
Received 15 May 2023, accepted 4 June 2023, date of publication 20 June 2023, date of current version 26 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3287998

A Runtime Switchable Multi-Phase Convolutional
Neural Network for Resource-Constrained
Systems
JEONGGYU JANG 1 AND HOESEOK YANG 2, (Member, IEEE)
1Department of Electrical and Computer Engineering, Ajou University, Suwon-si 16499, South Korea
2Department of Electrical and Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA

Corresponding author: Hoeseok Yang (hoeseok.yang@scu.edu)

This work was supported by the Institute of Information Communications Technology Planning Evaluation (IITP) grant funded by the
Korea government (MSIT) through the project ‘‘Neuromorphic Computing Software Platform for Artificial Intelligence Systems’’ under
Grant 1711080972.

ABSTRACT Convolutional Neural Networks (CNNs) are widely used in various systems, including
resource-constrained embedded systems or IoT devices. In such systems, it is typical to deploy compressed
or pruned CNNs, instead of original ones, at the cost of reduced accuracy. Existing CNN pruning techniques
have primarily focused on minimizing resource requirements. However, today’s embedded systems are
increasingly dynamic in both resource demands and availability. Thus, the previous techniques that only
consider given static cases are no longer efficient. In this paper, we propose a novel multi-phase CNN that
enables a multi-objective exploration of a number of pruning candidates out of a single CNN. In the proposed
technique, a CNN can operate in various versions depending on which subsets of weights are used and can
be transformed to the one best matches to the given constraint adaptively and efficiently. For that, a CNN
is first pruned to the sparsest form; then a set of parameters (sub-network) is additionally supplemented as
the phase goes by. As a result, a number of network versions for all different phases can be represented
by a single network and they form a pareto solution over the accuracy and resource usage trade-off. In this
work, we target CPU-based CNN inference engines as most embedded systems do not have the luxury
of specialized co-processor support such as GPUs or HW accelerators. The proposed technique has been
implemented in a publicly available CPU inference engine, Darknet, and its effectiveness has been validated
with a popular CNN in terms of design space exploration capability and runtime switchability.

INDEX TERMS Deep learning, convolutional neural network, neural network optimization, resource-
constrained system.

I. INTRODUCTION
The last decade has witnessed a dramatic growth of
convolutional neural network (CNN) applications in image
classification and recognition [1], [2], [3], semantic segmen-
tation [4], [5], image enhancement [6], [7], and so forth.
Such successes have been attributed to the enhanced accuracy
enabled by a large number of layers cascaded in a row in a
single CNN, so-called deep learning, which, in turn, owes to
the advance of parallel computer architectures [8], [9] and
CNN accelerators [10], [11].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

Nowadays, the application of deep CNNs is continuously
becoming more pervasive in daily lives. So, there are increas-
ing demands to successfully operate CNNs on embedded
systems or IoT (Internet-of-Things) devices, where only
limited resources are available. Two different approaches
have been proposed to overcome the insufficient resource
availability in such systems. The first approach is to use
reduced or simplified models in the first place [12], [13] that
require a smaller storage or memory to store parameters, and
lesser computing capability. The other is to compress the
CNNmodel by pruning out less important weights [14], [15],
[16], [17], [18], [19].

Designing an electronic system is often associated
with multiple non-functional design concerns, e.g., power

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 62449

https://orcid.org/0000-0002-0964-422X
https://orcid.org/0000-0002-7929-7470
https://orcid.org/0000-0003-0619-0338


J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

consumption, memory capacity, latency constraint, and so
forth. That is, in many cases, more than one optimization
objectives should be considered with a number of resource
constraints. Moreover, as those factors are closely related to
each other, it is crucial to have a systematic methodology
to consider them altogether in the design and optimization
phases [20], [21], [22], [23], [24], [25]. Most CNN optimiza-
tion methods [12], [13], [14], [15], [16], [17], [18], [19] are
typically proposed to explore the trade-off between accuracy
and resource usage.

In addition, today’s embedded systems are increasingly
dynamic in terms of the above-mentioned design concerns.
On one hand, the execution time demand may vary due to
the multiple operation modes [26] or dynamic input workload
characteristics that is associated with dynamic physical
processes [27]. On the other hand, resource availability
can also be flexible as in the transiently powered systems
with energy harvester where power budget may change
at runtime [28]. Moreover, CNN workloads often exhibit
different context-/scene-specific behaviors [29] or quality
requirements [30]. In short, CNNs running on embedded
systems need to adapt themselves efficiently in response to
the dynamic context or workload changes, which is the main
focus of this paper.

It is not a viable solution to keep multiple versions of
a CNN due to the limited storage capacity of embedded
systems. Alternatively, an approach, which we refer to
as multi-phase or N-in-1 network in this paper, has been
proposed [16], [19]. In these works, a single CNN can
be trained to be used in many different forms. In these
techniques, while only one set of CNN parameters is
maintained in the system, different subsets of it may be
activated at runtime.

Tann et al. [19] proposed an incremental training method-
ology to build a multi-phase CNN. In their work, they first
obtain the most compact form of CNN out of the original
network by removing a number of channels and kernels in
each layer. Then, based on this fixed CNN, they add new
channels and kernels to each layer and only the weights that
belong to the newly added channels and kernels go through
a training procedure again. By repeating such incremental
training procedures, they could obtain an N-in-1 network,
with which one can selectively activate or deactivate a subset
of channels and kernels in the CNN. Another approach
to obtain an N-in-1 network is NestedNet, proposed by
Kim et al. [16], that requires only one training step. They
define all possible multi-phase configurations of a CNN
in advance. Then, in the training stage, the losses of all
configurations are separately calculated and a weighted sum
of them is used as the global loss for back propagation.

We pay attention to the following limitations of existing
multi-phase CNN approaches. First one is on the granularity
of building N-in-1 networks. It is well-known that the fine-
grain weight pruning approach such as [14] and [15] is
not suitable to achieve speedup on commodity hardware
like CPU or GPU, but can only effectively improve the

inference speed on top of specially designed HW acceler-
ators [10], [11], [31], [32]. That is, removing weights at
arbitrary positions would not improve the inference speed.
For the same reason, existing N-in-1 CNN approaches
either restricted themselves to the coarse-grain structured
granularity [19], i.e., filter- or kernel-level, in building the
multi-phase CNN or cannot expect the inference speed gain
from a smaller subset of the multi-phase CNN when using
the weight level granularity [16], [17]. As most commodity
hardware of embedded systems do not have the luxury of
the customized accelerators, the multi-phase CNN should
be effectively working on top of CPU-based hardware.
On the contrary, the proposed multi-phase CNN approach
makes use of two different granularities in order to enable
more efficient exploration of the speed-accuracy trade-off for
CPU-based embedded systems. The second limitation is the
runtime adaptability. None of the existing multi-phase CNN
approaches mentioned above considered efficient runtime
switching to the best of our knowledge.

Considering the limitations reviewed above, we argue that
the following challenges need to be addressed to enable
the efficient runtime reconfiguration of N-in-1 CNN on
embedded systems. First, multi-phase with a fine granularity
that is tailored to the underlying CPU architecture is
indispensable. This is critical to enable a sophisticated
design space exploration over the speed-accuracy trade-
off. Second, in order to effectively reduce the memory
usage, a coarse-grain multi-phase approach, in which a
substantial volume of spatially co-located weights can be
added or removed at the same time, should be com-
bined with the fine-grain one. Lastly, the inference engine
needs to be properly extended to facilitate prompt runtime
switching of N-in-1 network without considerable switching
delay.

In this paper, we propose a multi-phase CNN that
overcomes the above challenges tailored to embedded
microprocessors. To be more specific, training is performed
in an iterative way at two different levels. At fine-grain, CNN
weights are removed or added in an architecture-specific
manner considering the SIMD (Single-Instruction-Multiple-
Data) width of the target CPU. A traditional coarse-grain
approach, also known as structured sparsity [33], is combined
with the fine-grain one to enable more comprehensive design
space explorations. Runtime switching of the proposed
multi-phase CNN is implemented and evaluated on top of a
publicly available inference engine for CPU, Darknet [34].

The contribution of this paper can be summarized as
follows:

• We propose a novel multi-phase CNN pruning technique
that enables an efficient runtime switching between
variable candidates from a single CNN.

• In doing so, a two-level architecture-aware multi-phase
CNN building method, with respect to a number of
non-functional design concerns like latency or power
consumption, is devised to determine suitable subsets of
weights to be activated.

62450 VOLUME 11, 2023



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

• Unlike other existing approaches, the proposed tech-
nique considers the actual memory usage at runtime. For
that, the inference engine is properly extended to support
runtime partial loading of CNN weights.

The rest of this paper is organized as follows: In
the following section, existing approaches are reviewed
in their key ideas and limitations. In particular, we will
describe the advantages and disadvantages of the exist-
ing methods focusing on the accuracy-resource trade-off.
Furthermore, we present an overview of previous studies
on the multi-phase CNN. In Section III, we elucidate the
iterative training method employed to construct the proposed
multi-phase CNN, followed by an exploration of the two
architecture-aware sparsity levels used in pruning/restoring
process in Section IV. Subsequently, we discuss the proce-
dure of building a specific multi-phase CNN with respect
to the given design constraints in Section V. In Section VI,
we demonstrate the effectiveness of the proposed technique
through experimental results. Finally, we conclude the paper
with a brief summary in Section VII.

II. RELATED WORK
Han et al. [14], [15] proposed to optimize CNNs by pruning
out less important weights, so-called weight-level pruning.
While the gain in model size was evidently substantial and
measurable in this technique, its impact on the latency, i.e.
inference speed, was just optimistically predicted in terms
of number of operations (FLOPS). To achieve actual gain in
inference speed, CNNs should be executed on top of a special
inference accelerator [11], called EIE, where only non-zero
weights are autonomously detected and computed from the
sparse matrix. Albericio et al. [35] also proposed a novel
architecture that can eliminate ineffectual multiplication
caused by sparse matrices.

To overcome this limitation of weight-level pruning,
it has been proposed to perform pruning at a coarser
granularity [33], i.e., filters or kernels are pruned in a bulky
manner. As the matrices to be computed structurally shrink,
the inference speed could be directly accelerated without
special HW support as the degree of pruning increases.
However, in this approach, such coarse granularity greatly
impairs the degree of freedom in pruning, and thus may cause
non-negligible accuracy loss.

Yu et al. [36] proposed a fine-grain pruning technique
where the pruning unit is a group of consecutive weights
whose size is as big as the SIMD width of the underlying
microprocessor. Their approach is similar to ours in that the
pruning is performed in an architecture-aware manner. How-
ever, since they rely on a certain sparse matrix multiplication,
the pruning improves the inference speed only in case of
high sparsity.1 In contrast, the proposed technique is based on
the GEMM (General Matrix Multiply) which is widely used

1In the matrix-vector operation of fully connected layers, their matrix
multiplication is beneficial in speed when the sparsity is more than 3%.
On the other hand, in the matrix-matrix operation of convolution layers, the
speed gain is only achieved when the sparsity is above 83% [36].

in modern deep learning inference engines, making it more
generically applicable and useful in any degree of sparsity.

A number of multi-phase CNN techniques have been
proposed. Tann et al. [19] proposed a framework that
can explore step-wise energy-accuracy trade-off. It can be
regarded as a general multi-objective optimization technique
as it is capable of finding a pareto-front solution over
the two objectives, energy and accuracy. Throughout its
multiple incremental training phases, each layer of the
target CNN is complemented with additional channels. Amir
and Givargis [17] also proposed a similar approach, called
priority neuron network, for resource-aware optimization of
CNNs. In this framework, the importance of the neurons
are trained together with weight parameters at the same
time. Like [19], it only needs to maintain a single set
of weights and is still capable of selectively choosing a
subset of weights to participate in the inference procedure
by changing the priority parameter. Similarly, Kim et al. [16]
propose to build a multi-phase CNN from a single CNN
in their framework called NestedNet. They obtained a
subset CNN by applying pruning at three different levels:
layer, channel, and weight. While all the three levels have
direct impact on model size and accuracy, it has been
reported that weight-level pruning shows no significant
impact on the inference speed. Yu et al. [37] also proposed
a multi-phase CNN technique, called Slimmable Neural
network. Unlike the other techniques previously mentioned,
they constructed amulti-phase CNNonly by using switchable
batch normalization.

Our approach is similar to the above mentioned
multi-phase CNN techniques in the sense that the training
is performed over the multiple phases and the weights can be
selectively added (or excluded) to (from) the basic network.
However, as their approach either only took the coarse-grain
sparsity, i.e., entire channels or layers, into consideration [19],
[37] or could not actually take advantage of the benefit of
the fine-grain pruning in inference speed [16], [17], they
could not comprehensively explore the design space over
the resource-accuracy trade-off. In contrast, we take full
advantage of both coarse- and fine-grain sparsity levels
tailored to the underlying hardware architecture, i.e., SIMD
width or memory capacity. Another important difference
of the proposed technique is on the runtime switchability.
While only [19] among the above mentioned techniques
mentioned the runtime reconfiguration, no detailed switching
principle has been reported. We show in this work how the
proposed technique enables better design space exploration
over the multiple design concerns, compared to the existing
techniques, with the runtime switching capability.

III. MULTI-PHASE TRAINING
A. ITERATIVE MULTI-PHASE TRAINING
In multi-objective optimization, there may be a number
of optimal design candidates, each of which is not domi-
nated by the others, over the Pareto front of the multiple
design concerns. A typical example of such multi-objective

VOLUME 11, 2023 62451



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

FIGURE 1. A 3-phase training example of the proposed multi-phase
training method.

optimization in CNN is the exploration of the accuracy-
parameter trade-off. There are a number of approaches that
explore this multidimensional design space by applying the
multi-phase training approach to a single CNN, as discussed
in the previous section [16], [17], [19].

In a multi-phase CNN, all parameters of the original CNN
are partitioned into several distinct subsets. Among them,
a core subset, which is the smallest phase, is always activated
for each phase. Then, in addition to this core subset, other
subsets can be added one by one as needed to improve the
inference accuracy. In this way, it is possible to effectively
operate several different CNN versions with different levels
of accuracy, while using only as much memory space as a
single original CNN. Figure 1 illustrates how a 3-phase CNN
can be obtained by applying an iterative training method.
First, the original CNN can be transformed to the core subset
(Phase1) by pruning. Then, retraining is performed by adding
additional parameters (Phase2) to this core subset. Note that
the already existing parameters remain fixed in this retraining
phase. This procedure is repeated until the desired number of
phases is obtained.

How to determine the separation of the parameter subsets
and how to train each of them differs from one approach
to another. Tann et al. [19] only considered coarse-grain
parameter units, i.e., kernels or channels, for the parameters
to be added at each phase. From the sparsest version, a set of
channels is added in each phase, and howmuch to be added is
decided iteratively based on the score margin. Kim et al. [16]
and Amir and Givargis [17] did not take such an iterative
approach; rather, they both let the training decide the sparsity
pattern. In doing so, Kim et al. [16] relied on an absolute
value τ for the threshold. Thus, in their approach, it is difficult
to systematically explore the meaningful solutions without
problem-specific statistics. Amir and Givargis [17] assigned
an integer value to each weight, which is also learned during
training, to indicate phase separation. In their approach, due
to its autonomous nature, it is not clear how a designer can
intervene in the design space exploration.

In the proposed technique, we take the similar iterative
approach as Tann et al. [19]. That is, pruning is first applied
excessively to obtain the smallest version. If a minimum

accuracy threshold is given that the inference results must
exceed, then the smallest network that satisfies this require-
ment can be considered as phase 1. Once this smallest version
is determined, from that smallest version on, we restore
a set of parameters while keeping the weights belonging
to the previous phase fixed as depicted in Figure 1. Note
that we aim to obtain better accuracy by restoring some
weights while keeping the weights from the previous phase
remain the same. Thus, both restored and previously existing
weights are used in forward pass during training, and weights
updates through back propagation only happen to the restored
weights.

B. WEIGHT RE-TRAINING
Frankle and Carbin [38] reported the importance of the
initial values of the parameters in CNN training; this implies
that it is also crucial to decide how to initialize the added
weights in the iterative multi-phase CNN training. While it is
typical to randomly generate the initial values from a normal
distribution, it is difficult to apply this general wisdom in the
proposed approach, since a considerable amount of weight
values are inherited as fixed values from the previous phase
and never change during the re-training. Therefore, as in the
lottery ticket hypothesis [38], we independently train a new
CNN with the same sparsity and take its their values as initial
values of the multi-phase CNN parameters to be re-trained in
the corresponding phase.

Note that the ordinary back-propagation methods repeat-
edly change the value of all weights to minimize the loss
values at each iteration. On the other hand, recall that in the
proposed technique only newly added weights are subject to
change; this makes it difficult to maintain the direction of the
weight value changes. In order to keep the momentum and
direction of the weight changes, we let all the parameters to
be modified temporarily by the back propagation, instead of
keeping the fixed part unchanged. Then, at the end of each
epoch of the training, we overwrite the old values of the
weights that belong to the fixed part.

IV. ARCHITECTURE-AWARE SPARSITY
Existing CNN pruning techniques exploit the sparsity at
three different levels of granularity: weight, kernel, and layer
levels. Although the weight-level pruning such as [14] has
the highest degree of freedom in removing parameters, it has
been reported that it is difficult to take advantage of this
finest granularity pruning in terms of inference speed [16].
Therefore, coarse-grain pruning techniques [16], [19], [33],
i.e., kernel- and layer-level, also known as structured sparsity,
have been widely used in favor of faster inference.

Pruning granularity affects the system differently from
one design concern to another. For example, a finer-grain
pruning performs better than a coarse-grain one in terms
of accuracy loss while the coarse-grain works better in
terms of computation time and memory footprint reduction.
Furthermore, in order to enable sophisticated exploration
of the design space with respect to the given design

62452 VOLUME 11, 2023



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

FIGURE 2. GEMM-based computation of a CONV layer: 1) im2col is
applied to kernels W , input feature map I , and output feature map O to
obtain the converted 2D matrices W ′ , I ′ , and, O′ . 2) Then, the convolution
can be represented as a GEMM operation of O′ = W ′ × I ′ .

concerns, the pruning should be performed in an architecture-
aware manner. That is, the granularity of sparsity must
be judiciously chosen for a given resource requirement or
underlying hardware.

The proposed multi-phase training considers two different
levels of granularity in building multi-phase CNNs, i.e., for
each phase of multi-phase training, we add and train new
parameters

• at the unit of kernel (coarse-grain) or
• at a finer granularity in hardware-specific manner.

While the coarse-grain one is similar to existing kernel-
level pruning, the fine-grain one is unique and novel in that
the pruning decisions are made considering the underlying
hardware architecture. Specifically, we consider the SIMD
CPU architecture, since the CPU is the most common
commodity hardware for embedded computing. Yu et al. [36]
proposed a SIMD-aware pruning technique. However, their
approach is not be generally applicable because it is based
on a special sparse matrix multiplication format, Compressed
Sparse Row (CSR). It has been reported that they only
achieved speed up when the sparsity level is above 80%,
while the proposed fine-grain pruning is also beneficial for
small or moderate sparsity. Layer-level pruning can only be
applied to a limited type of CNNs [2] that is equipped with
bypass connections. In what follows, we first introduce the
general matrix multiply algorithm as a background, which
is widely used in CPU-based inference. Then, we present
the two different levels of granularity that we use in our
technique.

A. GENERAL MATRIX MULTIPLY (GEMM)
Among the layers that make up a CNN, fully connected (FC)
and convolutional (CONV) layers are known to be the most
computationally intensive. Essentially, an FC layer is the
matrix multiplication of the input feature map and the kernel,
which is of abundant parallelism. It is also common for the
CONV layers to be converted to General Matrix Multiply
(GEMM) for efficient inference, as illustrated in Figure 2.

Let us suppose that a CONV layer is characterized as
follows:

• H /W : height/width of input feature map,
• C : number of channels in the input feature map,
• R/S: height/width of 3D kernel,
• K : number of 3D kernels in the layer (number of output
feature map channels),

• M /N : height/width of output feature map.
Then, the output feature map of this CONV layer O can be
computed as follows:

O[k][n][m]

=

∑
0≤c<C

∑
0≤i<R

∑
0≤j<S

W[k][c][i][j] × I[c][n+ i][m+ j],

(1)

where 0 ≤ k < K , 0 ≤ n < N , and 0 ≤ m < M are the kernel
index, the row and column indices of the output feature map
O, respectively.

In order to apply GEMM to this convolution operations, the
kernel W, which is described as K 3D tensors, is converted
into a K × (R · S · C) 2D matrix W′ as depicted in Figure 2.
Similarly, the input and output feature maps I and O are
also converted to a 2D matrices I′ and O′, which are as big
as (R · S · C) × (M · N ) and K × (M · N ), respectively.
This procedure is known as im2col. Note that this conversion
causes a substantial redundancy in the input and output
feature maps, i.e., (R · S ·C)× (M ·N ) > H ×W ×C , which
is the cost of increased parallelism. With these conversions,
the operation of a CONV layer can be simply represented as
a single 2D matrix multiplication, O′

= W′
× I′.

Note that a row vector of the converted matrixW′ is an 1D
expansion of all elements of a single kernel that is depicted
as a R × S × C 3D tensor in the figure. A column vector
of the converted input feature map I′ is an 1D expansion
of a sub-image. A sub-image corresponds to a subset of the
input feature map for a single convolution point. That is,
the number of elements in a sub-image is equal to that of a
single kernel. So, the total number of sub-images for a CONV
layer is determined by how many times the convolution is
performed, which is equal to the number of elements in the
output channel (M × N ). As we have K distinct kernels,
the output feature map of the GEMM is represented as
K × (M × N ) as shown in the figure.
It is worthwhile to mention that a column vector of

I′ denotes a group of weights that locate at the exactly same
position in K different kernels. This will be later exploited in
the fine-grain pruning.

B. COARSE-GRAIN KERNEL SPARSITY
Similar to [19] and [39], we consider a structured sparsity for
building a multi-phase CNN at a coarse-grain, i.e., a set of
weights spanning a certain contiguous part of the kernel or a
single kernel is considered as a unit of addition in building
a multi-phase CNN. The left half of Figure 3 visualizes
how kernel-level pruning differs from traditional weight-level

VOLUME 11, 2023 62453



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

FIGURE 3. Comparison of the pruning approaches: weight-level pruning [14], proposed SIMD-aware (fine-grain) pruning, proposed kernel-level
(coarse-grain) pruning, and SIMD-aware pruning of Scalpel [36].

pruning. Traditional weight-level pruning (top left) results
in irregularly pruned (zero) values in the converted 2D
matrix (W′). On the other hand, kernel-level pruning (bottom
left) removes a single kernel (a 3D tensor), resulting in a
reduced number of rows in the converted 2D matrix (W′).
Because of this, the channel size in the next layer should be
adjusted to (as can be seen in the figure). We need to decide
which kernels to remove in the kernel-level pruning. As in
the traditional pruning method, the l2-norm value of each
kernel’s elements is used as an indicator of its importance.

It is worth mentioning that the this coarse-grain pruning
is memory-friendly thanks to its well-structured spatial
locality, i.e., the pruned kernels can be easily removed from
memory. Weight-level pruning, on the contrary, would result
in irregular patterns of zeroed-out weights in the transformed
matrices, as illustrated in the figure. Furthermore, kernel-
level pruning is also more favorable for achieving a gain
in inference speed for any type of hardware. Even without
any zero-skipping feature, the number of iterations required
by the processing element to perform GEMM operations is
automatically reduced.

C. FINE-GRAIN SIMD-AWARE SPARSITY
As stated earlier, the sparsity patterns caused by weight-level
pruning typically do not match to the parallelism granularity
of the underlying hardware architecture. Therefore, we need
another fine-grain sparsity that fits well to the underlying
micro-architecture. In our work, we target the finest level of
parallelism that exists in the modern microprocessor, namely
SIMD operations.

Note that, in a SIMD architecture, multiple operands are
processed together at the same time by a vector instruction.
For instance, in the case of a 128-bit vector operation
(4 × 32-bit floating point data are computed by a vectorized
instruction), four multiplication and accumulation operations
are actually computed at the same time in GEMM. Thus,
individual zero values that are irregularly scattered in the
matrix (the top left case in Figure 3) cannot be skipped
efficiently. On the contrary, four contiguous zeros in the
converted matrix (W′) may allow safe skipping of the vector

instruction (top right in Figure 3). In this example, four
elements inW′ that are processed simultaneously by a single
SIMD instruction coincide with four different elements at the
same position of four consecutive 3D tensors (highlighted
with the same color in the figure). This shows how the
SIMD-aware skipping ismore beneficial in terms of inference
time.

This SIMD-aware pruning is applied as a fine-grain
pruning to the converted 2D matrix W′. Note that Wuv is
the SIMD width of the underlying microprocessor, which
is 4 in this particular example, but could be different
in other hardware. For example, if a processor supports
a half-precision quantization (16-bit) and 128-bit SIMD
operations can handle 8 operands at the same time, we need
to applyWuv = 8. Here, as well, we use the l2-norm value to
quantify the importance of each pruning candidate.

V. BUILDING A MULTI-PHASE CNN
In this section, we present how to build a multi-phase
CNN from an original network, which is exemplified with a
5-phase CNN in Figure 4. We start by describing how to
obtain the lowest phase, the smallest CNN from the original
CNN using the coarse-grain sparsity. Then, we describe how
to determine the size of the highest phase based on the given
design requirements and how to iteratively add intermediate
phases in addition to the smallest CNN by combining the
fine-grain and coarse-grain pruning/restoring.

A. DETERMINING PHASES
1) THE LOWEST PHASE
In the proposed multi-phase training, which builds up from
the lower phase to the upper phase, the first thing to do is to
determine the lowest phase. The lowest phase has the lowest
accuracy, while it tends to have the highest inference speed
and the smallest memory requirement. In order to always
satisfy the imposed accuracy constraint, this smallest version
must also satisfy the accuracy constraint. Therefore, we apply
coarse-grain pruning to the original CNN several times in a
binary-search manner until we find the pruned CNN with the
minimum acceptable accuracy.

62454 VOLUME 11, 2023



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

FIGURE 4. How to create a 5-phase CNN using the proposed multi-phase training.

In this case, for instance, we first perform coarse-grain
pruning with 50% sparsity and check whether the resultant
accuracy is above the minimum acceptable accuracy. If so,
we try a more ambitious pruning degree (75%) hoping for
obtaining a smaller CNN. If not, coarse-grain pruning is
performed again with a smaller sparsity degree of 25%. This
procedure is repeated until the resulting accuracy is within
the range of the minimum acceptable accuracy ±1%. In the
proposed technique, we set theminimum acceptable accuracy
as 10% less than the accuracy of the original CNN, but this
can be set differently depending on the target application.
This is exemplified in the left side of Figure 4 in which A⃝ is
derived from the original CNN O⃝ by applying coarse-grain
pruning.

2) THE HIGHEST PHASE
In contrast to the lowest phase, the highest phase uses the
greatest amount of resources to achieve the best accuracy and
tends to result in the longest inference time. Thus, we choose
the highest phase CNN based on the maximum available
memory and the minimum inference speed requirement.

While the accuracy of the pruned CNN can be easily
quantified using a test or validation dataset, it is not trivial
to estimate its inference speed and memory requirement
without actually running it. Since it is not feasible to run
test inferences during the multi-phase training, we propose
to use a polynomial regression-based performance estimation
model.

Note that most inference engines running on CPUs,
including the one that we use in our implementation [34],
are multi-threaded. In such systems, the number of threads
is also an important design parameter to optimize. While a
larger number of threads can help improve inference speed
by increasing parallelism, it can have a negative impact
on memory usage due to the duplicated data in GEMM
procedures.

We use a third-order polynomial regression analysis to
predict the inference speed and memory usage of the
system, with inputs of the sparsity of the CNN (i.e., the
total number of non-zero parameters) and the number of
threads used. Specifically, we created two separate predic-
tion models for inference speed and memory usage. The
prediction models were fitted with actual measurements of
inference speed and memory usage of various pruned CNNs
obtained during the binary search process to find the lowest
phase.

Figure 5 shows the result of the prediction model for
coarse-grain pruning we used in our experiment. The
hyperplane in the figure represents the 3rd order equation
obtained from the polynomial regression, and the dots
in the figure are the actual measurements for various
pruned CNNs. In the experiment, the accuracy of the
prediction models for the fitting data was 87.18% and
99.99% for inference speed and memory usage, respectively.
Memory usage increases proportionally with the number
of threads and network size, making it easier to predict.
In contrast, the inference speed demonstrates an irregular
behavior; it seems to have a different optimal number
of threads for different pruned CNNs. Note that this
regression model is target hardware dependent, so a new
regression model must be trained if the target hardware
changes.

Now that we can estimate the performance of a candidate
pruned CNN based on the regression model, we can
determine the highest phase CNN; we find the CNN sparsity
(the number of non-zero parameters, also referred to as
network size) and the number of threads that satisfy the
constraints imposed on the minimum inference speed and the
maximum memory usage. If there are a number of candidate
CNNs that satisfy the given constraints, we select the solution
with a larger number of non-zero parameters in the hope of
obtaining higher accuracy.

VOLUME 11, 2023 62455



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

FIGURE 5. Memory usage and inference speed prediction results of CNNs
optimized by coarse-grain pruning (red hyperplane: obtained polynomial
model, blue dots: actual measurements).

3) INTERMEDIATE PHASES
From the above, we obtained a 2-phase CNN, where the
lowest phase is the fastest (but less accurate) and the
highest phase is the most accurate given the memory/speed
constraints. We can add additional intermediate phases to
this. For instance, suppose that we obtained a 2-phase CNN
whose parameter sizes are 50MB and 500MB for the lowest
and highest phases, respectively. This multi-phase CNN can
run on the highest phase to improve accuracy under normal
conditions. However, in situations where other applications
require more memory space, it could be run in the lowest
phasewith fewer resources. If it were to run in an intermediate
phase that requires about 200MB instead of the lowest
phase (50MB), it could maintain a lower level of accuracy
degradation while improving memory efficiency.

This increased flexibility comes at the expense of increased
training time. In addition, when adding a new phase, the
parameters belonging to the lower phases should remain
unchanged. This results in a marginal loss of accuracy during
training. Adding a larger number of intermediate phases
indicates that such negative effects are more likely to be
imposed on the multi-phase CNN. Therefore, we need to
carefully choose how many phases and how to add them
between the lowest and the highest phase.

As mentioned in the previous section, we consider two
different sparsity levels: fine-grain and coarse-grain. Using
coarse-grained pruning results in a relatively large drop
in accuracy, but improves inference speed and effectively
reduces memory usage. On the other hand, fine-grained
pruning can minimize the drop in accuracy, although the
improvement in inference speed and memory usage is
relatively weak. Table 1 shows the accuracy results when
the two pruning methods are separately applied to obtain a
multi-phase CNN, which evidently shows the disadvantage
of coarse-grain pruning in terms of accuracy.

TABLE 1. Accuracy comparison of multi-phase CNNs obtained by
applying fine-grain and coarse-grain separately.

In order to exploit the trade-off between the two pruning
methods, we propose to combine them when determining
the intermediate phases.2 We first determine the size of
intermediate phase and determine how much to restore at the
coarse-grain sparsity. Then, we train the added parameters.
This is called coarse-grain restoring and is exemplified in
A⃝→A⃝’ in Figure 4. We then perform fine-grain pruning
to determine a subset of newly added parameters to survive
in the intermediate phase, e.g., A⃝’→B⃝. Further, we apply
a fine-grain restoring to this to obtain another intermediate
phase ( B⃝’→C⃝). This fine grain restoring can be repeated
until all newly added parameters are trained. The same
procedures can be applied between C⃝ and the highest phase
E⃝ to obtain a 5-phase CNN.

B. RUNTIME SWITCHING
In this subsection, we present how we enable runtime
switching between different phases in multi-phase CNN.
As stated previously, runtime switching requires adding (or
removing) parameters to (or from) an active CNN. In what
follows, we show how these are enabled for the two different
levels of granularity.

Firstly, for coarse-grain sparsity, we actually load and
unload the parameters at runtime. In addition to the param-
eters that belong to a lower phase, a new set of parameters
can be added. We can add more kernels (3-D tensors of W
in Figure 2) or/add increase the number of channels (C in
Figure 2). This results in an L-shaped additional parameters
in the transformed matrix (W ′ in Figure 2)) as illustrated by
A⃝→A⃝’ or C⃝→C⃝’ in Figure 4. It is important to note that
the kernels are added or removed in their entirety so that the
added or removed kernels only result in a change of number of
rows or columns in the transformed matrixW ′ while keeping
its regularity. This allows us load or unload the parameters at
runtime.

On the other hand, in fine-grain switching, e.g., B⃝→C⃝
or D⃝→ E⃝, we do not load or unload the parameters at
runtime, but choose the ones to participate in the inference
by masking. Therefore, added weights for fine-grain sparsity
do not need to be stored separately for each phase. Instead,
only the masking information needs to be maintained as a
meta-data. Consider a sequence of weights [3, 4, 5] as an
example in which 3 belongs to the lowest phase (phase 1)
and 4 and 5 are additionally included in phases 2 and 3,

2Note that, in the proposed technique, the pruning is sometimes applied
in an opposite way. That is, as opposed to the traditional pruning methods
obtaining an optimized CNN from the largest CNN by pruning out
some parameters, we start from the smallest CNN and restore additional
parameters.

62456 VOLUME 11, 2023



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

TABLE 2. Two benchmark CNNs used in the experiments: VGG-7 trained
with CIFAR-10.

respectively. In this case, a mask (1, 0, 0) is used for phase 1
while (1, 0, 1) and (1, 1, 1) are used for phases 2 and 3,
respectively. In order to minimize the storage requirement,
we store this meta-data in a compressed format. That is,
we only store the index of the first non-zero weights and
the differences of adjacent indices of non-zero weights.
For example, for a weight vector [3, 0, 0, 0, 4, 0, 5], the
metadata for masking becomes (0, 4, 2), in which the first
element 0 in the index of the first non-zero weight and
4 and 2 are the difference between 3 and 4 and 4 and 5,
respectively.

VI. EXPERIMENTS
A. EXPERIMENTAL SETUP
To verify the effectiveness of the proposed technique, we per-
formed a set of experiments on top of NVIDIA Jetson AGX
Xavier, which is equipped with an 8-core ARM v8.2 64-bit
CPU. Although it also includes a GPU, we only utilize the
CPU since we target low-power embedded computing. While
the multi-phase training framework presented in Section V-A
is implemented based on PyTorch [40], the inference engine
is separately implemented as an extension of an open source
inference engine Darknet with NNPACK [34] as described
in Section V-B. Note that NNPACK supports NEON, which
is a SIMD-extension of ARM instruction set architecture.
We customize the NNPACK NEON library to effectively
support the proposed fine-grain pruning which is described
in Section IV-C.
In our experimental setup, we quantify the inference speed

as the reciprocal of the average inference time measured
across all 10,000 images in the CIFAR-10 test dataset. The
memory usage is measured by monitoring the memory usage
using the top command in Linux while the inference process
is on going. This allows us to observe the actual changes in
memory usage during inference for different phases of the
experiment.

Table 2 summarizes the two CNN models that we used for
the experiments: VGG-7. CIFAR-10 were used to train the
two models, respectively. The CIFAR dataset is a collection
of 32 × 32 color images, with 10 classes (6,000 images per
class), which consist of a total of 50,000 training images and
10,000 test images.

FIGURE 6. Comparison of accuracy according to pruning rate when two
different pruning methods are applied to VGG-7 model on CIFAR-10.

B. EFFECTIVENESS OF PRUNING
In the first experiment, we verify the effectiveness of the
coarse-grain and fine-grain pruning techniques individually
and demonstrate their trade-off in speed and accuracy.
We applied each of the two pruning techniques to VGG-7,
varying the degree of pruning, i.e., the pruning rate. For
instance, a pruning rate of 60% indicates that 60% of the
original CNN was removed by pruning.

Figure 6 shows how the accuracy of the pruned CNN
evolves over different pruning rates for the two approaches.
For both, slight improvements in accuracy have been
observed over the original VGG-7 when the pruning rate was
lower than 30%. It is known that this anomaly occurs because
pruning with a small rate tends to eliminate overfitting of
the original CNN. The resulting accuracy of coarse-grain
was always lower than that of fine-grain pruning, and the
difference became even greater as the pruning rate exceeded
60%. In the case of pruning rates above 85%, we could see
a steep drop in accuracy, making it unusable. On the other
hand, fine-grain pruning resulted in much better accuracy;
it was even higher than that of the original VGG-7 until the
pruning rate reached 90%. However, above the 95% pruning
rate, there was also a sharp drop in accuracy.

Figure 7 and Figure 8 illustrate the inference speed and
memory usage results of the same experiment, respectively.
Both pruning approaches showed constant improvement in
inference speed as the pruning rate increased. However, the
speed gain from coarse-grain pruning was much greater
than that from fine-grain pruning. As shown in Figure 8,
in the coarse-grain technique, the pruned CNN actually
occupied less memory as the pruning rate increased because
the weights were actually removed by pruning. On the
other hand, fine-grain pruning was less effective in terms
of memory usage because the trimmed weight remains in
memory with a value of 0.

Figure 6, Figure 7, and Figure 8 evidently demonstrate the
trade-offs between the two pruning approaches for accuracy

VOLUME 11, 2023 62457



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

FIGURE 7. Comparison of inference speed according to pruning rate when
two different pruning methods are applied to VGG-7 model on CIFAR-10.

FIGURE 8. Comparison of memory usage according to pruning rate when
two different pruning methods are applied to VGG-7 model on CIFAR-10.

and resource usage; fine-grain pruning works better to main-
tain the accuracy while coarse-grain pruning is preferred to
achieve a speedup or reduce resource requirement. In typical
use cases, it is common tomaximize the accuracywith respect
to the given resource budget and latency constraint. We need
to carefully balance these two to achieve these two conflicting
goals, which is the focus of the next experiment.

C. BUILDING MULTI-PHASE CNN
In this sub-section, we shows how we build a multi-phase
CNN from VGG-7 that satisfies a given set of design
requirements as a case study.

1) DESIGN CONSTRAINTS/GOALS
We consider the following design constraints:

• Minimum accuracy constraint: 10% accuracy loss
from the original accuracy,

• Latency constraint: an inference should take no
longer than 5ms. That is, the inference speed should
always be higher than or equal to 0.2 inference per
millisecond (ms).

TABLE 3. Results of binary search to find most sparse phase.

• Memory budget: two different memory budgets are
considered, 55MB and 65MB.

While satisfying the above design constraints, we want to
co-optimize accuracy and inference speed.

2) DETERMINING THE LOWEST AND HIGHEST PHASE
As stated in Section V-A1, the lowest phase is determined by
the minimum accuracy. The original VGG7 model trained on
the CIFAR-10 dataset had accuracy of 86.68%, from which
the minimum acceptable accuracy for the lowest phase can be
calculated as 78.012%. Coarse-grain pruning was performed
repeatedly to find the candidate CNNs for the lowest phase,
and the pruning rate was chosen in a binary search manner
starting from 50%. Table 3 summarizes the results of the
binary search. The first trial with a pruning rate of 50%
resulted in an accuracy of 86.36%, which is much higher
than the minimum acceptable accuracy. So, in the next step,
a higher degree of sparsity, i.e. a pruning rate of 75%, was
applied and an accuracy of 84.41% was obtained, which is
again above the minimum accuracy constraint. The same
procedure was repeated until step 5, where the pruning rate
was 96.875%. However, since we obtained an unacceptable
accuracy of 67.34% from step 5, a smaller pruning rate
was applied in the following step. This binary search ends
when the resulting accuracy is within the accuracy margin of
1%p, which is in this particular example between 77.012%
and 79.012%.

Note that we obtained a set of differently optimized
CNNs with coarse-grain pruning throughout the binary
search procedure. These pruned CNNs are used to train the
performance prediction models described in Section V-A.
Based on these performance prediction models, the highest
phase that satisfies the latency constraint (0.2 inference per
ms) and the biggest memory budget (65MB). In this particular
example, the highest phase was determined to have a pruning
rate of 0%, i.e., no pruning is necessary from the original
CNN size, with 5 threads in the inference engine.

3) ADDING INTERMEDIATE PHASES
Since we have another smaller memory budget requirement
of 55MB (other than the 65MB requirement used to
determine the highest phase), additional intermediate phases
can be added. Note that these newly added phases are
assumed to have the same number of threads as the highest
phase for ease of implementation of runtime switching.

62458 VOLUME 11, 2023



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

FIGURE 9. Multi-phase training of a 5-phase CNN from a given set of
constraints.

TABLE 4. 5-phase CNN configuration that satisfies the four hypothesized
conditions.

The intermediate phase that satisfies the 55MB memory
budget can be defined by means of coarse-grain restoring
from the lowest phase. Figure 9 illustrates this procedure; to
fully take advantage of the difference between the memory
requirement of the lowest phase (51.7MB) and 55MB,
a coarse-grain restoring is performed ( 1⃝→ 1⃝’). Note that
this restored parameters are initialized to be the same weights
of the independently trained CNN of the same size (as state
in Section III-B). The actual measured memory usage was
53.7 MB, just off the 55 MB estimate. We attribute this
error to the prediction error in the regression model and
the implementation overhead of the custom inference engine
to manage the multi-phase network. Since the regression
model’s prediction of memory usage is relatively accurate,
the overhead is most likely due to differences in the
code managing the single network obtained by coarse-grain
pruning and the multi-phase network created by adding
weights.

Then, a fine-grain pruning is applied to 1⃝’ to get
an intermediate phase 2⃝. Note that the weights that are
present in 1⃝’ but not in 2⃝ can be additionally trained
in the next phase, 3⃝, which will replace 1⃝’. The same
procedure is repeated between 3⃝ and the highest phase ( 5⃝).
Table 4 summarizes the obtained 5-phase CNN obtained from
VGG-7 with respect to the given constraints by the proposed
technique.

D. EFFECTIVENESS OF TWO-LEVEL SPARSITY
In this experiment, we show the effectiveness of combining
two different levels of sparsity: coarse- and fine-grain
sparsity. The multi-phase CNN with 5 phases obtained from

FIGURE 10. Comparison of accuracy and inference speed when
multi-phase training is applied to VGG-7 model on CIFAR-10 dataset:
(a) proposed 5-phase CNN vs. coarse-grain/fine-grain only and
(b) proposed 6-phase CNN vs. coarse-grain/fine-grain only. The colored
area denotes the accuracy-inference speed design space covered by the
resultant multi-phase CNN.

the proposed combined granularity (combined_5p) have been
compared with two alternative multi-phase CNNs. The first
one (coarse_5p) is obtained only from applying coarse-
grain pruning/restoring while keeping the sparsity rates
as the same as the proposed one. Likewise, the second
alternative (fine_5p) is obtained from applying only fine-
grain pruning/restoring in 5 phases. Figure 10(a) illustrates
the result.

While the drop in accuracy was smallest in the case of
fine_5p, this fine-grain method showed limited ability in
terms of inference speed as reported in Table 5. Compared to
the proposed multi-phase CNN, it was about 36.4% slower
than the proposed approach in its lowest phase. On the
other hand, the coarse-grain onlymethod (coarse_5p) showed
the exactly apposite characteristics; it could be faster in
phases 2 and 3 than the proposed one, but it showed worse
accuracy results in phases 4 and 5.

VOLUME 11, 2023 62459



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

TABLE 5. Measurement results of accuracy, inference speed, and memory
usage of three 5-phase CNNs and improved 6-phase CNNs.

TABLE 6. The hypervolume calculated to quantitatively evaluate the
design space of the multi-phase CNNs in Figure 10.

While the proposed multi-phase CNN is intended to
combine the strengths of the two different levels of sparsity
granularity, it can be seen that phases 3 and 4 (highlighted
in the dashed oval) of the proposed CNN are outperformed
by the coarse-grain only method. This can be improved by
adding an additional fine-grain phase between these phases,
which results in a 6-phase CNN shown as combined_6p in
Figure 10(b) and Table 5. It can be seen that the proposed
technique enables flexible addition of phases to make up the
design space.

In order to measure the design space capability of the
proposed technique in an objective and quantitative manner,
we measure the hypervolume [41] of the design space
covered by the resultant multi-phase CNNs. In quantifying
the hypervolumes, we used the minimum accuracy and
latency constraints reported in Section VI-C1. Intuitively,
the hypervolume is a quantitative measure of the colored
areas in Figure 10. As summarized in Table 6, the proposed
multi-phase CNN outperformed the others in terms of design
space exploration capability.

VII. CONCLUSION
In this paper, we propose a multi-phase CNN technique
with improved resource efficiency so that CNNs, which have
shown high performance in various fields, can be operated
in resource constrained systems. In addition, we propose a
method for effective design space exploration in the trade-off
between accuracy and inference speed of multi-phase CNNs
by utilizing two-level granularity. A multi-phase CNN has
the same network size as a single CNN while containing

sub-networks composed of multiple phases. In addition,
by applying two-level granularity to the entire phase, each
phase can have a different accuracy and inference speed,
allowing for broader and more effective design space
exploration. A publicly available CNN inference engine,
Darknet with NNPACK, has been adapted to implement the
proposed technique, which also allows runtime switching
between different phases of multi-phase CNN. A set of design
requirements can now be considered together in a single CNN
by the proposed multi-phase CNN technique.

ACKNOWLEDGMENT
A preliminary result, Section IV, of this article has been pre-
sented in Embedded Systems WEEK 2019, under the title of
‘‘A SIMD-aware pruning technique for convolutional neural
networks with multi-sparsity levels: work-in-progress [42].’’
The authors would like to thank Kyusik Choi for his
contribution in the implementation of the weight re-training
technique (Section III-B).

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[3] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, ‘‘Dermatologist-level classification of skin cancer with deep
neural networks,’’ Nature, vol. 542, no. 7639, pp. 115–118, Feb. 2017.

[4] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[5] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. 18th Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent.Munich, Germany: Springer, 2015.

[6] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, and L. Zhang,
‘‘NTIRE 2017 challenge on single image super-resolution: Methods and
results,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jul. 2017, pp. 114–125.

[7] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, ‘‘Enhanced deep residual
networks for single image super-resolution,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 136–144.

[8] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J.
Owens, M. Segal, M. Papakipos, and I. Buck, ‘‘GPGPU: General-
purpose computation on graphics hardware,’’ in Proc. ACM/IEEE Conf.
Supercomput., Nov. 2006, p. 208.

[9] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Zahir,
‘‘Introducing the IA-64 architecture,’’ IEEE Micro, vol. 20, no. 5,
pp. 12–23, 2000.

[10] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[11] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, andW. J. Dally,
‘‘EIE: Efficient inference engine on compressed deep neural network,’’ in
Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 243–254.

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size,’’ 2016, arXiv:1602.07360.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[14] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and
connections for efficient neural network,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

62460 VOLUME 11, 2023



J. Jang, H. Yang: Runtime Switchable Multi-Phase CNN for Resource-Constrained Systems

[15] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
2015, arXiv:1510.00149.

[16] E. Kim, C. Ahn, and S. Oh, ‘‘NestedNet: Learning nested sparse structures
in deep neural networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 8669–8678.

[17] M. Amir and T. Givargis, ‘‘Priority neuron: A resource-aware neural
network for cyber-physical systems,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 37, no. 11, pp. 2732–2742, Nov. 2018.

[18] E. Park, D. Kim, S. Kim, Y. Kim, G. Kim, S. Yoon, and S. Yoo, ‘‘Big/little
deep neural network for ultra low power inference,’’ inProc. 10th Int. Conf.
Hardw./Softw. Codesign Syst. Synth., Oct. 2015, pp. 124–132.

[19] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda, ‘‘Runtime configurable
deep neural networks for energy-accuracy trade-off,’’ in Proc. 11th
IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth., Oct. 2016,
pp. 1–10.

[20] R. T. Marler and J. S. Arora, ‘‘Survey of multi-objective optimization
methods for engineering,’’ Struct. Multidisciplinary Optim., vol. 26, no. 6,
pp. 369–395, Apr. 2004.

[21] K. Deb etal., ‘‘A fast elitist non-dominated sorting genetic algorithm for
multi-objective optimization: NSGA-II,’’ in Proc. 6th Int. Conf. Parallel
Problem Solving From Nature, Paris, France. Berlin, Germany: Springer,
2000.

[22] E. Zitzler, M. Laumanns, and L. Thiele, ‘‘SPEA2: Improving the
strength Pareto evolutionary algorithm,’’ ETHZurich, Zurich, Switzerland,
TIK-Rep. 103, 2001.

[23] G. Ascia, V. Catania, and M. Palesi, ‘‘Multi-objective mapping for
mesh-based NoC architectures,’’ in Proc. 2nd IEEE/ACM/IFIP Int. Conf.
Hardw./Softw. Codesign Syst. Synth., Sep. 2004, pp. 182–187.

[24] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, ‘‘Multiobjective optimiza-
tion and evolutionary algorithms for the application mapping problem
in multiprocessor system-on-chip design,’’ IEEE Trans. Evol. Comput.,
vol. 10, no. 3, pp. 358–374, Jun. 2006.

[25] S. Kang, H. Yang, L. Schor, I. Bacivarov, S. Ha, and L. Thiele,
‘‘Multi-objective mapping optimization via problem decomposition for
many-core systems,’’ in Proc. IEEE 10th Symp. Embedded Syst. Real-time
Multimedia, Oct. 2012, pp. 28–37.

[26] N. R. Satish, K. Ravindran, and K. Keutzer, ‘‘Scheduling task dependence
graphs with variable task execution times onto heterogeneous multipro-
cessors,’’ in Proc. 8th ACM Int. Conf. Embedded Softw., Oct. 2008,
pp. 149–158.

[27] R. Marculescu and P. Bogdan, ‘‘Cyberphysical systems: Workload
modeling and design optimization,’’ IEEE Design Test Comput., vol. 28,
no. 4, pp. 78–87, Jul. 2011.

[28] H. Jayakumar, A. Raha, and V. Raghunathan, ‘‘QUICKRECALL: A
low overhead HW/SW approach for enabling computations across power
cycles in transiently powered computers,’’ in Proc. 27th Int. Conf. VLSI
Design 13th Int. Conf. Embedded Syst., Jan. 2014, pp. 330–335.

[29] X. Li, M. Ye, Y. Liu, and C. Zhu, ‘‘Adaptive deep convolutional neural
networks for scene-specific object detection,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 29, no. 9, pp. 2538–2551, Sep. 2019.

[30] K. Tahboub, D. Güera, A. R. Reibman, and E. J. Delp, ‘‘Quality-adaptive
deep learning for pedestrian detection,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2017, pp. 4187–4191.

[31] J. Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li, ‘‘CCR: A concise
convolution rule for sparse neural network accelerators,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 189–194.

[32] J. Zhu, J. Jiang, X. Chen, and C.-Y. Tsui, ‘‘SparseNN: An energy-efficient
neural network accelerator exploiting input and output sparsity,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 241–244.

[33] W.Wen, C.Wu, Y.Wang, Y. Chen, andH. Li, ‘‘Learning structured sparsity
in deep neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 2074–2082.

[34] J. Redmon, ‘‘DarkNet: Open source neural networks in C,’’ 2016. [Online].
Available: http://pjreddie.com/darknet/

[35] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, ‘‘Cnvlutin: Ineffectual-neuron-free deep neural network
computing,’’ ACM SIGARCH Comput. Archit. News, vol. 44, no. 3,
pp. 1–13, 2016.

[36] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
‘‘Scalpel: Customizing DNN pruning to the underlying hardware paral-
lelism,’’ inProc. ACM/IEEE 44th Annu. Int. Symp. Comput. Archit. (ISCA),
New York, NY, USA, Jun. 2017, pp. 548–560.

[37] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, ‘‘Slimmable neural
networks,’’ in Proc. Int. Conf. Learn. Represent., 2019, pp. 1–12. [Online].
Available: https://openreview.net/forum?id=H1gMCsAqY7

[38] J. Frankle and M. Carbin, ‘‘The lottery ticket hypothesis: Finding sparse,
trainable neural networks,’’ 2018, arXiv:1803.03635.

[39] E. M. Wenzel, ‘‘Three-dimensional virtual acoustic displays,’’ in
Proc. Multimedia Interface Design (INCOLL), New York, NY, USA,
1992, pp. 257–288. [Online]. Available: http://portal.acm.org/citation.
cfm?id=146022.146089

[40] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–12.

[41] D. Brockhoff, J. Bader, L. Thiele, and E. Zitzler, ‘‘Directed multiobjective
optimization based on the weighted hypervolume indicator,’’ J. Multi-
Criteria Decis. Anal., vol. 20, nos. 5–6, pp. 291–317, Sep. 2013.

[42] J. Jang, K. Choi, and H. Yang, ‘‘A SIMD-aware pruning technique
for convolutional neural networks with multi-sparsity levels: Work-
in-progress,’’ in Proc. Int. Conf. Hardw./Softw. Codesign Syst. Synth.
Companion, Oct. 2019, pp. 1–2.

JEONGGYU JANG received the B.S. degree
in electrical and computer engineering from
Ajou University, Suwon, South Korea, in 2017,
where he is currently pursuing the Ph.D. degree
with the Department of Artificial Intelligence
Convergence Network. His current research inter-
ests include neural network optimization and
acceleration for resource-constrained systems.

HOESEOK YANG (Member, IEEE) received the
B.S. degree in computer science and engineering
and the Ph.D. degree in electrical engineering
and computer science from Seoul National Uni-
versity, Seoul, South Korea, in 2003 and 2010,
respectively.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineer-
ing, Santa Clara University, USA. Before that,
he was with Ajou University, South Korea, as an

Assistant Professor/Associate Professor, from 2014 to 2021. He was a
Postdoctoral Researcher with the D-ITET, ETH Zürich, Zürich, Switzerland,
from 2010 to 2014. His current research interests include HW/SW co-design,
reliability- and temperature-aware optimization/analysis of multiprocessor
system-on-chip (MPSoC), embedded systems design with non-volatile
memories, and deep learning for embedded systems.

Dr. Yang has been a Technical Program Committee Member of
several conferences or workshops, including the Asia and South Pacific
Design Automation Conference (ASP-DAC), the Asia Pacific Conference
on Circuits and Systems (APCCAS), the International Conference on
Embedded and Ubiquitous Computing (EUC), the International Conference
on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), the Symposium on Embedded Systems for Real-Time Mul-
timedia (ESTIMedia), and the International Workshop on Rapid System
Prototyping (RSP). Since 2019, he has been serving as an Organizing
Committee Member for the Embedded Systems Week (ESWEEK). He was
a recipient of the Best Paper Award from the International Conference on
Compilers, Architectures, and Synthesis of Embedded Systems (CASES),
in 2012.

VOLUME 11, 2023 62461


