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ABSTRACT A detailed methodology to develop a digital twin has many useful applications in the era
of technology 4.0. This study provides a framework to develop a digital twin for vibration prediction and
fatigue life prognosis of a vertical oil well drillstring. The nature and the severity of the down-hole vibrations
are identified and estimated based on the vibrational and operational parameter measurements made at
the surface level. Because of the difficulty in accessing full-scale industrial drilling data, a reduced-scale
drillstring was constructed that could exhibit bit bounce, stick-slip and whirl. A bond graph simulation
model was tuned to match the apparatus, and then used to generate synthetic training data. The trained
machine learning algorithm can classify the incoming surface monitoring data from the physical twin
into different types and severities of vibration states which are not otherwise observable. Moreover, the
classified vibration condition is used to re-configure the bond graph model with appropriate complexity to
generate a loading history for fatigue life prognosis. The fatigue life estimation uses a novel combination
of a low-complexity model of the entire drillstring and a high fidelity finite element model of components
where stress concentrations are most severe. The digital twin detected the vibration type and its severity and
estimated the remaining fatigue life of the physical system using only measurements of the motor current,
rig floor axial vibration, and rotary speed.

INDEX TERMS Digital twin, bond graph, hidden Markov model, surface monitoring, drillstring.

I. INTRODUCTION
Downhole drillstring vibrations, especially high-frequency
vibrations, are not observable from the ground level due
to wave attenuation and bandwidth limitation of the cur-
rently used measuring techniques [1]. As mentioned in [2],
a number of telemetry methods have been developed over
the years to transfer measured data to the surface, including
mud-pulse (MP), electromagnetic (EM), wired-drill-pipe,
and acoustic telemetry. While the wired-drill-pipe telemetry
can transport data up to 57 kbps, the MP and EM telemetry
systems can only communicate data at rates of about up to
10 bps. In offshore applications, EM telemetry is ineffective,
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and wired drill pipe telemetry is expensive and prone to
malfunction when the wiring link between the transmitter
and receiver is lost. Acoustic telemetry has the capacity to
communicate at rates up to hundreds of bits per second.
These transmission rates are insufficient for near real-time
surface monitoring of high-frequency downhole vibrations.
Therefore, both the detection and control of such vibrations
are done at the bottom of the well [1], [3].

Nevertheless, the availability of rich vibrational data is
essential for applications such as fatigue life prognosis of
drill pipes. Timely detection of such conditions helps to
make effective rectifications of the operations and hence
to reduce the risk and to assure reliability. This allows
the driller to take action to mitigate the vibration, for
example, by reducing weight on bit (WOB) and/or increasing
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rotational speed to address stick-slip. The high cost for
the downhole measurement of the drillstring vibrations
consequently encourages machine learning approaches to
downhole vibration prediction during drilling [4]. The
limited availability of reliable training data for machine
learning algorithms is also a challenge. A digital twin of
a drillstring has the potential to generate synthetic data for
different ‘what-if’ scenarios [5], which may be a solution
for this problem. Therefore, the current study is focused on
developing a digital twin which has the ability to generate
its own data, by performing a series of simulations, to train
its machine learning algorithms in order to make useful
predictions such as downhole vibration state and fatigue life
prognosis.

The overall outcome of the current study is a digital
twin for a vibrating structure, in this case an oil well
drillstring. The process starts with a physical system that is
susceptible to vibration problems that a) can be classified
(stick-slip, bit bounce, and whirl for drilling) and b) are not
easily detected because direct measurement is not practical.
A dynamic simulation model of the physical system is
then created and parameterized, including virtual sensors to
generate time series of practically available measurements.
The virtual measurements corresponding to the selected types
of vibration from the simulation model are used to train a
machine learning algorithm.Measurements of actual physical
system vibration can be input to the trained algorithm
to identify vibration type and severity. Once vibration is
detected and classified, the simulation model is configured to
replicate it, and generate stress histories. The stress histories
are exported to a finite element model for fatigue life
prognosis.

Section II reviews literature on digital twinning, vibration
measurement in drilling, drillstring modelling, and machine
learning algorithms. Section III gives an overview of the
process and introduces the techniques used at each stage.
Sections IV to VII give detailed development of the case
study system, simulation model, machine learning algorithm
and training, and fatigue life prediction. Section VIII
provides results, and discussion and conclusions are in
Sections IX and X.

II. BACKGROUND STUDY
A. DIGITAL TWINS
This section introduces the digital twin concept and presents
some recent developments along with their strengths and
weaknesses.

‘Digital twin’ is a term that has been used in the recent past
to describe a digital replica of a physical system. However,
there is no consolidated view on what digital twins are [6].
The digital twin concept was first introduced by Michael
Grieves at the University of Michigan in 2003 through
Grieves’ Executive Course on Product Lifecycle Manage-
ment [7]. According to [5], the term ‘digital twin’ carries
various definitions, and the term is often misinterpreted.
As mentioned in their review, on some occasions, just a 3D

visualization of a physical system is referred to as a digital
twin. According to the broadest definition identified by [5],
a digital twin is an ‘‘integrated multi-physics, multi-scale,
probabilistic simulation of an as-built system, enabled by
digital thread, that uses the best available models, sensor
information, and input data to mirror and predict activities
or performance over the life of its corresponding physical
twin’’ [8].

Meanwhile, [9] defines three types of digital twins:
Product, Process, and Performance. Product digital twins are
used for the efficient design of new products, while Process
digital twins are used in manufacturing and production
planning. Performance digital twins are used to capture,
analyze, and act on operational data. According to this
classification [9], the outcome of the current study can be
classified as a Performance digital twin.

A digital twin conceptual framework for a dynamic
structural damage problem is presented by [6], in which a
physics-based model coupled with Quadratic Discriminant-
based classifier algorithm was introduced. The proposed
conceptual framework could be adapted to implement a
Product digital twin, which can prognose the fatigue failure
of a vibrating structure.

A digital twin concept was proposed in [10] to estimate the
structural life of aircraft components. It was envisioned that
during the industry 4.0 technology level, the manufacturer
could automatically populate the high-fidelity Product digital
twin during manufacturing. While in operation, based on
the sensor readings and other inputs, the digital twin would
be capable of estimating structural life. However, as further
mentioned in [10], the measured aircraft weight while in
operation, which is a crucial input to the digital twin, still
involves cumbersome ground equipment and input with
assumptions given by the flight crew, and is hence not
accurate at the moment.

In addition to damage or life predictions of systems, the
digital twin approach can be used in process optimization.
A novel hybrid framework introduced by [11] combines
machine learning methods with API laboratory procedures,
onsite measurement data, and fluid rheology to adequately
describe the drilling fluids. This approach can leverage the
drilling performance by optimizing cutting transport and
hence get an efficient ROP. Further, as proposed by [12],
digital twins can support planning, real-time analysis, real-
time automated monitoring, forecasting simulation, and
forward-looking simulations of problematic situations.

The use of digital twins in the fatigue life prognosis of
drillstrings is not reported in the literature. Mathematical
modelling, vibration simulations, fatigue analysis, and classi-
fication of surface monitoring measurements using machine
learning algorithms are found as isolated studies in most
cases and a holistic approach is not available in the literature.
The current study addresses this by presenting a digital
twin development procedure integrating dynamic model-
ing, vibration simulation, machine learning, and fatigue
analysis.

VOLUME 11, 2023 62893



M. G. Don, G. Rideout: Digital Twinning Methodology for Vibration Prediction and Fatigue Life Prognosis

B. SURFACE MONITORING TECHNIQUES AND THEIR
IMPORTANCE
Prior work has studied the feasibility of surface monitoring
in estimating downhole vibration conditions. In order to
learn more about bit-rock interaction, vibrations at the top
of the drillstring were initially recorded and processed in the
1960’s [13]. The contact between the bit and the rock during
rotary or motor drilling generates forces and displacements
in the drillstring. As further mentioned in [13], in the case of
rotary drilling, additional stresses are produced between the
drillstring and the wellbore wall. Another type of excitation
comes from the fluid pulses produced by reciprocating mud
pumps. Along the accessible mechanical and fluid routes,
the forces from all these connected phenomena interact and
transmit toward the surface. Measurements of stresses and
accelerations made at the surface level can help to understand
the downhole vibration conditions.

A study to understand the correlation between tri-cone
bit wear conditions based on the different drilling signal
measurements made at the surface level and drilling vibration
analysis is presented in [14]. Several rigs were instrumented
with data acquisition units including sensors to measure
hoist motor current, rotary motor current, head encoder
position, bailing air pressure, hoist voltage, rotary voltage,
lower-mast vibration, and upper-mast vibration signals. The
vibration was sensed using two accelerometers installed at
approximately 2/3 of the drill mast height and the mast
base. It was found that the rotary motor current signal
statistical features are sensitive to bit wear which is related
to the rotational speed [14]. Also, in their study on rock
drilling operations, [15] concluded that vibration signals have
significant potential for determining the degree of tool wear.
Both themethods presented in [14] and [15] require downhole
measurements to train the algorithms for the classification of
vibration states.

A model using an artificial neural network (ANN) to
anticipate the vibration of the drillstring when drilling
a horizontal segment was presented by [16]. The three
different forms of drillstring vibrations: axial, torsional, and
lateral, were predicted by the ANN model using the surface
drilling parameters as model inputs. Flow rate, mud pumping
pressure, surface rotating speed, top drive torque, weight on
bit, and rate of penetration (ROP)were the surfacemonitoring
drilling parameters used. An equation for real-time estimation
of the down-hole vibrations was proposed using the model
developed. The approach of [16] required actual data to train
the machine learning algorithm, which is not always a readily
available factor in most situations.

Severe downhole stick-slip vibrations can be identified
solely based on surface monitoring drilling data in the
method proposed by [4]. It categorizes multi-channel drilling
data acquired at the surface by employing a deep neural
network model to identify downhole vibration events. This
method requires both surface monitoring measurements and
downhole measurements to train the deep neural network in
order to perform this task.

Severe downhole stick-slip vibrations can be identified
solely based on surfacemonitoring drilling data in themethod
proposed by [4], which categorized multi-channel drilling
data acquired at the surface by employing a deep neural
network model to identify downhole vibration events. This
method required both surface monitoring measurements and
downhole measurements to train the deep neural network in
order to perform this task.

The patent presented in [17] also uses a surface monitor-
ing technique to estimate the downhole lateral vibrations.
The algorithm used is fine-tuned using the data taken
from the downhole sensor. Once the algorithm is trained,
it has the ability to detect lateral vibration. As per the
observations, it was deduced that an increase in the moving
average of drillstring torque or a decrease in the variation
of drillstring torque is a sign of lateral vibration, which
ultimately leads to a reduction of ROP. This method was
limited to lateral vibration and whirling detection. Physical
data was used in training the algorithm.

The above contributions emphasize the viability of
surface-level monitoring of drill string vibrations. The
training of a machine learning algorithm by employing a
sophisticated drill string multi-physics simulation to identify
various vibration categories and their intensities has not yet
been investigated.

C. ALGORITHM TRAINING USING SYNTHETIC DATA
Any artificially generated information not originating from
events or objects in the real world can be given the designation
‘synthetic data’. Simulations have the potential to generate
synthetic data which can mimic the actual scenario, and
the generated data can be used to train a machine learning
algorithm for a variety of uses. Synthetic data has a number
of key advantages, including the ability to generate large
training data sets without the need for manual labelling of
data and the reduction of restrictions associated with the use
of regulated or sensitive data. They can also be customized to
match circumstances that real-world data does not permit at a
low cost. Higher data quality, scalability, and ease of use are
some advantages, to name a few [18], [19].

Synthetic data is used in software data-driven testing due
to its flexibility, scalability, and realism [18]. In some cases,
synthetic training data outperforms real-world data and is
essential for creating superior Artificial Intelligence (AI)
models. This is because rare incidents also can be simulated,
and data can be generated, which facilitates better algorithm
training covering the entire spectrum of events. Moreover,
it helps to eliminate some practical issues in using real-
world data, such as biases in data which lead to skewness
and inaccuracy of the model. A variation on synthetic data
is partially synthetic data that keeps some of the original
data set and performs a gap-filling using the simulated
data. Hybrid synthetic data combines the real-world and
generated data, which creates an opportunity to acquire
the benefits of both fully synthetic and partially synthetic
data.
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Further details on synthetic data usage in machine learning
algorithm training and its practical limitations relevant to the
current study are presented in Section IX.

1) AN OPEN-SOURCE HMM TOOLBOX
An open-source HMM toolbox is presented in [20], which
provides improved flexibility in developing fault detec-
tion tools [21]. The operating concept is explained in
Section III-B, which explains the suitability of using HMM
for surface monitoring applications.When using this toolbox,
the user does not need to evaluate the prior probabilities or
transition probabilities of states which is a requirement of
most of the commercial software tools. Instead, the algorithm
can be trained using the training data set to generate them.
A detailed description of the HMM open-source toolbox is
available in [21] and [20] for further information.

D. DRILLSTRING SIMULATION
According to [22], the modelling of lateral vibrations of
drillstrings has been explored since themid-1960s. Analytical
and finite element modelling approaches have been the most
widely used. Although initial attempts relied on closed-form
analytical solutions, the extreme complexity of vibrations and
interactions with the well bore set limits to this approach.
Therefore, the latter approach has become more common
with the advancement of computer processing speeds but may
be of limited use in design exercises because of excessive
simulation times [23].

Physical system modelling can be more effective when
using an approach that allows easy integration of components
from different energy domains such as fluid, electrical,
thermal, and mechanical. A typical drillstring simulation
involves, but is not limited to, induction motors, fluid flows,
structural vibrations, and heat transfer submodels. Sometimes
it can be cumbersome to simulate each mechanism or
phenomenon in their own domains and combine to get the
overall output [24]. Although it is feasible for certain scales
and complexity levels, the computational costmay bemassive
when the system becomes larger and more complicated.

It is beneficial to bring all the domains into one common
platform to simplify the problem. Energy can be used to play
the role of the ‘common currency’ in this kind of situation.
The bond graph method [23], [24], [25] uses a small set
of generalized elements to represent power storage, dissi-
pation, boundary conditions, continuity, and compatibility
constraints. The element symbols and connection rules are the
same regardless of the energy domain, making multi-domain
modelling straightforward. Further details on bond graphs
can be found in [23], [24], and [25].

References [23], [26], and [27] present drillstring bond
graph simulations using the Newton-Euler formulation and
a body-fixed coordinate system. Rigid lumped segments
were connected to each other with axial, shear, bending,
and torsional springs such that the behaviour of the model
approached that of a continuous system as the number of

FIGURE 1. Bond graph element compliances.

elements increases. Figure 1 illustrates the first three types,
while the torsional spring can be considered as a similar
spring to the one in Figure 1c but with a rotational degree
of freedom. These springs are analogues to the structure’s
elasticity which are represented by capacitive (compliant)
elements in the bond graph.

A flexible nonlinear drillstring model developed based
on Lagrangian dynamics is also possible, as presented
in [28]. The simulation included lateral bending, longitudinal
motion, and torsional deformation dynamics. Because of the
comparative ease of extracting constraint and internal forces,
a Newton-Euler formulation with lumped segments is used in
this paper.

The stress history at a specific location can be determined
using the effort fluctuations of the compliances in the bond
graph that represent the springs in Figure 1, as was done
in [28] and in the lumped segment bond graph models
previously published by the authors. That stress history can
then be used in software such as SalomeMeca™ to perform
fatigue estimation for multiaxial, non-proportional, and vari-
able amplitude (MNV) loading scenarios. SalomeMeca™ is
an open-source software that provides considerable flexibility
in performing FEA simulations. A detailed description of the
fatigue life estimation workflow is provided in [29].

In summary, this paper will leverage the bond graph
approach, with lumped segments, to (1) represent a vertical
drillstring physical apparatus, (2) generate training data for a
machine learning algorithm to predict vibration, (3) predict
stress history based on the physical system vibration that has
been detected by the algorithm, and (4) use the stress history
in SalomeMeca™ to give a fatigue prognosis.

III. METHODOLOGY
This section presents themethodology for developing the dig-
ital twin framework. Figure 2 is a flow chart showing the inte-
gration of the dynamic model, machine learning algorithm,
physical system, and finite element post-processing into a
digital twin capable of vibration prediction and fatigue failure
prognosis. The bond graph simulations generated three types
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FIGURE 2. Proposed digital twin framework.

of vibrations: stick-slip, bit bounce, and whirling at three
different levels of severity: high (H), medium (M), and
low (L). Nine different parameter sets were used to generate
the data sets. The synthetically generated data was used
as the training data for the machine learning algorithm.
Therefore, the trained algorithm is capable of classifying the
incoming surface monitoring measurements originating from
the physical model into one of the nine categories. Depending
on the classification, the bond graph is reconfigured with
the relevant parameter set and inputs to create that vibration
scenario. The generated load fluctuation history from the
bond graph is then used in the finite element model, which
can prognose the fatigue life of the drillstring. The following
sub-sections provide a detailed step-by-step description of the
procedure.

A. THE BOND GRAPH MODEL AND ITS FUNCTION
The primary requirement of the bond graph is to simulate
the potential drillstring dynamics for a given set of boundary
conditions and operating parameters. Also, it should provide
stress histories for fatigue life prognosis. Later damping,
contact spring and friction force, and axial drag forces must
be computed within the model. The number of elements can
be decided based on the desired simulation speed and the
modes of vibration considered. Once the simulation is set

up, the bit bounce, stick-slip, and whirling scenarios can
be created, and the corresponding surface-level responses
can be recorded. These data are used to train the machine
learning algorithms to classify unknown vibrations. These
steps are described in detail in Section V. All the bond graph
simulations and codes can be accessed through the author’s
online repository (https://github.com/mihiranpathmika).

B. THE USE OF HIDDEN MARKOV MODEL (HMM) IN
SURFACE MONITORING APPLICATIONS
HMM is a statistical Markov model in which the system
being modelled is assumed to be a Markov process [30] with
‘hidden’ states. Figure 3a illustrates the basic concept of the
function of the HMM. According to that, the unobservable
states can be indirectly studied by observing partially related
incidents. P1 through P8 are the respective probabilities
of changing one state to another indicated by the arrows.
Knowing these prior probabilities, the user can deduce the
likelihood of ‘hidden’ states by looking at the observable
incident. In the current study, the same concept is proposed
to be used to detect the hidden states of the drillstring. For
example, as illustrated in Figure 3b, the hidden states may be
‘Normal Operation’ and ‘Bit Bounce’ while the observable
incidents are two different vibration patterns that do not carry
a direct meaning. If the user can determine the probabilities
P1 through P8, the HMM can identify the most probable
transition in states according to the changes in vibration
patterns observable from the ground level. This is done
using the Viterbi Algorithm. It is a dynamic programming
algorithm for finding the most likely sequence of hidden
states (Viterbi Path) that results in a sequence of observed
events, especially in the context of Markov information
sources and HMMs [31]. The concept illustrated in Figure 3

FIGURE 3. Hidden Markov Model (HMM).
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is used in the current study in classifying all three vibration
conditions (bit bounce, stick-slip, and whirling) and their
respective severity levels.

The user can train theHMMwith different known vibration
patterns for known actual states downhole. This training part
will be facilitated by the validated bond graph model [21],
[32], [33] as shown in Section VI.

C. FATIGUE LIFE ESTIMATION APPROACH
SalomeMeca™ [34] is used to estimate MNV loading fatigue
damage. Geometry, Mesh, CodeAster, and ParaVis are the
software that serve 3D modelling, meshing, solving, and
post processing of finite element models. Geometry module
facilitates the development of 3D models and defining
geometrical entities that support the meshing process in the
Mesh module. Mesh module provides enhanced flexibility
in meshing by providing better control of the meshing
parameters. The solver used is CodeAster™ which facilitates
the definition of materials, load assignments, specifying
boundary conditions, fatigue life estimation, and numerical
solving. Finally, ParaVis™ [35] was used to post-process the
results generated by CodeAster™.

IV. PHYSICAL SYSTEM
This section applies the proposed methodology on a
laboratory-scale apparatus as proof of concept. The main
intention here is to showcase that training data for a machine
learning algorithm, in this case for a slender vibrating
structure, can be generated using a dynamic simulation
model. This approach is useful when it is not feasible to
generate reliable data from the physical structure in cases
such as the down-hole vibration of a drillstring.

A. APPARATUS DESIGN
As the initial step, the apparatus was designed as illustrated in
Figure 4. Further details of the design and CAD models can
be accessed through the author’s online repository. The drill
bit consists of a flat bottom with a discontinuous cam profile
that meshes with a similar profile on the base (hole bottom)
as shown in Figure 5. Clockwise rotation of the bit will cause
axial impacts resembling bit bounce vibration. When rotated
in the opposite direction, this ‘chatter mechanism’ locks and
the flexible coupling undergoes high torsional deformation
and axial shortening, lifts the drill bit and suddenly releases
it from the hole bottom. This motion resembles the stick-slip
type of vibration. Further, the flexible coupling provides
damping in the drillstring.

The platform, where the motor is mounted, can be moved
vertically up or down using threaded rods and lock nuts.
This facilitates axial thrust control, mimicking the weight on
bit (WoB) of a drillstring. Therefore, the apparatus can also
be operated without the chatter mechanism and the flexible
coupling to get stick-slip. The flexible coupling approach was
used to get amore distinct stick-slipmotion.With the addition
of the WoB, the flexible coupling tends to move away from
the central axis, causing a mass imbalance. This promotes

FIGURE 4. The construction of the vibration simulator.

the forward whirling action of the rotating string. Further,
rubber skins attached to the flexible coupling holder create an
increased friction force between the wall and the drillstring,
which leads to backward whirling. Figure 6a depicts the
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FIGURE 5. The construction of key components.

FIGURE 6. Apparatus and its bond graph simulation.

fabricated apparatus ready for data acquisition, and Figure 6b
illustrates the bond graph simulation’s 3D visualization.

B. INSTRUMENTATION AND DATA ACQUISITION
The physical apparatus was instrumented to gather mea-
surements that are typically available on the rig floor
during drilling. The vibration of the platform, motor current
fluctuation, and rotational speed fluctuation with lateral
vibration of the rotating table are assumed to have a
correlation with the downhole vibration conditions. These
measurements must be acquired as time series to feed the
machine learning algorithm as testing data.

The vibration of the platform was acquired using a
Kistler™ K-Shear general-purpose accelerometer. The angu-
lar speed fluctuation of the Rotating Table was captured
using an AccuRange 200™ LaserMeasurement Sensor and an
optical encoder. The accuracies and ranges of the sensors used

TABLE 1. Specifications of the sensors used.

FIGURE 7. The LabVIEW program for data acquisition.

are presented in Table 1. The voltage across a resistor in series
with the gear motor is directly proportional to the current
demand fluctuation of the motor. Based on this assumption,
the motor current fluctuation was measured as the third
variable. National Instruments™ (NI) USB-6008 data logger,
and LabVIEW™ software was used for data acquisition using
these three channels. The LabVIEW™ program used is shown
in Figure 7. The data acquired is presented in Section VIII.

V. DEVELOPMENT OF THE SIMULATION MODEL
A. LUMPED SEGMENT SUBMODELS AND CONNECTIONS
The bond graph rigid body submodel used to simulate the
actual drillstring is shown in Figure 8a. The corresponding
points of A, B, and G indicated in Figure 8b are depicted in
Figure 8a. with a total of nine elements was used, successfully
capturing the first two natural frequencies of the various
vibration types. In Figure 8a, One Junctions (1) represent
velocity nodes where efforts (i.e. forces and torques) sum to
zero and Zero Junctions (0) represent effort nodes that enforce
velocity constraint equations. For example, the circled 0 junc-
tion, with the directed power bonds, enforces the relative
velocity equation va = vG + vA|G, in vector form, where the
relative velocity term is generated by a cross product of
the relative position vector and angular velocity. The ‘R01’
submodels are coordinate transforms. The developed bond
graph can be reconfigured and customized to simulate a
given structure by conveniently modifying the number of
segments and (or) by including or suppressing certain degrees
of freedom. The stiffness values can be determined following
the procedure presented in [36].

The friction effects can be modelled by coding the friction
model shown in Figure 8 with the constitutive law of the
modeler’s choice. In this paper, a model presented in [37]
is used, which is illustrated in Figure 9. Sample models are
available for potential users and can be accessed through
the online repository. The Stribeck friction, denoted as FS ,
displays a negative slope when velocities are low.Meanwhile,
the Coulomb friction, FC , produces a constant force at
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FIGURE 8. The construction of a bond graph element.

all velocities, and the viscous friction, FV , resists motion
with a force that is directly proportional to the relative
velocity. The sum of the Coulomb and Stribeck frictions
in the vicinity of zero velocity is commonly known as
breakaway friction, Fbrk . The friction can be estimated using
equations 1 to 4.

F =
√
2e(Fbrk − FC ) · exp(−

(
v
vSt

)2

) ·
v
vSt

+ FC · tanh
(

v
vCoul

)
+ fv (1)

vSt = vbrk
√
2 (2)

vCoul =
vbrk
10

(3)

v = vR − vC (4)

where, F is friction force, FC is Coulomb friction, Fbrk is
breakaway friction, vbrk is breakaway friction velocity, vSt
is Stribeck velocity threshold, vCoul is Coulomb velocity
threshold, vR and vC are absolute velocities of the two bodies
in contact, v is relative velocity, and f is viscous friction
coefficient.

FIGURE 9. The friction model used in the bond graph.

B. FLEXIBLE COUPLING MODELLING
The flexible coupling plays a major role in transferring the
torque to the drill bit while allowing significant torsional
deflection, creating a shortening effect that couples torsional
and axial motion, and working as a vibration attenuator.
Its nonlinear behaviour was characterized through a simple
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FIGURE 10. Characterization of the flexible coupling.

experiment. The shortening effect and the torsion with the
increasing angle of twist θ are presented in Figure 10 and
their models are presented in Equations 5 and 6 respectively.
The axial shortening c and reaction torque τ are given by

c = 0.0013 θ3 + 0.0038 θ2 + 0.0005 θ + 0.00005 (5)

τ = −0.1342 θ3 + 0.3088 θ2 + 0.0699 θ − 0.0049 (6)

where θ is the angle of twist. Equation 5 was time-
differentiated and coded into a Modulated Source of Flow
(MSf), and Equation 6 was coded into a modulated torsional
bending stiffness C element as shown in Figure 11. Figure 11
depicts an interface model that connects adjacent rigid body
segments by computing relative velocities of shear, axial,
bending, and torsional springs. Interface elements other than
the one at the flexible coupling are the same, except they
do not have a modulated torsional stiffness or MSf with
axial shortening effect. The interface models consist of four
modulated transformers (MTF). Transformer, or TF, elements
model a power conserving transformation wherein effort
variables are related to each other by a parameter, and flow
variables are related to each other by the same parameter. For
example, meshing gears would be modelled as a TF, with
input and output torque and angular velocities related by the
same gear ratio. An MTF has a varying parameter that is
provided by a modulating signal. The MTFs in the interface
element multiply velocity vectors in the frame of one body
by a rotation matrix, to transform the velocity to the inertial
frame. The next MTF transforms the velocity from inertial
to the frame of the adjacent body. This allows a calculation
of velocity of point B on one body relative to point A on
the adjacent body, by subtracting two vectors in the same

FIGURE 11. Bond graph model of the flexible coupling.

frame. The C elements (with parallel damping elements R)
integrate the relative velocity to get relative displacement
components (translational or angular, as appropriate), which
are multiplied by the spring stiffnesses to get internal efforts.
These efforts maintain the shape of the rod, while creating
stresses used in later fatigue analysis. The bond graph model
can simulate bit bounce, stick-slip, and whirling vibrations.
The simulated data was stored as comma-separated values
(CSV) files for later use as training data for the machine
learning algorithm.

VI. VIBRATION CLASSIFICATION
A. THE MACHINE LEARNING ALGORITHM
The HMM introduced in Section III-B is applied in the
vibration status classification of the apparatus. As illustrated
in Figure 2, the classification code developed based on
the HMM algorithm can identify the type of vibration
and its severity level. A brief description of the workflow
of the code is presented in this section. The explanation
is in line with the code presented in the author’s online
repository.

The HMM introduced in Section III-B is applied to the
vibration status classification of the apparatus. As illustrated
in Figure 2, the classification code developed based on the
HMM algorithm will identify the type of vibration and its
severity level. A brief description of the workflow of the code
is presented in this section. The associated code is presented
in the author’s online repository.

This code is solely based on the open-sourceHMM toolbox
presented in [20]. The entire code consists of ten sections.
The first nine sections are to train the algorithm for the nine
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FIGURE 12. HMM training curve.

different vibration conditions illustrated in Figure 2. The
tenth section of the code is responsible for classifying the
incoming data strings to the relevant ‘basket’.

The simulations were configured to generate training
data for the nine vibration conditions. The experimental
apparatus was then used to create the corresponding physical
conditions for actual measurement and application of the
machine learning algorithm. The testing data for bit bounce
and stick-slip vibrations were taken for one amplitude level
(medium) and then scaled to get the upper and lower
extremes of vibration amplitudes. For whirling, the readings
were taken for three different amplitude levels because
the number of well-bore interactions is the characteristic
behaviour of this type of vibration, and is different at different
amplitude levels. The motor current or the angular speed
does not show a considerable fluctuation for this type of
vibration. It should be highlighted that the angular speed at
the surface level was not giving a considerable fluctuation
for different downhole vibrations of the apparatus used.
This is because of the softness of the flexible coupling.
Therefore only the axial vibration and the motor current
fluctuation contributed significantly to the classification
process, which was sufficient to distinguish the nine vibration
conditions.

Both training and testing data were scaled prior to use
in the algorithm. In this way, all the training and testing
data can be brought in to a common scale, so pattern
recognition is convenient to perform. The training process
follows an iterative approach which is not computationally
extensive. In the algorithm, the user can control the number
of different layers in the 3D matrix. For example, it may
represent different data sets from similar drillstrings. Also,
the user can specify the number of Gaussian mixtures
and the number of hidden states. The algorithm assumes
prior and transition probabilities and optimizes them using
the Expectation Maximization (EM) algorithm. When the
calculated log-likelihood becomes consistent, the iteration
stops, and it is considered a trained algorithm for the given
data set. Figure 12 is the training curve for the algorithm, for
the case of bit bounce vibration with a medium amplitude
level. Once the algorithm is trained using training data,
it generates some parameters unique to the data set that is
used to train.

The classification is done based on the log-likelihood value
estimated for an incoming test data string from the physical
apparatus. This data string consists of the three readings
taken simultaneously from the accelerometer, displacement
sensor, and the motor current reading. The displacement

sensor captures the response of angular velocity change
using the optical encoder. The classifier takes all the data
strings and computes the log-likelihood using the nine trained
algorithms. In other words, it evaluates the similarity of the
incoming test data strings to the respective states. The state
which is corresponding to the maximummean log-likelihood
is presented as the vibration state of the drillstring during
that time period. Once this is identified, the corresponding
configuration of the bond graph can be selected to simulate
and generate the relevant stress history for the fatigue life
prognosis. These bond graph simulation stress histories can
be made readily available as a database for a rapid fatigue
prognosis.

VII. FATIGUE LIFE PROGNOSIS
This section presents the extraction of the loading history
from the bond graph, reconfigured after classification of
physical system vibration, and the subsequent fatigue life
prognosis procedure. The maximum stress concentration
occurs at the joint between the drill bit and the drillstring due
to the sharp transition of cross section. This focused area was
selected for further analysis.

The load fluctuation can be captured using the bond graph.
Bending and shearing loads, each on two orthogonal planes,
with axial and torsional loads, are the six load fluctuations
that can be fed into SalomeMeca™ as time-series data. The
load fluctuations were extracted from the bond graph capac-
itive elements that represent the bending, torsional, shear,
and axial compliances at the joint considered. The extracted
load fluctuations for high amplitude whirling simulation
are presented in Figure 16. Meshing was done using the
Mesh Tool in SalomeMeca™ Netgen 1D-2D-3d, and the
meshed geometry is shown in Figure 17a. For convenience
in defining the aforementioned loadings, the ‘loading horns’
shown in Figure 17 were used. Figure 17 illustrates the
fatigue prognosis result for high amplitude whirling vibration
performed throughout 20 seconds while the angular speed of
the drillstring is 100 rpm (10.4 rad/s). A complete MNV
fatigue analysis workflow is available in [29] for further
information.

As expected, the stresses acting on the steel moving
parts of the apparatus in the laboratory are not severe,
hence a substantial fatigue life remains. The fatigue life
estimationmethodology using SalomeMeca™was verified by
comparing it with the results of a simulation performed using
a commercial code.

VIII. RESULTS
A. TRAINING AND TESTING DATA SETS
Figure 13 illustrates the comparison of the measurements:
motor current and axial acceleration for stick-slip and bit
bounce vibration conditions. Simulated data is presented in
the left column, while experimental data is presented in the
right column. Figures 13a, b, e, and f represent the responses
for stick-slip (SS) vibration with medium amplitude (M),
while Figures 13c, d, g, and h represent the responses for bit
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FIGURE 13. Training and testing data for stick-slip and bit bounce
vibrations.

FIGURE 14. Training and testing data for whirling vibrations.

bounce (BB) vibration in the same amplitude level. Figure 14
depicts the responses for the whirling motion at low (L),
medium (M), and high (H) amplitudes. Different patterns of
axial accelerations at different amplitude levels are evident.
The abbreviations TR and TST stand for ‘training’ and
‘testing’, respectively. In both Figures 13 and 14, all the
simulation results are scaled for comparison purposes while
preserving the characteristic features.

B. CLASSIFICATION
The code does the classification based on the average
log-likelihood value computed for a given sample testing
data set. This scoring method selects the best candidate
among the trained algorithms. Figure 15 represents a sample

FIGURE 15. Log-likelihood estimation for each data string.

TABLE 2. Average log-likelihood value calculation result.

classification of low amplitude whirling vibration. The
algorithm has shortlisted SS-M, WH-H, WH-M and WH-
L. The average log-likelihood for the given test data set
has been calculated with the trained algorithm as shown
in Table 2. The numerical values indicate that the average
log-likelihood values are close for the three types of
whirling and medium stick-slip vibration conditions, while
the maximum among them is assigned to low whirling
vibration.

C. STRESS HISTORY EXTRACTION AND FATIGUE LIFE
PROGNOSIS
Once the classification algorithm selects the most probable
vibration condition, the bond graph simulation with the
respective parameter set was run to extract the load fluctua-
tions following the procedure mentioned in Section VII. The
load history extracted from the element interface adjacent
to the drill bit element is presented in Figure 16. The shear
impulses give the highest fluctuation in response to the
frictional impulses due to the collision with the wellbore.
SalomeMeca™ can handle this complex combined loading
situation to determine the remaining fatigue life. The uneven
distribution of remaining fatigue life on the drillstring is
evident in Figure 17, which is an indication of random
loading and the superposition of the six different loading
fluctuations. The remaining lifetime is near infinite due to
the low stress fluctuations on the drill string. Nonetheless,
it is clear that the digital twin framework is able to calculate
the fatigue life incorporating complex geometric features and
stress concentrations, using the simulation-based estimation
of loads.

62902 VOLUME 11, 2023



M. G. Don, G. Rideout: Digital Twinning Methodology for Vibration Prediction and Fatigue Life Prognosis

FIGURE 16. Load fluctuations at the drill bit-string connection.

FIGURE 17. Fatigue life prognosis at the drill bit using SalomeMeca™.

IX. DISCUSSION
The novel approach introduced in this study is capable
of developing and customizing a digital twin. Successful
implementation of the proposed framework has the potential
to reduce reliance on measurement while drilling (MWD)
for vibration problem detection. When the process is
implemented for a full-scale drillstring, the data downloaded
after tripping operations can be utilized to validate the
overall digital twin. Improved real-time fatigue prognosis
can increase the reliability of the drillstring, which will
reduce the risk involved in the entire project. Drillstring
failures have a major impact on the overall project cost,
and more careful monitoring and proactive, corrective,
and preventive actions will increase the drillstring’s useful
lifetime. Moreover, as mentioned in [38], rig downtime due
to MWD tool failure carries enormous risks, especially in
challenging environments. A digital twin can be implemented
as a secondary safety layer.

If a particular vibration is taking place in the lower part of
the drillstring, the observations made at the surface level will
depend on numerous factors such as the well depth, fluid flow
speed, fluid rheology, speed of rotation, WoB, pipe geometry,
drillstring orientation, type of drill bit, and the nature of the
formation being drilled, to name a few. If these observations
are only classified based on expert judgment and intuition,
an inherent risk will be introduced due to potential human
error. This motivates the implementation of a digital twin,
using the framework of this paper, which has the capability
to learn both through experience as well as running ‘what-if’
scenarios.

As with any measurement-based diagnostic approach,
robustness of the machine learning algorithm training and
predictions can be improved with a greater number of more
accurate sensor inputs. A balance must be struck between
accuracy of the prediction, and cost associated with increased
sensing capability. In the current study, lateral acceleration
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of the rotary table could be added as an additional channel,
incorporated into the real-time measurement data string.
The use of a lower-powered motor may increase the torque
fluctuations during stick-slip, thereby reducing classification
uncertainty.

As described in [26] and [39], the bond graph of the
digital twin could be expanded to include the effects
of the drilling fluid. More experimentation could give a
more nonlinear contact model for ‘bit-rock’ interaction and
wellbore collisions.

When the digital twin is implemented for a particular
drillstring, the data logged during tripping operations can
be utilized to validate the overall digital twin as real-world
data can be acquired with less complexity compared with
deep wells. Finer adjustments to the digital twin can be made
during this period which will be beneficial in the long run.
In this way, confidence in the bond graph simulation can be
improved as the machine learning algorithm solely depends
on the data generated by the bond graph at higher depths.

There may be some practical limitations to using purely
synthetic data as the data is generated in a near-perfect envi-
ronment. Real-world data acquired through instrumentation
will carry numerous noise effects. This is somewhat indicated
in the results presented in Figure 13. As mentioned previ-
ously, some sensor noise can be artificially introduced into
the virtual measurements, without seriously compromising
the prediction ability. Therefore, more work is required to
quantify the confidence of the classification algorithm in the
face of varying amounts of noise or sensor error.

Open questions remain about the potential for model
updating when operating conditions or the state of the system
change. If for example sensor data showed a sudden change
in amplitude or frequency content, this could be due to a
previously-learned vibration condition, or to non-problematic
changes such as a new rock formation. It could also be an
artefact of sensor failure. In future, training will be expanded
to include not only anticipated vibration patterns but also
things like sensor faults and changes in the environment with
which the system interacts.

X. CONCLUSION
The current study proposes a bond graph, finite element
modelling, and machine learning-based digital twin develop-
ment framework for oilwell drillstring fatigue life prognosis
where direct stress measurements are almost impractical.
To detect vibration problems in a physical system, a dynamic
simulation model with virtual sensors was created and used to
train a machine learning algorithm. The algorithm analyzed
vibration measurements from the physical system and identi-
fied the type and intensity of vibration. The simulation model
was then adjusted to reproduce the vibration and generate
stress histories for fatigue life analysis in a finite element
model. The concept was verified to be feasible in classifying
the physical system’s downstream vibrations based on
the type and severity level through surface-level response
monitoring. Finally, the study identifies and recommends

potential improvements to make the framework applicable in
real-world applications.
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