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ABSTRACT Tropical semiring has proven successful in several research areas, including optimal control,
bioinformatics, discrete event systems, and decision problems. Previous studies have applied a matrix
two-factorization algorithm based on the tropical semiring to investigate bipartite and tripartite networks.
Tri-factorization algorithms based on standard linear algebra are used to solve tasks such as data fusion,
co-clustering, matrix completion, community detection, and more. However, there is currently no tropical
matrix tri-factorization approach that would allow for the analysis of multipartite networks with many parts.
To address this, we propose the triFastSTMF algorithm, which performs tri-factorization over the tropical
semiring. We applied it to analyze a four-partition network structure and recover the edge lengths of the
network. We show that triFastSTMF performs similarly to Fast-NMTF in terms of approximation and
prediction performance when fitted on the whole network. When trained on a specific subnetwork and used
to predict the entire network, triFastSTMF outperforms Fast-NMTF by several orders of magnitude
smaller error. The robustness of triFastSTMF is due to tropical operations, which are less prone to predict
large values compared to standard operations.

INDEX TERMS Tropical semiring, tri-factorization, network structure analysis, four-partition network.

I. INTRODUCTION
Matrix factorization methods embed data into a latent
space using a two-factorization or tri-factorization approach,
depending on the number of low-dimensional factor matrices
required for the specific task. Matrix factorization meth-
ods can help solve problems in recommender systems [1],
pattern recognition [2], data fusion [3], network struc-
ture analysis [4], and similar. In many of these scenarios,
two-factorization achieves state-of-the-art results. However,
there are cases where tri-factorization outperforms two-
factorization, such as in intermediate data fusion [3], where
tri-factorization is used to fuse multiple data sources to
improve the predictive power of the model.

Matrix factorization methods employ different types of
operations to compute the factor matrices [5], [6], [7]. Most
matrix factorization methods are based on standard linear
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algebra, such as non-negative matrix factorization [8] (NMF),
binary matrix factorization [9] (BMF), probabilistic NMF [10]
(PMF), while some novel approaches such as STMF [11] and
FastSTMF [12] are based on the tropical semiring.

The (max,+) semiring or tropical semiring Rmax is the
set R ∪ {−∞}, equipped with max as addition (⊕), and
+ as multiplication (⊗). For example, 2 ⊕ 3 = 3 and
1 ⊗ 1 = 2. Throughout the paper, the symbols ‘‘+’’
and ‘‘−’’ refer to standard operations of addition and sub-
traction. The renowned NMF method [8] is based on the
element-wise sum, which results in the ‘‘parts-of-whole’’
interpretation of factor matrices. On the contrary, tropical or
(max,+) factorization uses the maximum operator, which
results in a ‘‘winner-takes-it-all’’ interpretation [13]. Matrix
factorization approaches using tropical semiring demon-
strated their robustness against overfitting and achieved
predictive performance comparable to techniques that use
standard linear algebra. Moreover, they also reveal different
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patterns, as we have demonstrated in our previous studies
[11], [12].

Tropical semirings have various applications in network
structure analysis and other research areas [14], [15], [16].
Multiplication and addition of a similar (min,+) semiring
enable mapping local edge information to global informa-
tion on the shortest paths, while the (max,+) semiring
describes the longest path problem. In our work, we are
interested in an inverse problem that infers information
about edges from potentially noisy or incomplete infor-
mation [4]. To the best of our knowledge, there is no
matrix tri-factorization method based on the tropical semir-
ing. Thus, we propose the first tropical tri-factorization
method, called triFastSTMF, which introduces a third
factor matrix. The proposed triFastSTMF can be used for
various tasks that involve a single data source. Our GitHub
repository https://github.com/Ejmric/triFastSTMF provides
the source code and data required to replicate our experi-
ments. We demonstrate the applicability of triFastSTMF
in edge approximation and prediction in a four-partition net-
work. Moreover, this work sets the foundation for future
research aimed at creating a tropical data fusion model capa-
ble of combining multiple data sources.
The paper is divided into the following sections. Section II

describes the related methodology, while Section III intro-
duces the proposed approach. In Section IV, we present the
experimental evaluation. We conclude the work and discuss
future opportunities in Section V.

II. RELATED WORK
Matrix factorization (MF) is one of the most popular methods
for data embedding, which enables the discovery of inter-
esting feature patterns by clustering and gaining additional
knowledge from the resulting factor matrices. A well-known
matrix two-factorization approach is non-negative matrix
factorization (NMF), which imposes non-negativity on both
the input and output factor matrices for a more straightfor-
ward interpretation of the results. The tri-factorization based
NMF called NMTF is used to extract patterns from relational
data [17], and is applied in various research areas from
modeling topics in text data [18] to discovering disease-
disease associations [19]. Fast-NMTF [20] is a version of
NMTF that uses faster training algorithms based on projected
gradients, coordinate descent, and alternating least squares
optimization. One of the usual applications of NMTF is in
data fusion methods. DFMF [3] is a variant of penalized
matrix tri-factorization for data fusion, which simultaneously
factorizes data matrices in standard linear algebra to reveal
hidden associations.

In the field of tropical matrix factorization, De Schutter
& De Moor in 1997 [21] presented a heuristic algorithm
TMF to compute factorization of a matrix over the tropical
semiring. The STMF method [11] is based on TMF, but it can
perform matrix completion over the tropical semiring. With
STMF, we have shown that tropical operations can discover
patterns that cannot be revealed with standard linear algebra.

FastSTMF [12] is an efficient version of STMF, where we
introduce a faster way of updating factor matrices. The main
advantage of FastSTMF over STMF is better computational
performance since it achieves better results with less com-
putation. Both STMF and FastSTMF showed the ability to
outperform NMF in achieving higher distance correlation and
smaller prediction error. However, NMF still achieves better
results in terms of approximation error on the train set.

We can also use matrix factorization to solve differ-
ent network optimization problems. The Floyd-Warshall
algorithm [22] for shortest paths can be formulated as a
computation over a (min,+) semiring. Hook [4], in his work
of linear regression over the tropical semiring, showed how
a (min,+) semiring can be used for the low-rank matrix
approximation to analyze the structure of a network. The
basis of this approach is a two-factorization algorithm that
can recover the edge lengths of the shortest path distances
for tripartite and bipartite networks. Network partitioning can
be performed using the algorithm for community detection
called the Louvain method [23]. Another interesting appli-
cation of semirings is the fact that we can write the Viterbi
algorithm [24] compactly in a (min,+) semiring over proba-
bilities [25].

Currently, no method returns three factorized matrices
computed over the tropical semiring. In our work, we propose
a first tri-factorization algorithm over the tropical semir-
ing called triFastSTMF, which is based on FastSTMF.
To evaluate it empirically, we apply our triFastSTMF to
approximate and predict the edge lengths of a four-partition
network.

III. METHODS
A. OUR CONTRIBUTION
1) SEMIRINGS (max,+) AND (min,+)
In a matrix semiring, the operations on the matrices are based
on the main operations in the underlying semiring. We denote
byRt×s

max the set of all matrices with t rows and s columns over
Rmax and for a matrix X ∈ Rt×s

max we denote its element in the
ith row and the jth column by Xij. Moreover, Rt

max = Rt×1
max is

the set of all vectors with t components over Rmax. We define
the matrix addition over Rmax as

(A⊕ B)ij = Aij ⊕ Bij = max{Aij,Bij},

for all A,B ∈ Rm×n
max , i = 1, . . . ,m and j = 1, . . . , n, and the

matrix multiplication as

(A⊗ B)ij =
p⊕

k=1

Aik ⊗ Bkj = max
1≤k≤p

{Aik + Bkj},

for A ∈ Rm×p
max and B ∈ Rp×n

max . Similarly, in the (min,+)
semiring, the matrix addition is defined as

(A⊕∗ B)ij = Aij ⊕∗ Bij = min{Aij,Bij}
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for all A,B ∈ Rm×n
min , i = 1, . . . ,m and j = 1, . . . , n, and the

matrix multiplication is defined as

(A⊗∗ B)ij =
p⊕

k=1

Aik ⊗∗ Bkj = min
1≤k≤p

{Aik + Bkj},

for A ∈ Rm×p
min and B ∈ Rp×n

min for i = 1, . . . ,m and j =
1, . . . , n.
We say that matrix A is less than or equal to matrix B,

denoted as A ⪯ B, if every element in A is less than or equal to
its corresponding element in B. For given matrices A ∈ Rm×n

max
and B ∈ Rm×p

max , the solutions of matrix equation

A⊗ X = B (1)

do not need to exist. However, there might exist some matri-
ces X ′ ∈ Rn×p

max , such that A ⊗ X ′ ⪯ B. Such X ′ is called a
subsolution of the equation (1). The greatest subsolution of
(1) is a matrix X0 ∈ Rn×p

max , such that A⊗ X0 ⪯ B and for any
matrix X ′, satisfying A⊗ X ′ ⪯ B we have X ′ ⪯ X0.
It is well known (see, e.g. [26]) that for A ∈ Rm×n

max and
b = [b1 b2 . . . bm]T ∈ Rm

max, the greatest subsolution x =
[x1 x2 . . . xn]T ∈ Rn

max of

A⊗ x = b

exists and is given by

xk = − max
1≤ℓ≤m

{−bℓ + Aℓk} = min
1≤ℓ≤m

{−ATkℓ + bℓ},

for k = 1, . . . , n, or equivalently

x = −AT ⊗∗ b.

More generally, for matrix equations, the greatest subsolution
is given by the following theorem.
Theorem 1 (Described by Gaubert and Plus [26]): For any

A ∈ Rm×n
max and B ∈ Rm×p

max the greatest subsolution of the
equation A⊗ X = B is

X = (−A)T ⊗∗ B.

In what follows, we need to include both operators⊗ and⊗∗

in our computations. First, we prove the following technical
lemma.
Lemma 1: For any A ∈ Rm×n

max , B ∈ Rn×p
max and C ∈ Rp×q

max
we have

(A⊗ B)⊗∗ C = A⊗ (B⊗∗ C)

and

(A⊗∗ B)⊗ C = A⊗∗ (B⊗ C).
Proof: For any k ∈ {1, 2, . . . ,m} and ℓ ∈ {1, 2, . . . , q}

we have

((A⊗ B)⊗∗ C)kℓ = min
1≤i≤p
{(A⊗ B)ki + Ciℓ} =

= min
1≤i≤p

max
1≤j≤n
{Akj + Bji + Ciℓ} =

= max
1≤j≤n

min
1≤i≤p
{Akj + Bji + Ciℓ} =

= max
1≤j≤n
{Akj + (B⊗∗ C)jℓ} =

= (A⊗ (B⊗∗ C))kℓ,

which proves the first equality. Similarly, we prove the second
one. □

To implement a tropical matrix tri-factorization algorithm,
we need to know how to solve tropical linear systems. In par-
ticular, we need to find the greatest subsolution of the linear
system A⊗ X ⊗ B = C .
Theorem 2: For any A ∈ Rm×n

max , B ∈ Rp×q
max and C ∈ Rm×q

max
the n× p matrix

X = (−A)T ⊗∗ C ⊗∗ (−B)T

is the greatest subsolution of the equation

A⊗ X ⊗ B = C . (2)
Proof: Observing the equation A⊗ Y = C , its greatest

subsolution is by Theorem 1 equal to Y ′ = (−A)T ⊗∗ C ,
implying

A⊗ ((−A)T ⊗∗ C) = A⊗ Y ′ ⪯ C . (3)

Moreover, if any matrix Y ′′ satisfies the inequality A⊗ Y ′′ ⪯
C , this implies that Y ′′ ⪯ (−A)T ⊗∗C . Similarly, the greatest
subsolution of the equality Z ⊗B = C is by Theorem 1 equal
to Z ′ = C ⊗∗ (−B)T , thus

(C ⊗∗ (−B)T )⊗ B = Z ′ ⊗ B ⪯ C, (4)

and if any matrix Z ′′ satisfies the inequality Z ′′⊗B ⪯ C , this
implies that Z ′′ ⪯ C ⊗∗ (−B)T .

Define X0 = (−A)T ⊗∗ C ⊗∗ (−B)T . Using equations (3),
(4) and Lemma 1 observe that

A⊗ X0 ⊗ B = A⊗ ((−A)T ⊗∗ C ⊗∗ (−B)T )⊗ B

= (A⊗ (−A)T ⊗∗ C)⊗∗ (−B)T ⊗ B

⪯ C ⊗∗ (−B)T ⊗ B ⪯ C,

which implies that X0 = (−A)T ⊗∗ C ⊗∗ (−B)T is the
subsolution of equation (2).
Assume now there exists a subsolution X ′ of (1), i.e.,

A⊗ X ′ ⊗ B ⪯ C .

Let us prove that X ′ ⪯ X0, which will imply that X0 is
the greatest subsolution of equation (1). Since X ′ ⊗ B is
the subsolution of the equation A ⊗ Y = C , it follows that
X ′ ⊗ B ⪯ (−A)T ⊗∗ C . This implies X ′ is the subsolution of
the equation Z ⊗ B = (−A)T ⊗ C , which assures that

X ′ ⪯ (−A)T ⊗∗ C ⊗∗ (−B)T = X0.

□

2) TRI-FACTORIZATION OVER THE TROPICAL SEMIRING
We propose a tri-factorization algorithm triFastSTMF
over the tropical semiring, which returns three factorized
matrices that we later use for the analysis of the structure of
four-partition networks.
Matrix tri-factorization over a tropical semiring is

a decomposition of a form R = G1 ⊗ S ⊗ G2, where
R ∈ Rm×n

max , G1 ∈ Rm×r1
max , S ∈ Rr1×r2

max , G2 ∈ Rr2×n
max , r1 ∈

N0 and r2 ∈ N0. Since for small values of r1 and r2 such
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FIGURE 1. Schematic diagram of one iteration of the proposed
triFastSTMF method for updating factor matrices G1, S and G2 of the
data matrix R ≈ G1 ⊗ S ⊗ G2. Step 1) updates the factor matrix
G1 through CFL, while step 2) uses the new G1 to update G2 through CFR.
The last step, 3) updates S using Theorem 2 and newly-computed factor
matrices G1 and G2. The procedure repeats until convergence.

decomposition may not exist, we define the tropical matrix
tri-factorization problem as: Given a matrix R and factoriza-
tion ranks r1 and r2, find matrices G1, S and G2 such that

R ∼= G1 ⊗ S ⊗ G2. (5)

Theoretically, the lower bound of ranks for which
tri-factorization exist is 1. The approximation quality depends
on the presence of latent structure in the data [3].

Because the solution of equation (5) does not exist in
general, we will evaluate the computed tri-factorization by b-
norm following the results from [11], [12], and [21], defined
as ∥W∥b =

∑
i,j |Wij|. In particular, we want to minimize the

cost function

J (G; S) = ∥R− G1 ⊗ S ⊗ G2∥b .

InAlgorithm 1, we present the pseudocode of the algorithm
triFastSTMF illustrated in Figure 1. The convergence
of the proposed algorithm triFastSTMF, defined in
Algorithm 1, is checked similarly to that of STMF [11] and
FastSTMF [12]. The factor matrices are updated only if the
b-norm decreases, ensuring that the approximation error is
monotonically reduced.

The triFastSTMF method consists of the following
steps:

1) We follow the results obtained in [12] to preprocess a
data matrix into a suitable shape using transformations,
like matrix transposition and random permutation of
rows. Wide matrices are shown to achieve smaller
errors compared to tall matrices [12].

2) The default initialization of factor matrices G1, S and
G2 uses the Random Acol strategy [11], which com-
putes the element-wise average of randomly selected

Algorithm 1 Tri-Factorization Over the Tropical Semiring
(triFastSTMF)
Input: data matrix R ∈ Rm×n

max , approximation ranks r1, r2
Output: factorization G1 ∈ Rm×r1

max , S ∈ Rr1×r2
max , G2 ∈ Rr2×n

max

if R not wide then transpose R
perm← random permutation of indices 1 . . .m
R← R[perm, :]
initialize G1,G2
S ← (−G1)T ⊗∗ R⊗∗ (−G2)T

while not converged do
G1← CFL(R,G1, S,G2)
G2← CFR(R,G1, S,G2)
S ← (−G1)T ⊗∗ R⊗∗ (−G2)T

end while
if R transposed then
(G1, S,G2)← (GT2 , ST ,G1[perm−1, :]T )
else (G1, S,G2)← (G1[perm−1, :], S,G2)
return G1, S,G2

columns from matrix R. Fixed initialization for matri-
ces G1, S, and G2 can be used straight from the data,
see Section IV-B.

3) Until converged, each iteration of the algorithm first
updates G1 and G2 using CFL and CFR, presented in
Algorithms 2 and 3, respectively, and described below.
Then we compute the middle factor S as the greatest
subsolution of equationG1⊗S⊗G2 = R by Theorem 2
as

S = (−G1)T ⊗∗ R⊗∗ (−G2)T .

4) As the last step of triFastSTMF, we reshape the
factor matrices G1, S, and G2 into appropriate forms
depending on the initial transformation of the data
matrix R. If some of the elements of the data matrix R
are not given, we apply the operations proposed in [11]
to skip all the missing values in the calculation.

Note that triFastSTMF updates one factor matrix at a
time using CFL and CFR, presented in Algorithms 2 and 3,
respectively. They are both based on FastSTMF and rep-
resent the two-factorization with FastSTMF core [12] that
contains minor changes:
• In CFL/CFR, we remove the initialization of the factor
matrices, as they are already initialized at the beginning
of triFastSTMF. In CFL, we update only the left
factor matrix G1, and declare Q = S ⊗ G2 to be the
second factor matrix. Similarly, in CFR, we update only
the right factor matrix G2 and Q = G1 ⊗ S is the
first factor matrix. This approach prevents overfitting
factor matrices since the optimization iterates over the
left and right factorization. Such a process gives equal
importance to both factor matrices, allowing patterns
to spread in multiple factor matrices instead of being
consolidated in one of them.
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Algorithm 2 Compute Factorization to Update the Left Fac-
tor Matrix G1 (CFL)
Input: data matrix R ∈ Rm×n

max , factor matrices: left G1 ∈

Rm×r1
max , middle S ∈ Rr1×r2

max , and right G2 ∈ Rr2×n
max

Output: left factor matrix G1 ∈ Rm×r1
max

Q = S ⊗ G2
while not converged do
for each row i of R
err , row_inds, col_inds← TD_A(R,G1,Q, i)
for each j in argsort(err) in decreasing order
k ← argmaxℓ (countℓ (row_inds ∪ col_inds[j]))
(G1,Q,G′1(·k),Q

′
k·)← F-ULF(R,G1,Q, i, j, k)

if ∥R− G1 ⊗ S ⊗ G2∥b decreases then break
else (G1(·k),Qk·)← (G′1(·k),Q

′
k·)

(G1,Q,G′1(·k),Q
′
k·)← F-URF(R,G1,Q, i, j, k)

if ∥R− G1 ⊗ S ⊗ G2∥b decreases then break
else (G1(·k),Qk·)← (G′1(·k),Q

′
k·)

end while
return G1

Algorithm 3 Compute Factorization to Update the Right
Factor Matrix G2 (CFR)
Input: data matrix R ∈ Rm×n

max , factor matrices: left G1 ∈

Rm×r1
max , middle S ∈ Rr1×r2

max , and right G2 ∈ Rr2×n
max

Output: right factor matrix G2 ∈ Rr2×n
max

Q = G1 ⊗ S
while not converged do
for each row i of R
err , row_inds, col_inds← TD_A(R,Q,G2, i)
for each j in argsort(err) in decreasing order
k ← argmaxℓ (countℓ (row_inds ∪ col_inds[j]))
(Q,G2,Q′·k ,G

′

2(k·))← F-ULF(R,Q,G2, i, j, k)
if ∥R− G1 ⊗ S ⊗ G2∥b decreases then break
else (Q·k ,G2(k·))← (Q′

·k ,G
′

2(k·))
(Q,G2,Q′·k ,G

′

2(k·))← F-URF(R,Q,G2, i, j, k)
if ∥R− G1 ⊗ S ⊗ G2∥b decreases then break
else (Q·k ,G2(k·))← (Q′

·k ,G
′

2(k·))
end while
return G2

• We change the computation of the approximation error.
FastSTMF computes the error of two-factorization,
while CFL/CFR computes the tri-factorization error
using the current factor matrices G1, S, and G2.

• We do not transpose the matrices nor permute the rows
of matrices in CFL/CFR since this is performed as part
of triFastSTMF.

The functions F-ULF, F-URF and TD-A used in CFL
and CFR are the same as in the FastSTMF algorithm [12].
We present the pseudocode of TD-A in Algorithm 4, where
the notation of functions used is given in [12].

FIGURE 2. Example of a four-partition network.

Algorithm 4 TD_A
Input: data matrix R ∈ Rm×n

max , left factor matrix U , right
factor matrix V , row i of R

Output: errors, row_indices, column_indices
row_indices← {{f (i, t) : t = 1, . . . , n}}
errors, columns_indices← [ ], [ ]
for each column j of R
e← tdcol(R,U ,V , j)
append e to errors
col_indices← {{f (t, j) : t = 1, . . . ,m}}
append col_indices to columns_indices

return errors, row_indices, column_indices

3) DIFFERENT ASPECTS OF THE TRI-FACTORIZATION ON
NETWORKS
The four-partition network shown in Figure 2 is an illus-
trative example of where we can apply tri-factorization for
network structure analysis. We represent the four-partition
network with three factor matrices which is the basis of
tri-factorization methods. Further, different approaches to
four-partition networks can be used depending on the nature
of the data and the task that needs to be solved.

For a network 0 with a vertex set

V (0) = {x(i) : i = 1, . . . ,m} ∪ {y(j) : j = 1, . . . , r1}

∪ {w(k) : k = 1, . . . , r2} ∪ {z(ℓ) : ℓ = 1, . . . , n}

and an edge set E(0), we define a matrix G1 ∈ Rm×r1
max such

that G1(ij) represents the weight on the edge from x(i) to y(j),
a matrix S ∈ Rr1×r2

max where Sjk represents the weight on the
edge from y(j) to w(k) and a matrix G2 ∈ Rr2×n

max where G2(kℓ)
represents the weights of the edges from w(k) to z(ℓ). Then
R = G1 ⊗ S ⊗ G2 is the m× n matrix such that

Riℓ = max
1≤j≤r1,1≤k≤r2

((G1)ij + Sjk + (G2)kℓ)

is the length of the longest path from x(i) to z(ℓ), see Figure 2.
If a matrix R is given, we can estimate G1, S and G2 with
triFastSTMF.

The main question is how to present an arbitrary network
as a four-partition network. The two main approaches are:
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• All nodes in the four-partition network are real
nodes. The matrices G1, S, and G2 represent weights
of the real edges from the original network, which
preserves the interpretability of the network since the
relations are only between real nodes. Moreover, the size
of the four-partition network remains the same size as
the original network. This approach is suitable when the
original network’s structure already has four partitions.

• Some nodes in the four-partition network are latent
nodes. The real nodes are only outer nodes (x, z), while
latent nodes are inner nodes (y,w). In this case, the
matrices G1, S and G2 represent latent features of the
outer nodes and not real weights from the original net-
work, leading to more difficult interpretability of the
network since now the relations are also between real
and latent nodes. The size of the four-partition network
is larger than the size of the original network, which
increases the complexity of the task using this approach.

We focus on the first approach, where all nodes in the network
are real nodes since we want to use the patterns from the
data to initialize the factor matrices, maintain network inter-
pretability, demonstrate how to work with real four-partition
networks, and consequently obtain a better approximation of
matrices R,G1, S,G2. In this way, we fully present the power
of tri-factorization over two-factorization and its primary
purpose.

4) COMPARISON WITH OTHER STRATEGIES
In our work, we developed different tropical tri-factorization
strategies, triSTMF and Consecutive, that are based on
two-factorizations [11], [12]. We compare their effectiveness
with proposed triFastSTMF in Section IV-A1.
The triSTMF strategy is based on the TD_Amethod from

FastSTMF, and we implement triSTMF tri-factorization
as two different two-factorizations:

i) Left factor matrix is G1 ⊗ S, right factor matrix is G2.
ii) Left factor matrix is G1, right factor matrix is S ⊗ G2.

We denote errors obtained from TD_A in the i) case as εL
and errors in the ii) case as εR. We developed two versions
called triSTMF-BothTD and triSTMF-RandomTD,
which differ in the order of how the error is com-
puted. In triSTMF-BothTD, the computation is performed
using both εL and εR. The smaller error between εL
and εR is selected to perform optimization. In contrast,
triSTMF-RandomTD randomly computes εL or εR and
continues with the optimization. Also, triSTMF uses ULF
and URF from STMF as the basis for updating factor matri-
ces. Note that we cannot use F-ULF and F-URF directly
in the case of tri-factorization since the third factor matrix
S introduces additional complexity to F-ULF and F-URF,
resulting in incompatible operations. This results in a slow
optimization process of both versions of triSTMF.
The Consecutive strategy has two versions: lrConse-

cutive and rlConsecutive. The goal of this strategy
is to achieve tri-factorization by first applying FastSTMF

to the data matrix R, resulting in factor matrices U and V .
In the second step,lrConsecutive obtains the third factor
matrix by applying FastSTMF to the matrix V to obtain
S and G2, while G1 = U . In contrast, rlConsecutive
applies FastSTMF to the matrix U to obtain G1 and S,
while G2 = V . The drawback of a consecutive strategy is
the consolidation of the patterns in one of the factor matrices
during the first step.

B. SYNTHETIC DATA
We created a synthetic data matrix of size 200 × 100 using
the (max,+) multiplication of three random non-negative
matrices sampled from a uniform distribution over [0, 1).
Since the purpose of synthetic data is to present the perfect
scenario in which the proposed method works best, we cre-
ated our synthetic data using three random factor matrices
of sufficiently large ranks r1 = 25 and r2 = 20. We use
a synthetic data matrix to compare different tropical matrix
factorization methods in Section IV-A1. We also created a
synthetic networkwith four partitions of sizes (m, r1, r2, n) =
(45, 10, 15, 30) and used it to analyze the four-partition net-
work in Section IV-A2.

C. REAL DATA
We downloaded the real-world interaction dataset of an ant
colony [27] from the Network Data Repository [28]. The
nodes represent 160 ants, the edges represent physical con-
tact (interaction), and the edge weight is the frequency of
interaction during 41 days in total. We preprocessed the
network to the appropriate format for evaluation as explained
in Section IV-B. In Figure 3, we show the daily aver-
age frequency of interactions between ants. The distance
between the nodes indicates the strength of interactions, i.e.,
nodes are closer when the interaction is stronger; contrary,
nodes are farther apart when the interaction is weaker. The
outer nodes interact less frequently with the nodes in the
center of the network. We depict the individual frequency
of interactions with the transparency of the edge color in
Figure 3.

D. EVALUATION METRICS
In our work, we use the following metrics:

• Root-mean-square error or RMSE is a commonly used
metric for comparing matrix factorization methods [12].
We use the RMSE in our experiments to evaluate the
approximation error RMSE-A on the train data, and
prediction error RMSE-P on the test data.

• b-norm is defined as ||W ||b =
∑

i,j |Wij|, and it is
used in [11] and [12] as objective function. We also
use the b-norm to minimize the approximation error of
triFastSTMF.

• Rand score is a similarity measure between two cluster-
ings that considers all pairs of samples and counts pairs
assigned in the same or different clusters in the predicted
and actual clusterings [29]. We use the Rand score to
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FIGURE 3. A real-world network of the daily average frequency of
interactions in an ant colony. The strength of the interaction is visualized
with the distance between nodes and edge transparency.

compare different partitioning strategies of the synthetic
network.

E. EVALUATION
We conducted experiments on synthetic data matrices with
true ranks r1 = 25 and r2 = 20. The experiments were
repeated 25 times for 300 seconds using Random Acol ini-
tialization.

For the synthetic four-partition network reconstruction,
we repeat the experiments 25 times using fixed initialization
with different random and partially-random partitionings.
Due to the smaller matrices, these experiments run for
100 seconds.

For real data, we used the Louvain method [23] to obtain
r1 and r2. Furthermore, we randomly removed at most 20%
of the edges. We use fixed initialization and run the experi-
ments for 300 seconds.

IV. RESULTS
We perform experiments on synthetic and real data. First,
we compare different tropical matrix factorization methods
on the synthetic data matrix and show that triFastSTMF
achieves the best results of all tropical approaches. Next,
we analyze the effect of different partitioning strategies on
the performance of triFastSTMF. Finally, we evaluate the
proposed triFastSTMF on real data and compare it with
Fast-NMTF.

A. SYNTHETIC DATA
1) COMPARISON BETWEEN THE TROPICAL MATRIX
FACTORIZATION METHODS
We experiment with different two-factorization and tri-
factorization tropical methods. The set of all tri-factorizations

FIGURE 4. Comparison of different tropical tri-factorization methods. The
median, first and third quartiles of the approximation error in 25 runs on
the synthetic random tropical 200 × 100 matrix are shown.

represent a subset of all two-factorizations. Specifically, each
tri-factorization is also a two-factorization, meaning that,
in general, we cannot obtain better approximation results with
tri-factorization compared to two-factorization. In Figure 4,
we see that the first half of lrConsecutive is better
than the second half of lrConsecutive. Namely, in the
first half, we perform two-factorization, while in the sec-
ond half, we factorize one of the factor matrices to obtain
three factor matrices as the final result. This second approx-
imation introduces uncertainty and larger errors than in the
first half. We see similar behavior in rlConsecutive.
In this scenario, we show that the two-factorization is bet-
ter than the tri-factorization. We see that the results of
triSTMF-BothTD and triSTMF-RandomTD overlap
and do not make any updates during the limited running time
since they use slow algorithms to update factor matrices.

Comparing the two-factorization method FastSTMF and
the tri-factorization method triFastSTMF, we obtain a
similar approximation error in Figure 4. We see that our
proposed triFastSTMF achieves the lowest approxima-
tion error on the synthetic data matrix of all tested tropical
tri-factorization methods. Tri-factorization may outperform
two-factorization in a limited running time because of the
nature of the data and the initialization of factor matri-
ces. Theoretically, we expect that two-factorization and
tri-factorization would achieve the same results when eval-
uated across a large number of datasets. Tri-factorization has
demonstrated its superiority over two-factorization in many
examples. An important application of tri-factorization is
the fusion of data from different sources [3]. In our work,
we show that tri-factorization can be applied to approximate
and predict weights in four-partition networks.

2) ANALYSIS OF FOUR-PARTITION NETWORK
CONSTRUCTION
We construct a random tropical network K of total 100 nodes
with a four-partition A∪B∪C∪D. We denote the sizes of the
sets A, B, C andD asm, r1, r2 and n, respectively, and choose
(m, r1, r2, n) = (45, 10, 15, 30), see Figure 5. We want to
check the robustness of the proposed triFastSTMF to the
partitioning process and answer the following question: Is

69028 VOLUME 11, 2023



A. Omanović et al.: Matrix Tri-Factorization Over the Tropical Semiring

FIGURE 5. (a) A synthetic random tropical network K of 100 nodes created by applying the tropical semiring on four sets A, B, C and D. Sets A and
D are densely connected, following the network construction process. In contrast, sets B and C are less connected. Example of partitioning
network K , using b) random and c) partially-random partitioning.

approximation error stable among different choices of par-
titioning?

Network K contains the following edges:

• edges from A to B, denoted as A − B, have weights
represented by a random matrixMm×r1

1 ,
• edges from B to C , denoted as B − C , have weights
represented by a random matrix T r1×r2 ,

• edges from C to D, denoted as C − D, have weights
represented by a random matrixM r2×n

2 ,
• edges from A to D, denoted as A − D, have weights
represented by matrix E = M1 ⊗ T ⊗M2.

Matrices M1,T , and M2 are sampled from a uniform distri-
bution over [0, 1).

We propose the following general algorithm to convert the
input network K into a suitable form for tri-factorization.
First, partition all network nodes into four sets, X ,Y ,W , and
Z , with fixed sizes m, r1, r2 and n, respectively, in two ways:

• random partitioning: X ∪ Y ∪ W ∪ Z is a random
four-partition of the chosen size. Random partitioning is
a valid choicewhen all network nodes represent only one
type of object. For example, in a social network, a node
represents a person.

• partially-random partitioning: Y ,W are random subsets
of nodes of K of sizes r1 and r2, while X = A and
Z = D, where A,D are given. Partially-random parti-
tioning is applicable when there are two types of objects
represented in the network. For example, in the movie
recommendation system, users belong to the set X and
movies to Z . In this case, sets Y and W represent the
latent features of X and Z .

See examples of random and partially-random partitioning in
Figure 5, where we show only the edges X − Y , Y −W and
W − Z to achieve easier readability of the network. Given
the (pseudo)random partitioning, construct matrix R as the

edges X − Z . The matrices G1, S and G2 are constructed as
explained in III-A3 and can be used for the initialization of
tri-factorization of R (fixed initialization). For the missing
edges, we set the corresponding values in triFastSTMF
to be a random number from elements of G1, S and G2.
Tri-factorization on R will return updated R,G1, S,G2 with
approximated/predicted weights on edges.
We show that partially-random partitioning achieves

higher Rand scores, but approximation errors are similar
to the ones obtained by random partitioning, see Figure 6.
We conclude that the partitioning process does not signif-
icantly affect the approximation error of triFastSTMF.
Still, if there is some additional knowledge about the sets
of partition, it is better to use partially-random partitioning.
When we do not know the real partition, random partitioning
or advanced algorithms, such as the Louvain method, can be
used.

B. REAL DATA
We test our method on a real-world interaction dataset of
the ant colony introduced in Section III-C. We describe the
data on the interaction between pairs of ants using a weighted
adjacency matrix of size 160×160, where diagonal elements
are equal to 0. The adjacencymatrix is symmetric, and we use
the data from the upper triangular part to construct the matrix
H , where each row describes one pair of ants, and columns
represent a specific day. Since H is large, we use k-means
clustering to obtain 50 clusters and analyze the behavioral
patterns of the ants on each day, shown in Figure 7.

There are three groups of days with different dynamics
of ant interaction: D1 represents days 1 − 19, D2 are days
20−31, andD3 are days 32−41.We preprocessed the data for
each group of daysD1,D2 andD3 such that the corresponding
weight between two ants represents the daily average of all
interactions for the specific days, see Figure 8.
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FIGURE 6. Rand score and approximation error of triFastSTMF on
25 random and 25 partially-random partitionings of synthetic data.
We performed one run of 100 seconds for each matrix R and used true
ranks r1 and r2 as factorization parameters.

FIGURE 7. Analysis of ants’ behavioral patterns over 41 days. The rows
represent centroids of clustered ant pairs with k-means using k = 50, and
the columns denote daily interactions. Rows and columns are ordered
using optimal leaf ordering for hierarchical clustering [30] using cosine
distance and Ward linkage.

The groupD2, which contains days 20−31 and 140 pairs of
ants with positive weights, is the most dynamic of the three
groups and has local communities. We construct a network
N from the group D2, where the nodes represent individual
ants, and the weight of the edges represents the strength of
the interactions between ants. The network density of N is
88%. The weighted adjacency matrix of N is denoted as A.

Next, we construct ten different networks, N1, . . . ,N10 by
sampling with replacement the edges from N . Each sampled
network has at most 20% of missing edges from N , which
are used for evaluation. For each network Ni, i ∈ {1, . . . , 10},
we construct the weighted adjacency matrix Ai with the exact
same size and ordering of the nodes in rows and columns
as in matrix A. Now, to apply tri-factorization on networks,
we need to perform Louvain partitioning [23] for each Ni to
obtain a four-partition of its nodes: Xi ∪ Yi ∪Wi ∪ Zi.

TABLE 1. Louvain partitioning of Ni where i ∈ [1, 10], containing
140 nodes from days 20 − 31.

Louvain method assigns sets of a four-partition and
enables favoring larger communities using parameter γ .
Different partitions are obtained for different values of γ ,
from which we select a connected four-partition network.
We prefer the outer sets Xi and Zi of the corresponding
sizes m and n, respectively, to have a larger size than the
inner sets Yi and Wi of sizes r1 and r2, respectively. This
ensures that the matrix factorization methods embed data
into low-dimensional space using rank values r1, r2 ≪
min{m, n}. Louvain algorithm results in different parameters
m, r1, r2 and n for each Ni, i ∈ {1, . . . , 10}, see Table 1.
We define µ to represent a percentage of nodes in outer sets.
Table 1 shows that µ ≥ 74% for all Ni. We construct Ri
matrices of corresponding sizes m × n using the edges from
Xi to Zi, and the corresponding matricesG1, S andG2 of sizes
m × r2, r1 × r2 and r2 × n, respectively, using all four sets.
In Ri, we mask all values equal to 0.

We run matrix factorization methods on each Ri matrix
using the corresponding factor matrices G1, S, and G2 for
fixed initialization and obtain updated matrices G1, S, and
G2. Since we use fixed initialization, we evaluate each
method only once because there is no presence of random-
ness. In Table 2, we present the comparison between our pro-
posed triFastSTMF and Fast-NMTF. The results show
that Fast-NMTF achieves a smaller approximation error
RMSE-A, while triFastSTMF outperforms Fast-NMTF
in a better prediction error RMSE-P. This result is consistent
with previous research in [11] and [12], where we have shown
that matrix factorization over the tropical semiring is more
robust to overfitting compared to methods using standard
linear algebra.

The matrix Ri contains only edges Xi− Zi. All other edges
Xi − Yi, Yi −Wi andWi − Zi are hidden in the corresponding
factor matricesG1, S andG2. If we want to obtain predictions
for all edges of the network N using different partitions of Ni,
we need to also consider factor matrices, not just matrix Ri.
To achieve this, we take into account the correspondingG1, S
andG2, including their productsG1⊗S, S⊗G2 andG1⊗S⊗
G2. The edges that were removed fromN during the sampling
process to obtain Ni are used to measure the prediction error,
while the edges in Ni are used for approximation.
In Table 3, we present the comparison between our

proposed triFastSTMF and Fast-NMTF on network
N using different partitions of Ni. The results show that
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FIGURE 8. Comparison between the daily average of all interactions between ant pairs for different groups of days: (a) days 1-19, (b) days
20-31, and (c) days 32-41. Rows and columns are ordered using optimal leaf ordering for hierarchical clustering [30] using cosine distance
and Ward linkage.

TABLE 2. RMSE-A and RMSE-P on data matrices Ri . The result of the best method in the comparison between triFastSTMF and Fast-NMTF is shown in
bold.

TABLE 3. RMSE-A and RMSE-P on network N using different partitions of Ni . The result of the best method in the comparison between triFastSTMF
and Fast-NMTF is shown in bold.

triFastSTMF and Fast-NMTF have the same number
of wins regarding the RMSE-A and RMSE-P. However, the
main difference between triFastSTMF and Fast-NMTF
is in the fact that Fast-NMTF achieves an enormous error
compared to triFastSTMF in half of the cases. This is
because now we are also predicting edges Xi − Yi,Yi −
Wi,Wi−Zi and Xi−Wi,Yi−Zi, which we obtain by multiply-
ing the corresponding factor matrices G1, S and G2 properly.
There is no guarantee that the factor matrices G1, S, and
G2 and their products are on the same scale as the data matrix
Ri on which the matrix factorization methods were trained.
Since Fast-NMTF uses standard linear algebra, one more
matrix multiplication is needed to get to the original data
scale. Using standard operations + and × results in signif-
icant error, since the predicted values expand in magnitude
quickly. triFastSTMF does not have this problem because
it is based on tropical semiring, and the operators max and+
are more averse to predicting large values.

V. CONCLUSION
Matrix factorization is a popular data embedding approach
used in various machine learning applications. Most fac-
torization methods use standard linear algebra. Recent
research introduced tropical semiring to matrix factorization,
which enables the modeling of nonlinear relations. Two-
factorization approaches are often applied to study bipartite
and tripartite networks. However, tri-factorization is suitable

for application on four-partition networks, and to the best of
our knowledge, our work is the first to explore this option.

In this study, we evaluate different strategies based on two-
factorization, called triSTMF and Consecutive. Both
strategies have different drawbacks, such as a slow optimiza-
tion process in triSTMF and the overfitting of one of the
factor matrices in Consecutive. These limitations have
motivated us to develop a novel tri-factorization approach that
addresses the limitations of triSTMF and Consecutive.
We propose triFastSTMF, a tri-factorization algorithm
over the tropical semiring that can be used for a single data
source. Our proposed algorithm is based on FastSTMF,
a two-factorization method, with the necessary modifications
for tri-factorization. We also provide a detailed theoretical
analysis for solving the linear system and computing the
third factor matrix. The obtained solution is used for the
optimization in the proposed triFastSTMF.
We tested the method on synthetic and real data, applied

it to the edge approximation and prediction task in four-
partition networks, and demonstrated that triFastSTMF
achieves close approximation and prediction results as
Fast-NMTF. Furthermore, triFastSTMF is more robust
than Fast-NMTF in cases when methods are fitted on a part
of the network and then used to approximate and predict the
entire network.

Although in this study we presented the proposed method
on a single data source, we established the basis for creating
a model capable of combining multiple data sources. Our
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future work involves the application and modification of the
proposed triFastSTMF to the data fusion problem, which
often uses tri-factorization.

SUPPORTING INFORMATION
The supporting Python notebooks and data are available on
GitHub (https://github.com/Ejmric/triFastSTMF) and Zen-
odo (https://doi.org/10.5281/zenodo.7928148). Real-world
interaction dataset of an ant colony named insecta-ant-
colony3 was taken from Animal Social Networks data
collection on http://networkrepository.com.
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