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ABSTRACT The particle swarm optimization (PSO) algorithm is a swarm intelligence (SI) algorithm used
to solve optimization problems. Owing to its advantages in simplicity, using only a few parameters, PSO
has become one of the most popular optimization algorithms. However, the single structure of PSO leads to
challenges in finding the appropriate optima, resulting in low convergence accuracy. To solve the defects of
PSO, it is necessary to increase the diversity of the populations involved as well as enhance the ability of
the algorithm to develop locally. In this study, we propose a PSO algorithm with an adaptive two-population
strategy (PSO-ATPS), which adaptively divides a population into two groups representing excellent and
ordinary populations. Inspired by animal hunting behavior, a new velocity–position update method is
proposed for the general population. A velocity update formulation with decreasing inertia weights based on
logistic chaotic mapping is applied to the excellent population. The algorithm increases the diversity of the
population by continuously changing the search strategy of the particles. In addition, a new neighborhood
search strategy (oscillation strategy) is proposed, in which a particle searches randomly in its own adaptive
neighborhood when its motion is stagnant and updates the particle position using an elite strategy. Among
several optimization strategies, PSO-ATPS achieved first place in 7, 8, and 9 groups of tests involving 10 test
functions in 3 dimensions, indicating the accuracy and effectiveness of PSO-ATPS. The results show that
the performance of PSO-ATPS is competitive, and many improvements developed for PSO can be applied
to PSO-ATPS, demonstrating the potential for further development.

INDEX TERMS Adaptive two-population strategy, elite strategy, logistic chaotic mapping, oscillation
strategy, particle swarm optimization.

I. INTRODUCTION
Computation is a scientific method that connects theory
and reality. A large number of real-world problems can
be transformed into theoretical problems through analysis
and modeling. The solutions to these abstract theoretical
problems require computation, and algorithms are a general
term for the class of computational methods [1]. Optimiza-
tion algorithms are computational methods that are used to
solve optimization problems. The scope of optimization prob-
lems is very broad, and many real problems in engineering,
science, and economics can be classified as optimization
problems [2]. For optimization problems with few param-
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eters and low dimensionality, researchers have proposed
computational methods based on problem gradients, which
are often called traditional optimization algorithms. These
algorithms have high accuracy and fast computational speed.
However, if the problem to be optimized is complex and
high-dimensional, traditional optimization algorithms are not
useful. With the remarkable increase in the availability of
data in this era, the problems we face have become more
complex and higher-dimensional, motivating the develop-
ment of meta-inspired algorithms to address such complex
and high-dimensional optimization problems.

Meta-inspired algorithms are a class of intelligent opti-
mization algorithms provoked by natural phenomena and
biological behavior. Many excellent meta-inspired algo-
rithms have been proposed in recent years, such as Henry
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TABLE 1. Examples of research on optimization algorithms.

gas solubility optimization [10], Archimedes optimization
algorithm [11], Rime optimization algorithm [12], social
network search [13], black widow optimization [14], and
coronavirus herd immunity optimizer [15]. According to
the source of inspiration, meta-inspired algorithms can be
broadly classified as those motivated by physics, chemistry,
and biology. Meanwhile, optimization algorithms inspired by
biological behavior are known as swarm intelligence opti-
mization algorithms. There are many novel and excellent SI
optimization algorithms that have been proposed based on the
premise that the behavior of organisms is guided by group
behavior and that this biological intelligence exists only in
the group and not in the individual organisms. Many SI opti-
mization algorithms, such as genetic algorithm (GA) [16],
sparrow search algorithm [17], whale optimization algorithm
(WOA) [18], harris hawk optimizer [19], particle swarm
optimization (PSO) [20], slime mould algorithm [21], honey
badger algorithm [22], and colony predation algorithm [23],
utilize the information shared in the population to perform the
search. These meta-inspired algorithms have spawned many
new algorithms applied to real-world optimization problems,
and some examples of the research are listed in Table 1.

The idea of PSO originates from the process of foraging
in a population containing social properties such as a flock
of birds or colony of bees. In these social groups, individual
members share information when performing foraging tasks.
Examples of this sharing are leaving a scent or vibrating
wings at a certain frequency. Thus, members of the group
have information about other members at all times; in PSO,
this information is reduced to information about the posi-
tion of any particular individual, and information regarding
the optimal position is communicated to all individuals. All
members of the group not only receive the optimal infor-
mation from other individuals but also record their optimal

positions, and the acceleration of the individuals is based
on these two optimal positions. The PSO model is divided
into two parts: the velocity update equation and the posi-
tion update equation. Therefore, PSO essentially involves the
summation of vectors.

II. RELATED WORK
We first describe the framework of the original PSO
algorithm. Then, we present some representative improved
versions of the PSO algorithm, which can be divided into
parameter improvement, topology improvement, strategy
combination with other algorithms, and practical problem
solving.

A. THEORY OF PSO
The PSO algorithm was proposed by Kennedy and Eber-
hart in 1995 [20], and it has shown great research potential
in solving optimization problems. The PSO model consists
of two parts, namely the velocity model and the position
model. In dimensional space, the solutions to the problem are
matrixes with the corresponding dimensions. Thus, the posi-
tion and the velocity of PSO can be represented bymatrixes of
size Xi =

[
xi,1, xi,2, · · · , xi,D

]
and Vi =

[
vi,1, vi,2, · · · , vi,D

]
of dimension D of the problem solution space, where xi,j
denotes the value of the position Xi in dimension j and vi,k
denotes the value of velocity Vi in dimension k . The oper-
ations of the algorithm are also matrix operations, and the
velocity and position update models of the standard PSO are
represented as [24]{
vt+1
i,j = ωvti,j+c1r1

(
Gbest tj −x

t
i,j

)
+c2r2

(
Pbest ti,j−x

t
i,j

)
x t+1
i,j = x ti,j + vt+1

i,j

(1)
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where j = 1, 2, · · · ,D and c1 and c2 are the acceleration
coefficients controlling the particle deflection, which are con-
stants in the original PSO. Parameters r1 and r2 are random
numbers taking the value of [0, 1] and following the Gaussian
distribution, and t is the number of current iterations. Gbest tj
denotes the value of the jth dimension of the globally optimal
particle in the previous t iterations, and Pbest ti,j denotes the
value of the jth dimension of the optimal position of particle i
in the previous t iterations.

B. VARIANTS OF PSO
1) PARAMETER IMPROVEMENT
Parameter optimization in PSO mainly focuses on the inertia
weight coefficients ω and acceleration coefficients c1, c2.
Because these coefficients control the migration of the parti-
cles, the fluctuation of the coefficients affects the search area
of the particles and the convergence speed of the algorithm,
whereby a suitable combination of parameters can achieve
a balance between population diversity and the convergence
speed of the algorithm.

To enhance the local search and escape from the local PSO
optimum, Chen et al. [25] used a sine mapping scheme to
describe the inertia weight and sine mapping and cosine map-
ping schemes to describe the acceleration coefficients and,
respectively. Considering that sine mapping demonstrates
good ergodicity as well as nonrepeatability and randomness,
it can be used to improve the population diversity of PSO.
Ghasemi et al. [26] proposed PPSO, which removes the iner-
tial part of the velocity from the PSO and uses adaptive phase
angles to control the motion of the particles. Feng et al. [27]
proposed the chaotic descending inertia weight PSO (CDI-
WPSO), which randomly decreases the inertia weight of
the PSO by logistic chaos mapping, and Duan et al. [28]
initialized the particles using logistic chaos mapping, demon-
strating that the chaos mapping PSO has an advantage over
the standard PSO in a global search. Tian et al. [29] used
the Sigmoid function to update the acceleration coefficients
of the particles and added a slow-change function to the
position update formulation to ensure that the algorithm does
not converge prematurely. In the later stage of the search,
a Gaussian variation strategy was adopted for poorly adapted
particles. Kassoul et al. [30] and Moazen et al. [31] normal-
ized the fitness of the particles to adjust the parameters,
with each particle given a set of unique parameter com-
binations. Sedighizadeh et al. [32] proposed using dynamic
inertia weights via automatic adjustment and introduced two
terms in the velocity update model to increase the diversity of
the PSO population.

2) TOPOLOGY IMPROVEMENT
To improve PSO, changes can also be made in the topology
consideration. In standard PSO, the motion of the particle is
influenced by two factors, social cognition and self-cognition.
In the velocity update of the particle, the former causes
the particle to converge toward the optimal position of the

population, whereas the latter allows the population to per-
form a more comprehensive search of the solution space.
That is, at this time, individual particles receive information
regarding the optimal position of the population and the
individual. This relationship can cause problems such as slow
convergence, premature convergence, and low convergence
accuracy.

To solve the problem that the PSO algorithm can become
trapped near a local optimum, Liu and Nishi [33] proposed
a new update formula for Pbest, which expands the search
range of particles by searching adjacent positions of Pbest to
avoid premature convergence to some extent. Lee et al. [34]
added a random noise term to the velocity update formula
of PSO and proposed the repulsive method based on the
repulsion theory applied to the PSO algorithm. This algorithm
causes the particles to adopt repulsive and attractive strategies
for Gbest in the development and search phases, respectively.
Mousavirad and Rahnamayan [35] added a centroid of all
particles to the velocity update formula of PSO to promote
faster algorithm convergence [36] and utilizes an average
dimensional learning strategy to allow the particles to escape
when they fall into a local optimum with information from
other dimensions. Meanwhile, [37] and [38] utilize the learn-
ing strategy to modify the PSO topology by changing the
source of the particle information, which allows the particles
to diversify their search in the solution space.

3) HYBRID PSO
Some studies have combined PSO with theories from other
metaheuristic algorithms. For example, applying related
strategies from the genetic algorithm method, [39] com-
bined the PSO algorithm with the crossover method in GA
to improve the diversity of the population by achieving
crossover with the position of random particles. In [40],
a crossover and variation strategy is applied to some particles
in PSO (a value of is suggested in the study) to ensure diver-
sity in the population. Chen et al. [41] combined artificial
bee colony (ABC) with PSO, borrowing the lead, follow,
and scout strategies of ABC to diversify the PSO popu-
lation behavior. Singh et al. [42] combined the salp swarm
algorithm with PSO to search the solution space by setting
different position update formulas for leaders and followers.
Hu et al. [43] and Khan and Ling [44] combined the gravita-
tional search algorithm (GSA) with PSO to help PSO escape
from local optimum solutions, using the excellent global
search capability of GSA.

4) PROBLEM SOLVING WITH PSO
Owing to its simple structure and good plasticity, PSO and its
variants have been applied to many real-world problems.

In [45], the proposed quadratic binary PSO is used to
solve the scheduling problem of smart home appliances.
In [46], [47], enhanced leader particle swarm optimiza-
tion (PSO) and time-varying acceleration coefficients PSO
are proposed and applied to parameter estimation for
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TABLE 2. Symbol Description.

photovoltaic cells and modules, respectively. In [48], PSO is
used to plan the flight path of a vehicle, with the optimization
resulting in the reduction of the number of collisions of
the vehicle. In [49], a new PSO algorithm is proposed to
solve the microgrid unit combination problem. In [50], the
hybrid binary continuous PSO algorithm is used to solve the
coordinated control problem of the generator sets. In [51],
PSO and some variants of PSO are used to solve the Flexible
AC Transmission Systems optimization problem for power
systems. In [52], the fuzzy expected value model problem is
solved by combining stochastic PSO with a back propagation
neural network. In [53], PSO is used to reduce the operating
cost of a power system. In [54], the opposition-based PSO
algorithm is proposed by considering the learning strategy of
the opposition to PSO, which is used to solve the distribution
and dispatching problem of active distribution networks.

III. PARTICLE SWARM OPTIMIZATION ALGORITHM
WITH ADAPTIVE TWO-POPULATION STRATEGY
As one of themorewell-known optimization algorithms, PSO
is very influential and flexible. However, owing to its simple
and easily adjustable model, PSO can easily get trapped
into local optimality when facing many high-dimensional
complex problems. As PSO is a mathematical model that
abstracts the predatory behavior of a flock of birds, the
population of PSO can be used to perform more than one
type of search behavior. To improve the solution quality as
well as convergence speed of PSO, this chapter proposes
a PSO algorithm with an adaptive two-population strategy
(PSO-ATPS). The logic of this algorithm is to divide the
population into two subpopulations by fitness sorting, with
the two populations executing different search strategies. The
size of the two populations can be dynamically adjusted by an
adaptive function to achieve a balance between the algorithm
in exploitation and search. An explanation of the notation
used in optimization models is presented in Table 2.

This chapter is divided into six parts: (1) The first part
introduces a new simple classification function that helps us
classify the individuals in the population into two subpopula-
tions according to fitness size. (2) The second part introduces
the velocity update formula for each of the two classified
subpopulations and introduces a new velocity update formula
to enhance the exploitation ability as well as the search ability
of the population. (3) The third part introduces the position
update formulas for each of the two classified subpopulations
and introduces a new position update method with the help of
a vector addition feature. (4) The fourth part introduces a new
neighborhood search strategy that can help particles trapped
in local optima to escape. (5) The fifth part presents the
general framework of PSO-ATPS. (6)The last part analyzes
and explains the time complexity of PSO-ATPS.

A. ADAPTIVE FUNCTIONS TO BE USED FOR
CLASSIFICATION
To apply PSO-ATPS, the particles in population POP must
first be sorted, and if the minimization problem (maximiza-
tion problem) is solved, the fitness is sorted from low to high
(high to low). The sorted population is called POPnew and is
adaptively divided into excellent and ordinary populations by
the function shown in (2), with the functional expression

φ =

⌈
random ∗ N ∗

t
itermax

⌉
(2)

where random is a Gaussian-distributed random number
within the interval [0,1], N is the size of the population, t is
the current number of iterations of the algorithm, and itermax
is the maximum number of iterations of the algorithm set.

B. FORMULA FOR THE NEW UPDATED VELOCITY
Before introducing the velocity update formula, we first need
to classify POPnew into excellent population POPnew1 and
ordinary population POPnew2, according to the classification
function. When the particle’s ordinal number i is less than the
number of classification φ, this particle belongs to POPnew 1,
while other particles that do not satisfy the condition belong
to POPnew2.

We provide a velocity update formula for each of these two
subgroups

vt+1
i,j = ωtvti,j + c1r1

(
Gbest tj − x ti,j

)
+ c2r2

(
Pbest ti,j − x ti,j

)
if i ≤ φ

vt+1
i,j = Gbest tj + r3 ∗ Levy

∗

(
2 ∗ r4 ∗ Gbest tj − x ti,j

)
if i > φ

(3)

where r1 is a random number in the interval [-1,1] and
r4 is a random number in the interval [0,1]. Parameter ωt

is the decreasing inertia weight using the logistic chaos
mapping [27]

zt+1
= 4 ∗ zt ∗ (1 − zt ) (4)

ωt
=

ωmax − ωmin

itermax
(itermax − t) + ωminzt (5)
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FIGURE 1. Flow chart of PSO-ATPS.

where zt denotes the value of the t iteration of the logistic
chaos mapping, the initial value z0 is set to a random number
rand , ωmax denotes the upper limit of the inertia weight at the

beginning of the iteration, and ωmin denotes the upper limit of
the inertia weight at the termination of the iteration. Fig. 2. (a)
shows the iterative images of chaotic inertia weights for
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FIGURE 2. Logistic chaotic mapping control of inertia weights and
random control of falling inertia weights.

ωmax = 0.9 and ωmin = 0.6. Fig. 2. (b) shows the iterative
images of the inertia weights for random number rand with
the same parameter settings. It is evident that the inertia
weights are more uniformly distributed with the help of the
logistic chaos mapping; thus, the logistic chaos mapping is
suitable.
Levy is a random number obeying the Levy distribu-

tion, with the Levy distribution defined by the following
equation [55]

L (x, γ, µ)

=

√
γ

2π
exp

[
−

γ

2 (x − µ)

]
1

(x − µ)3/2
, 0 < µ < x (6)

Here, parameter γ is used to control the shape of the distri-
bution curve, and parameter µ is used to control the position
of the distribution curve.

After Fourier transform, the Levy distribution becomes

F (k) = exp
[
−α|k|β

]
(7)

where α is a parameter in the interval [1, 1] and Levy index
β is a parameter in the interval (0,2). A typical value for β

is 1.5. Obtaining random numbers obeying the Levy distribu-
tion requires the use of Mantegna’s equation, which has the
following form,

S =
u

|υ|
1/β (8)

where S is a random number generated according to Man-
tegna’s equation, obeying the Levy distribution, and both u
and υ obey the Gaussian distribution of the form

u ∼ N
(
0, σ 2

)
, υ ∼ N (0, 1) (9)

σ =

0 (1 + β) sin
(

β
2π

)
0

(
1+β
2

)
β2

(
β−1
2

)
 (10)

The random walk based on the step size generated by this
method is referred to as Levy Flight [56], [57], which
describes most of the random-motion trajectories in nature.
Compared with Brownian motion, Levy Flight makes large
step spans, a feature that permits the escape from local optima
in stochastic search. Fig. 3.(a) shows the path of Levy Flight
for Levy index β = 1.5 with 103 cycles. Fig. 3.(a) shows that
Levy Flight makes large stepwise jumps, which is advanta-
geous for global stochastic search. Fig. 3.(b) shows a plot of

FIGURE 3. Levy Flight diagram and randomly generated numbers obeying
the Levy distribution.

the randomly generated numbers obeying the Levy distribu-
tion for β = 1.5 and 103 cycles are executed, from which we
can see that the Levy random numbers are not uniform; rather,
this randomness is more in line with biological reality.

C. FORMULA FOR THE NEW UPDATE POSITION
As the position update essentially involves a summation
of vectors, we classify the position parameters of the two
subgroups based on the standard PSO. For POPnew1, the
position update formula of the standard PSO is followed,
as the form of its velocity update formula does not differ
from that of the standard PSO. The velocity update formula
of POPnew2 is taken from the biopredator algorithm; thus,
the form of the position update formula needs to be changed
to {

x t+1
i,j = x ti,j + vt+1

i,j if i ≤ φ

x t+1
i,j =

(
x ti,j + vti,j

)/
2 if i > φ

(11)

The newly introduced update formulas of velocity and posi-
tion of POPnew2 cause particles with poor adaptation to
randomly search in the neighborhood of the optimum solu-
tion, which can enhance the efficiency of particle utilization
and strengthen the ability of the local search, improving the
accuracy of the solution. From the velocity update formula of
POPnew2, velocity can be regarded as a position in (3).

If the velocity or position of the particle exceeds the max-
imum (minimum) bound during the iteration, (12) is used to
adjust the particle in POPnew1, and (13) is used to adjust the
particle in POPnew2{
vti = vmin + r ∗ (vmax − vmin) if vti /∈ [vmin, vmax]
x ti = xmin + r ∗ (xmax − xmin) if x ti /∈ [xmin, xmax]

(12){
x ti = xmin + r2 ∗ (vmax − vmin) if x ti < xmin

x ti = xmin +
√
r ∗ (vmax − vmin) if x ti > xmax

(13)

where vmin is the lower bound of the velocity, vmax is the upper
bound of the velocity, xmax is the upper bound of the solution
space, and xmin is the lower bound of the solution space.

D. OSCILLATION STRATEGY
To solve the PSO trapping problem, a new adaptive neigh-
borhood search strategy is introduced. Inspired by the ABC
optimization algorithm, we use the neighborhood to help
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FIGURE 4. Trajectory of parameter k .

particles with constant fitness to escape the optimization trap,
applying an oscillation strategy,

x ti,j = x ti,j + k ∗ Levy ∗
xmax − xmin

ϕ ∗ random
(14)

where ϕ is the neighborhood control parameter, and k is the
adaptive function from the following expression,

k =

(
1 −

t
itermax

) 2t
itermax

(15)

Fig. 4 shows an image of the function k . The image shows
that at low cycles, k at the maximum number of iterations
is concave, which allows the particle to oscillate in a large
range. Meanwhile, at a high number of cycles, k at the maxi-
mum number of iterations is convex, allowing the particle to
oscillate in a small range, causing the search to achieve a bal-
ance. When the fitness of the particle is equal to its historical
optimal fitness, the particle executes the oscillation strategy
and compares the new solution to its historical optimal solu-
tion. If the result is better, the solution is updated; otherwise,
the current position of the particle remains unchanged.

E. FRAMEWORK OF THE PROPOSED ALGORITHM
Fig. 1 shows the flowchart of the new algorithm, and Table 3
shows the corresponding pseudocode. The pseudocode and
flowchart can help the reader organize the relationship
between the components.

F. ALGORITHM COMPLEXITY ANALYSIS
The time complexity of PSO is O(DN )(D and are the dimen-
sionality and population size, respectively.). As opposed to
PSO, PSO-ATPS contains classification function φ, inertia
weight ωt , and an oscillation strategy. The time complex-
ity of the classification function φ is O(1) and that of the
inertia weights ωt is O(D). Pertaining to oscillation strategy,
two extreme cases are considered: no oscillation strategy
and POPnew1 executes all oscillation strategies. The time
complexity of the two cases is O(1) and O(DN ), respec-
tively. Therefore, the time complexity of the worst case of

TABLE 3. PSO-ATPS Algorithm.

PSO-ATPS is alsoO(DN ), and PSO-ATPS has the same time
complexity as PSO.

Typically, PSO-ATPS takes more time on simple functions
than PSO, while it takes nearly the same amount of time
on complex multipeaked functions as PSO. This is because
oscillatory strategies are more likely to be executed on simple
functions and less often on multipeaked functions.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
This section uses seven algorithms for comparison with
PSO-ATPS and conducts numerical experiments on a test set
consisting of 15 benchmark test functions. Three of them
are related to PSO algorithms: PSO, CDIWPSO, and PPSO.
Four of them are intelligent optimization algorithms widely
used in recent years: sine cosine algorithm (SCA) [58],
WOA [18], grey wolf optimizer (GWO) [59], and marine
predators algorithm (MPA) [60].

A. NUMERICAL BENCHMARK FUNCTIONS
PSO is chosen as the comparison algorithm, as the strategy
adopted by PSO-ATPS for POPnew1 is inspired by PSO.
CDIWPSO is chosen as the comparison algorithm because
both it and PSO-ATPS employ decreasing inertia weights
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TABLE 4. Unimodal test functions.

TABLE 5. Multimodal test functions.

influenced by chaotic mapping. PPSO is chosen as the com-
parison algorithm because of its unique way of updating the
velocity, and changes are made in PSO-ATPS for POPnew2.
SCA is chosen as one of the comparison algorithms for
PSO-ATPS because it belongs to the group intelligence opti-
mization algorithm. In addition, the search range is controlled
by the triangular function, and the strategy of neighborhood
search is also used in PSO-ATPS. The WOA and GWO algo-
rithms are chosen as comparison algorithms because of their
relationship with PSO-ATPS regarding the location update
approach of the algorithm, and as one of the most well-known
SI optimization algorithms, comparison with them can bet-
ter display the advantages and disadvantages of PSO-ATPS.
MPA is chosen as a comparison algorithm because the adap-
tive process of PSO-ATPS is taken from MPA, and as one

of the latest well-known SI optimization algorithms, MPA
can provide us with many new ideas. The parameters of all
algorithms are indicated in Table 9.

Test functions are divided into three categories. The first is
unimodal test functions, which have only one extreme value
in the solution space. The second category is multipeaked
functions, which have many extreme points in the solution
space, i.e., they have many local optima, and these problems
are very complex, whereby the optimization algorithm can
easily descend into the local optima. The third category is test
functions with fixed dimensionality. For the sake of fairness,
all algorithms are set with the same population size N = 100
and the same maximum number of iterations itermax = 103.
All tests are executed 25 times, from which the mean, stan-
dard deviation, and optimal fitness values are recorded. For
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TABLE 6. Fixed-dimension test functions.

TABLE 7. Ranking of test means for different ωmin.

TABLE 8. Ranking of test means for different ϕ.

TABLE 9. Algorithm parameter setting.

the first two types of functions, the performance of the
algorithms for number of dimensions dim=10, dim=30 and
dim=50 are examined to determine whether the algorithms
will have a sharp decay in accuracy owing to the increase in
dimensionality.

The information of the 15 benchmark test functions is
presented in Table 4, Table 5, and Table 6. Five of the test
functions in Table 4 are unimodal test functions, which are
tested on this test set to determine the local search capability
of the algorithm. In Table 5, fivemultimodal test functions are
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TABLE 10. Accuracy comparison for 10-dimensional problems.

tested on this test set to determine the global search capability
and local development capability of the algorithm. Table 6
shows the five fixed-dimension test functions.

B. PARAMETER SENSITIVITY ANALYSIS
As the selection of parameters affects the performance of the
algorithm, we perform a sensitivity analysis of the parameters
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TABLE 11. Accuracy comparison for 30-dimensional problems.

in PSO-ATPS in this section. The adjustable parameters in
PSO-ATPS are the minimum value of inertia weight ωmin and

neighborhood control parameter ϕ. The values of ωmin that
can be selected are, and 0.8. Thus, we test these eight groups

62252 VOLUME 11, 2023



M. Zhao et al.: Particle Swarm Optimization Algorithm With Adaptive Two-Population Strategy

TABLE 12. Accuracy comparison for 50-dimensional problems.
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TABLE 13. Fixed-dimension test functions.

of parameters on f9 25 times each and record the average
value. Here, f9 is selected as a test function from Table 5:

f9 (x) = sin2 (πw1)

+

d−1∑
i=1

(wi−1)2
[
1+10sin2 (πwi+1)+(wd−1)2

]
+ (wd − 1)2

[
1 + sin2 (2πwd )

]
(16)

The test function dimension D is set to 30, and the max-
imum number of iterations itermax is set to 103. Table 7
presents the test results, showing that the parameter ωmin has
a small effect, and the maximum difference in the average
value is only 6.92E-04. Our recommended choice for ωmin is
0.6 to 0.7.

For the neighborhood control parameter ϕ, we selected 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100 for comparison. Table 8
shows the average values of these 10 groups of parameters
at f9 in 30 dimensions, and each group of experiments was
conducted 25 times. The effect of the parameter ϕ is very
small, with a maximum average difference of only 1.97E-04.
We recommend the selection of 20 to 30 dimensions.

C. ACCURACY COMPARISON
Tables 10, 11, and 12 show the test results of the compari-
son algorithms for unimodal test functions and multimodal
test functions in 10, 30, and 50 dimensions for the mean,
standard deviation, and optimal values of the results from
25 independent experiments. The results of the best algorithm
of comparison algorithm for each test function are shown in
bold [61].

The results in Table 10 show that for the 10-dimensional
test functions, PSO-ATPS obtained the theoretically optimal

solutions for f1,f4 and f6, f8; PPSO obtained the best result
for f9, f10; SCA found the theoretically optimal solution for
f6; WOA found the theoretically optimal solution on f1, f2,
and f6; GWO found the theoretically optimal solution for
f1 and f6; and MPA found the theoretically optimal solution
for f5,f8. Among the test functions in 10 groups, PSO-ATPS
achieved first place in seven groups of tests with an overall
ranking of 1, PPSO achieved first place in two groups of tests
with an overall ranking of 5, SCA achieved first place in one
group of tests with an overall ranking of 6, WOA achieved
first place in two groups of tests with an overall ranking of 4,
GWO achieved first place in two groups of tests with an
overall ranking of 3, MPA achieved first place in four groups
of tests with an overall ranking of 2, PSO ranked as 8, and
CDIWPSO ranked as 7.

The results in Table 11 show that for the 30-dimensional
test functions, PSO-ATPS achieved first place for f1 to f8
and obtained the theoretically optimal solution on all groups
of tests except f5, PPSO achieved first place for f9, WOA
found the theoretically optimal solution for f1 and f2 and
MPA achieved first place for f6 and f8. Among the 10 groups
of tested functions, PSO-ATPS achieved first place in eight
groups of tests, ranked first. PPSO achieved first place in one
group of tests and ranked fifth. WOA achieved first place in
three groups of tests and ranked second. PSO ranked eighth.
The CDIWPSO ranking is 6, the SCA ranking is 7, and the
GWO ranking is 4.

The results in Table 12 show that PSO-ATPS achieved first
place on all 50-dimensional test functions from f1 to f9.WOA
found theoretically optimal solutions for f1, f2, and f6, and
achieved first place for f10. MPA achieved first place for f6
and f8. Among the 10 groups of test functions, PSO-ATPS
achieved first place in nine groups of tests, ranked first. WOA
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FIGURE 5. Convergence curves of competing algorithms for unimodal test functions in 30-dimensional space.

achieved first place in four groups of tests and ranked third.
MPA achieved first place in two groups of tests and ranked
second. PSO ranked seventh, and CDIWPSO ranked sixth.
The PPSO ranking is 5, the SCA ranking is 8, and the GWO
ranking is 4.

The results in Table 13 show that for the fixed-dimension
test functions, PSO-ATPS obtained the theoretically optimal
solution for f11, f12, f14, and f15, and obtained fourth place
for f13. MPA found the theoretically optimal solution for all
five problems.

The above results show that PSO-ATPS has strong local
exploitation and global search capability, and because the
population of PSO-ATPS is dynamically updated, it does not
present a sharp decline in accuracy based on the increase in
dimensions. In addition, the experimental results show that

the results of PSO increase sharply with an increase in dimen-
sionality, and PSO-ATPS solves this problem and enhances
the applicability of PSO. In tests on unimodal test functions,
PSO-ATPS performs very well, which demonstrates that the
new strategy shows significant improvement in the accuracy
of the algorithm.

D. STABILITY ANALYSIS
On the 10-dimensional test set, the standard deviation of the
results of 25 independent experiments of PSO-ATPS for f1 to
f4 and f6 to f8 is all 0, indicating that PSO-ATPS is very stable
in these tests. The standard deviation of PSO-ATPS for f5 is
slightly higher than that of MPA but smaller than that of the
other algorithms, and the PSO-ATPS standard deviation for f9
is better than that of PSO, SCA, and GWO. The PSO-ATPS
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FIGURE 6. Convergence curves of competing algorithms for multimodal test functions in 30-dimensional space.

standard deviation for f10 is only better than that of
WOA.

On the 30-dimensional test set, PSO-ATPS outperforms the
other algorithms in terms of standard deviation of results for
25 independent experiments on f1 to f8, and only slightly
outperforms PPSO on f9 but outperforms the other algo-
rithms. The standard deviation on f10 is only better than that
of WOA.

On the 50-dimensional test set, PSO-ATPS outperforms
other comparative algorithms in terms of the standard devi-
ation of results for 25 independent experiments on f1 to
f9 and outperforms GWO in terms of standard deviation
on f10.

In the test results of the fixed-dimension test functions, the
standard deviation of the experimental results of PSO-ATPS
achieved rankings of 5th, 1st, 4th, 4th and 1st place in the tests
of f11 to f15, respectively. Thus, the stability of the algorithm

of PSO-ATPS algorithm is excellent, which is caused by the
mechanism of PSO. It can be seen that the standard deviation
of PSO and its variants in the fixed-dimension test functions is
generally better than that of the other intelligent optimization
algorithms.

E. COMPARISON OF CONVERGENCE SPEED
Fig. 5 shows the convergence curves of the compared
algorithms on the 30-dimensional unimodal test functions.
In Fig. 5. (a) to Fig. 5. (d), a part of the graph is enlarged
to observe the convergence speed of the algorithm more
intuitively because the algorithm converges too fast. Mean-
while, in Fig. 5. (e), a logarithmic coordinate system is used
to clearly show the difference in convergence speed. From
Fig. 5, it is clear that PSO-ATPS converges fastest on all five
sets of test functions, indicating that PSO-ATPS demonstrates
good convergence. Fig. 6 shows the convergence curves of
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FIGURE 7. Two-dimensional trajectories of PSO-ATPS particles for unimodal test functions.

FIGURE 8. Two-dimensional trajectories of PSO-ATPS particles for multimodal test functions.

all compared algorithms on 30-dimensional multimodal test
functions. In Fig. 6. (a) and Fig. 6. (b), the curves are shown in
the logarithmic coordinate system, Fig. 6. (c) and Fig. 2. (d)
show enlarged plots of certain intervals, and Fig. 6(e) is not
adjusted because the curves are evident. From (a), (b), and (c)
in Fig. 6, PSO-ATPS converges faster than other comparison
algorithms on f6 and f8, and Fig. 6(d) shows that PSO-ATPS
converges slightly slower than PPSO on f9 but faster than
other comparison algorithms. Fig. 6. (e) clearly shows that
WOA converges fastest for f10.

To have a more intuitive feeling of particle motion in PSO-
ATPS, Fig. 7 to Fig. 10 show the two- and three-dimensional

particle motion trajectories of PSO-ATPS for unimodal test
functions and multimodal test functions, respectively. The
trajectories of Fig. 7. (a) to Fig. 7. (e) and Fig. 9. (a) to
Fig. 9. (e) show that the particles search the solution space
using large steps at the beginning of the algorithm. As the
iterative step size undergoes irregular changes, the step size
decreases to exploit the global optimum. The trajectories of
the particles on the unimodal test functions shrink steadily
toward the global optimum. In Fig. 8. (a) to Fig. 8. (d) and
Fig. 10. (a) to Fig. 10. (d), the particles search efficiently in
the global range and converge quickly to the global optimum.
As the strategies employed by the particles can change at
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FIGURE 9. Three-dimensional trajectories of PSO-ATPS particles for unimodal test functions.

FIGURE 10. Three-dimensional trajectories of PSO-ATPS particles for multimodal test functions.

any time, each particle is either searching or developing
at any given iteration, and this property of the particles
is well-suited for optimization in high-dimensional com-
plex problems. In Fig. 10. (e), three particles fall into the
local optimum, but the search for the solution space is very
comprehensive.

The above comparison shows that PSO-ATPS has excel-
lent optimization accuracy with negligible errors and a very
fast convergence rate. Therefore, PSO-ATPS is an effective
optimization algorithm that can dynamically balance search
and development.

F. DISCUSSION
This study has potential limitations. With respect to the use of
an oscillation strategy, we include the trigger condition that
the strategy is triggered when the solution after the present

iteration is equal to its historical optimal solution. This strat-
egy is intended to remove the particles when they are trapped
in a local optimum; however, it is continuously triggered
when the algorithm has searched for a global optimum. The
convergence speed of PSO-ATPS is very fast, and this leads
to the oscillation strategy performing useless work after the
algorithm converges to the optimal solution, which increases
the time complexity of the algorithm. We believe that the
solution to this problem is to propose new conditions or add
new conditions so that the oscillation strategy is no longer
executed after the algorithm converges, reducing the time
complexity of the algorithm.

V. CONCLUSION
Inspired by biological predation behavior, we propose a
new variant of PSO, PSO-ATPS, which is used to solve the
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problem of prematurely falling into a local optimum, causing
poor convergence accuracy of the PSO algorithm.We classify
the original population according to the degree of adapta-
tion and implement different strategies for different types of
particles. To verify the performance of PSO-ATPS, we com-
pare PSO-ATPS on a classical function test set with some
newly proposed well-known optimization algorithms. The
experimental results show that PSO-ATPS has great poten-
tial in treating this problem, providing good comparative
results.

The main research contributions of this study are as
follows. (1) address the shortcomings of the premature behav-
ior of the PSO algorithm, we propose a new algorithmic
structure, increasing the population diversity by shifting the
particles between two subpopulations. The number of indi-
viduals in the two subpopulations is controlled using an
adaptive classification function. (2) We propose a new oscil-
lation strategy based on the elite strategy, which is used
to solve the problem of poor solution accuracy of PSO in
high-dimensional complex functions. (3) We propose a new
concise velocity–position update formulation.

Based on the Occam’s Razor principle, we provide a
simple velocity–position update formulation, which makes
PSO-ATPS very flexible. For PSO, a large number of
improved versions and new strategies of metaheuristic algo-
rithms can be easily mixed with PSO-ATPS. The capability
of a single optimization algorithm is always limited; thus,
it may be better to integrate the strategies of optimization
algorithms. Interested readers can borrow the ideas from this
paper to introduce some excellent strategies, such as the spiral
search strategy of WOA and the crossover and variational
strategies of GA. These strategies can be triggered under
suitable conditions, making the algorithm more applicable to
the situation presented.
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