information for
autonomous driving. LiDAR point cloud segmentation
using multi-source data is a hot topic of current research
in autonomous driving. Compared to projection-based
methods, the segmentation accuracy of multi-source
data fusion methods is greatly improved, guarantee-
ing safe driving. However, higher computational power
is required due to the need to process different data
types. As the computing power of in-vehicle chips
increases, more point cloud segmentation algorithms
for autonomous driving will shift to multi-source data
fusion methods.
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