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ABSTRACT A hydraulic piston pump is an essential component of a hydraulic transmission system and is
extensively used in contemporary industrial settings. Therefore, fault diagnosis of piston pumps is a crucial
topic in the engineering field. The convolutional neural network (CNN) is currently the most popular deep
neural network model and has been successfully employed for fault detection and other tasks. The design
and hyperparameter settings of CNNs significantly affect the overall diagnosis performance. In this study,
a genetic method is proposed that can quickly investigate a specific set of potentially viable one-dimensional
CNN (1D-CNN) architectures while also optimizing their hyperparameters for a fault detection task of
an axial hydraulic piston pump. The proposed model is automatically designed based on a direct connect
1D-CNN block, which is another contribution of this study. The proposed method is evaluated on the raw
sound signal dataset of an axial hydraulic piston pump without any signal pre-processing techniques. The
experimental results demonstrate that the proposed method outperforms several well-known deep learning
(DL) models in terms of fault diagnosis performance. Additionally, the suggested method uses significantly
less computational power to determine the best 1D-CNN structures than most peer rivals.

INDEX TERMS Fault diagnosis, hydraulic piston pump, convolutional neural network, genetic algorithm,
hyperparameter optimization.

I. INTRODUCTION
A hydraulic piston pump is considered one of the most impor-
tant components of a hydraulic transmission system and it
has been using in several engineering fields such as mechan-
ical engineering, aerospace engineering, ship industries and
heavy construction machinery industries [1], [2]. The pump’s
malfunction might cause downtime or perhaps paralyze the
entire manufacturing line. From the standpoint of one’s own
safety, it could result in terrible mishaps. Hence, the fault
detection of a hydraulic pump can play a key role as an
avoidance tool in worker safety and secure manufacturing,
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and it has been stood at the center of the scholarly inter-
est [3], [4], [5]. For example, complexity and hiddenness are
considered twomain characteristics for the failure can be seen
in real world applications. In order to maintain the operation
of the entire hydraulic system, effective state monitoring and
accurate fault detection of a hydraulic piston pump are main
aspects which cannot be ignored.

Traditional fault diagnosis of hydraulic piston pumps typ-
ically involves a combination of manual inspection, expert
knowledge, and the use of sensor-based measurements. This
approach aims to identify and analyze potential faults or
abnormalities in the pump system to ensure its reliable
operation [6]. One commonly used method in traditional
fault diagnosis is visual inspection, where operators visually
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examine the pump components for any signs of wear, dam-
age, or leakage. This approach relies on the experience and
expertise of the inspector to identify potential faults based on
visual cues. Additionally, sensor-based measurements play
a crucial role in fault diagnosis. Various sensors, such as
vibration sensors, pressure sensors, temperature sensors, and
acoustic sensors, are installed on the pump system to monitor
its performance. These sensors capture data related to oper-
ating conditions, performance parameters, and potential fault
signatures. The collected sensor data is then analyzed using
traditional signal processing techniques [7]. This may involve
time domain analysis, frequency domain analysis, or statisti-
cal analysis to extract relevant features that indicate potential
faults. Feature extraction methods, such as Fourier analy-
sis, wavelet analysis, or statistical moments, are commonly
employed to identify specific fault patterns or anomalies in
the sensor data. Once the features are extracted, they are
compared against pre-defined thresholds or reference values
to determine the presence of faults [5]. Rule-based algorithms
or expert systems may be used to interpret the extracted
features and make diagnostic decisions. These algorithms are
typically built based on expert knowledge and experience,
incorporating a set of rules or decision criteria to identify spe-
cific fault conditions. Overall, traditional fault diagnosis of
hydraulic piston pumps relies on manual inspection, sensor-
based measurements, and signal processing techniques to
detect and diagnose faults. While effective to some extent,
this approach often requires a high level of expertise, is time-
consuming, and may not be capable of detecting subtle or
complex faults. As a result, there is a growing interest in
integrating advanced techniques such as machine learning
and deep learning to enhance the accuracy and efficiency of
fault diagnosis in hydraulic systems.

Machine learning (ML) algorithms have recently become
frequently used in engineering due to the expansion of data
from mechanical systems and the advancement of artifi-
cial intelligence [8], [9]. However, for feature extraction,
ML algorithms heavily rely on the expertise and experience
of an engineer. As a result, they are inappropriate for sce-
narios with substantially nonrepresentational characteristics.
Meanwhile, deep learning (DL) models rely less on past
information and have stronger representational capabilities
than ML models. Therefore, DL-based fault diagnosis sys-
tems that have the advantage of automatic feature extraction
have been employed for condition monitoring of machiner-
ies [10], [11]. There are several DL models that have been
proposed for fault diagnosis. For example, a unique autoen-
coder has been suggested to model both local and global
geometries of the input by developing various cost func-
tions because current DL approaches ignore the geometry of
input samples [12]. A stacked sparse autoencoder (SSAE)
is suggested for limited data samples [13]. A deep neural
network (DNN) is successfully applied to a fault diagnosis of
a wind turbine and produced promising results [14]. A bear-
ing fault diagnosis system based on a generated adversarial

network (GAN) is proposed and the model has outstanding
diagnostic performance and can address the issue of zero-shot
in novel conditions [15]. Among the DL models, the most
popular deep neural network model at the moment is the
convolutional neural network (CNN), which has been uti-
lized successfully for fault detection and other tasks. Several
optimization techniques are applied for hyperparameter tun-
ing [16], [17]. For instance, Tang Sh. et. al. has proposed an
adaptive CNN model for fault detection of an axial hydraulic
piston pump using acoustic signal [18]. They have used a con-
tinuous wave transform (CWT) signal processing technique
for converting row acoustic signals to time-frequency domain
images, and Bayesian optimization technique is utilized for
hyperparameter optimization. Although the study has shown
promising results, signal processing technique requires ade-
quate knowledge and the skills of an expert. These authors
have also improved CNN model by the use of adaptable
learning rate [19]. They have used signal data from vibration
sensor, pressure sensor and acoustic sensor and this method
can be financially expensive for fault diagnosis. Furthermore,
a vibration signal-based fault diagnosis is commonly investi-
gated by researchers [20], [21], [22], [23], [24]. Although the
vibration-based method has reliable diagnosis performance,
the installation of vibration sensor on applications might be
challenging in real world conditions. To address this issue,
acoustic sensors can be used. However, acoustic sensors
also have disadvantages. For instance, acoustic sensors are
very sensitive to environmental noise, and it might cause a
decrease of overall diagnosis performance.

CNN models can extract enriched hierarchical features
from the input data by increasing the number of layers
of it [25]. These features are essential for completing the
tasks that have been set as targets. Although the depth of
architecture plays a big role, there are a finite number of
layers that can be added. The fundamental reason is that
training entire models thoroughly using back-propagation
techniques is exceedingly challenging for deep architec-
tures because of issues with gradient information flow [26].
Additionally, because there are so many trainable param-
eters, deeper networks are more susceptible to overfitting
issues. In the research disciplines of image recognition and
speech recognition, various studies have been undertaken to
improve the information flow inside deep neural network
designs by adding additional short connections between lay-
ers [27], [28], [29]. Such factors must be taken into account
when developing hydraulic piston pump system DL-based
defect diagnostic algorithms. By taking these concerns into
account, richer and appropriate characteristics for high diag-
nosis performance can be obtained by effective deep neural
network model training.

To tackle aforementioned issues, a novel fault diagnosis
system is proposed in this research. This system evolves DL
model architecture which is based on 1D-CNN blocks and
hyperparameter tuning of the model using genetic algorithm
(GA). The CNN block is constructed based on the direct
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connection-based CNN. In the CNN design, the gradient
information flow can be maximized and effectively train
deep networks by directly connecting the feature maps of
the various layers. Simultaneously, dimension reductions in
both the width and height as well as the depth-wise direction
are intended to address the issues that can arise from the
increased number of parameters as a result of direct connec-
tions. Additionally, the suggested method’s performance is
checked by visualization of the results of the learnt features
using t-distributed stochastic neighbor embedding (t-SNE)
method. The suggested method also exhibits consistent and
reliable diagnosis performance in the presence of noisy data,
which is a problem that is commonly observed in real world
environments.

The following is a summary of this paper’s significant
contributions:

1) A novel automatically optimization of 1D-CNN archi-
tecture for fault diagnosis of a hydraulic piston pump is
proposed. The network architecture and hyperparame-
ters are optimized simultaneously by genetic algorithm
(GA). Therefore, the suggested algorithm does not even
require users to have a working background of GAs,
CNNs, or the examined topic.

2) A direct connection-based CNN block is built. It can
improve the gradient information flow within the
block’s layers. Consequently, enhanced hierarchical
features of the input data can be extracted, and the CNN
architectures can be trained effectively. To address the
potential issues brought on by the increasing number
of parameters because of direct connections, dimension
redaction module has been built in the CNN block.

3) The proposed diagnosis system uses row acoustic sig-
nal. Therefore, it does not require any signal processing
techniques, feature extraction methods, and an expe-
rienced worker neither on signal processing nor CNN
architectures.

4) Experimental findings show that the suggested strategy
can perform more effectively than a number of other
standard ways. The effectiveness of the suggested strat-
egy is thoroughly examined utilizing various analyses.

The rest of the research is constructed as follows. The funda-
mental theory of 1D-CNN and GA is described in Section II.
Section III talks about the proposed fault diagnosis system,
which is based on automatically optimization 1D-CNN archi-
tecture using GA. Experimental setup and data acquisition
progress is described in Section IV. Section V talks about
analysis and visualization of the results. Section VI concludes
the paper.

II. BRIEF THEORY
A. ONE-DIMENSIONAL CONVOLUTIONAL NEURAL
NETWORK (1D-CNN)
A Convolutional neural network (CNN) is one of the best DL
models and it is frequently used to analyze two-dimensional
data, like photos and movies. Due to its local connections,

FIGURE 1. Structure of one dimensional convolutional neural network
(1D-CNN).

weight sharing, and down-sampling, CNN differs from other
DL models [30], [31]. CNN excels in extracting both local
and global properties from data. Because there are fewer
parameters in CNN than in traditional feed-forward neural
networks, training is simpler. Generally, CNN architectures
consist of three layers including input, hidden and output
and the hidden layer also includes several layers, such as a
convolution layer, a pooling layer, a fully connected layer.
The simple structure of an 1D-CNN is illustrated in Fig.1.
A 1D-CNN architecture is particularly suited for processing
sequential data, such as time series signals. The input data,
in this case, is a one-dimensional signal, such as acoustic data
collected from a hydraulic piston pump. As the signal flows
through the layers of the 1D-CNN, several operations take
place that result in changes in the data dimensions. The initial
layers of the 1D-CNN consist of convolutional layers, which
apply filters to extract local features from the input signal.
The function of the convolution layers is to extract high-level
features from the input row vector. Kernels, also known as
filters, are a convolutional layer’s parameters, and the input
row vector is convolved by each filter throughout the feed-
forward operation. After computing the dot product between
the filter and the input vector, a 1D activation vector of the
filter is produced. The size of the filter can directly affect how
many hidden layers are present. These convolutional layers
produce featuremaps that preserve the spatial information but
reduce the signal’s temporal dimension.

The convolution layer can be expressed as follows:

X lv = F(
∑

uϵMv
X l−1
u · K l

v + Blv), (1)

where X denotes the input vector, X lv is the updated feature
maps produced by the convolution layer, l stands for l th layer
of the network, X l−1

u represents uth feature maps produced by
the (l − 1)th layer, Kv presents a convolutional filter, and B

l
v

denotes the bias in the convolution operation.
The network’s ability to model nonlinear representa-

tions is provided by the activation function. Saturated and
non-saturated functions come in two varieties. Tanh is a
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saturated function, as is the sigmoid function. The rectified
linear unit (ReLU) and its variations are typically favored
since they are non-saturated. ReLUs are frequently used in
CNNs because they are quick and, thanks to their linear and
unsaturated properties, can overcome the gradient vanishing
problem [32].

Subsequently, pooling layers are often employed in the
architecture. These pooling layers downsample the feature
maps by aggregating neighboring values, which further
reduces the spatial dimensions of the data. Max pooling is a
common type of pooling operation used in 1D-CNNs, where
the maximum value within a pooling window is selected
as the representative value. And it can help the network to
avoid overfitting problem. A mathematical expression of the
pooling operation is as follows:

alv−s = f (W l
vdown

(
M l−1
v

)
+ Blv) (2)

where W l
v represents the weight vector, down (·) denotes the

pooling operation andMv presents the feature maps produced
by pooling operations.

Following the pooling layers, the feature maps are usually
flattened into a one-dimensional vector, which essentially
collapses the spatial dimensions into a single dimension.
This prepares the data for the fully connected layers of
the 1D-CNN. The fully connected layers consist of densely
connected neurons that learn complex relationships between
the extracted features. These layers may introduce additional
dimensionality changes, depending on the specific architec-
ture design and the number of neurons in each layer.

Following that, the classifier receives a 1D vector as the
output of the fully connected layer and uses it in conjunction
with a softmax logistic regression model to make the final
prediction and multi-classification.

B. GENETIC ALGORITHM (GA)
GA is frequently used to solve optimization issues. It is
especially helpful when the task at hand has several local
optima and/or a large number of factors. In GAs, the set
of parameters that the suggested approach aims to solve is
referred to as a chromosome. Until the desired chromosomes
are formed, GA first generates random chromosomes. There
are four key operations that make up the algorithm. Each
chromosome’s fitness value is calculated first. The selection
operator is then used to select strong chromosomes from
the population based on how they are. Third, the crossover
operator is used to divide the existing chromosomes into new
ones. Finally, these chromosomes undergo random mutation
to produce new chromosomes. The fitness of these newly cre-
ated chromosomes is then calculated in the subsequent cycle.
Up until the intended outcomes are achieved, the process is
repeated.

However, in a deep learning environment, training a GA
model might be computationally expensive. The fitness of
chromosomes is determined after each iteration. Therefore,
getting fit chromosomes in fewer iterations is essential.

By enhancing and optimizing GAs, it is achieved. The idea
of changing GAs is not new in and of itself. A number of
scholars have already suggested certain improvements for
specific jobs and applications. In order to achieve better final
results, we attempt to optimize common GA operators in this
work to fit our framework.

There have been advancements in the following factors:
1) Not each altered chromosome is better than unmutated

ones, according to the selection operator. As a result,
we choose the best chromosomes from the most recent
and previous generations.

2) Crossover operator: rather than using a fixed value, the
adaptive crossover probability is employed.

3) Reduced danger of losing beneficial genes due to muta-
tion operators.

1) SELECTION
The selection operator selects the strongest chromosomes
and discards the weaker ones after determining the fitness of
the existing chromosomes. According to this definition, the
likelihood that chromosome ch will be chosen is:

Pselect =
f (ch)∑Nch
1 f (ch)

(3)

where f (ch) denotes the fitness of the chromosome and Nch
denotes the total number of chromosomes in the population.
Here, the only chromosomes that were produced during this
iteration are eligible to compete. Not all the present chromo-
somes, nevertheless, are an improvement over the past ones.
To put it another way, there is no guarantee that chromosomes
created at time t will be more fit than those created at time
(t−1). To choose the best chromosome from the population,
the following procedures are used:

1) Calculate each chromosome’s fitness and retain the
strong S chromosomes. Throw away the remaining
Nch − S chromosomes, where Nch is the population’s
total number of chromosomes.

2) If the present chromosomes are more fit than the previ-
ous ones, keep them all. Otherwise, preserve the most
powerful chromosomes from the most recent genera-
tion and swap out comparatively weak chromosomes
for those from the most recent iteration.

3) To continue evolution, apply mutation operators to the
remainder chromosomes.

By doing this, we can stop crossover and mutation operators
from wiping out the strongest individuals.

2) CROSSOVER
By changing segments of the matched father chromosomes,
a crossover operator creates two new individuals. A one-point
crossover is used in this work.{

chu1 (t) = r · chu2 (t − 1) + (1 − r) · chu1(t − 1)
chu2 (t) = (r − 1) · chu2 (t − 1) + r · chu1(t − 1)

(4)

where chu1 and chu2 display the chromosomes, the point of
crossover is denoted by u, while the uniform random real
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FIGURE 2. Overall flowchart of genetic algorithm.

number in (0, 1) is denoted by r . Eq. (4) demonstrates the
pairing operations of crossover parent chromosomes chi(t−1)
to create new child chromosomes chi(t). To prevent losing
healthy chromosomes, the crossover rate should be decreased
as chromosomes evolve. To do this, decrease the likelihood of
crossing. Therefore, as demonstrated in Eq. (5), the adaptive
crossover probability is used.Pcross (t) =

Pcross(t − 1)
1 + (fparent − fcurrent )

, if fparent > fcurrent

Pcross (t) = Pcross (t − 1) , otherwise

(5)

where fcurrent denotes the average fitness value of the current
generation and fparent denotes the average fitness value of the
parent chromosome. Therefore, if the fitness value drops after
a few iterations, the crossing chance will also drop. Pcross
doesn’t change anything else.

3) MUTATION
Another method of creating new chromosomes is by muta-
tion, which involves modifying one or more genes in an
existing chromosome. The algorithm can avoid becoming
caught in a local minimum by using mutation. However,
if convergence proceeds too slowly, random gene mutations
could damage healthy chromosomes. The steps listed below
are used to solve this issue:

1) Take the crossover operator’s S chromosomes and leave
them all unaltered.

2) Up until Nch generations have passed, duplicate these
chromosomes and use mutation to create new ones.

FIGURE 3. a) 1D-CNN block, b) overall network architecture.

3) Keep the probability of mutation (1%) as small as
possible to avoid chaotic behavior.

These little enhancements to the selection, crossover, and
mutation operators produce better outcomes and hasten
chromosome convergence.

When the best answer is identified, a genetic algorithm
comes to an end. After a given number of repetitions, if a
desired chromosome is not created, the algorithm terminates,
and the chromosome with the best fitness in the most recent
generation is considered an output of GA. Fig. 2 depicts a GA
model’s overall flowchart.

III. AUTOMATICALLY OPTIMIZED A CNN
ARCHITECTURE-BASED FAULT DIAGNOSIS SYSTEM
The suggested method for fault diagnosis of a hydraulic pis-
ton pump is presented in this section. First, direct connection
based 1D-CNN block is explained, following that optimiza-
tion process of 1D-CNN architecture and overall flowchart of
the suggested system are described.

A. 1D-CNN BLOCK
Deep CNN architectures can be used to obtain more hierar-
chical features, which are essential for achieving good fault
detection accuracy. Nevertheless, as network architectures
become more complex, they become much more difficult to
train perfectly because of issues with a gradient information
flow that occur when utilizing back-propagation methods for
training [33], [34], [35]. In order to solve this issue, the direct
connection based 1D-CNN block is proposed for hydraulic
piston pump fault diagnostics in this work. This block can
help not only to improve the gradient information following
and decrease the number of trainable parameters but also
reduce the optimization time of network architecture. The
proposed 1D-CNN block and entire network architecture are
illustrated in Fig. 3.
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FIGURE 4. Overall framework of the represented approach.

The 1D-CNN block is one of the fundamental parts of
the entire CNN architecture. The main goal of this block
is to increase the gradient information flow by strength-
ening the connections between different CNN layers and
reduce the number of trainable parameters. In this block, a
1-dimensional Conv layer extracts features of an input data,
and a batch normalization (BN) layer is applied. Because BN
is especially effective for deep networks and has produced
positive results in deep learning [36]. The output of the BN
layer passes an activation layer, and the output is concatenated
with the initial input data. This data is passed the same three
layers (Conv, BN, and activation) once again, and this data
is concatenated with the initial input data and the previous
concatenated data as shown in Fig. 3 (a). Following this,
a dimension reduction module is applied. This module con-
sists of four layers including Conv layer with 1× 1 filter size
for depth-wise reducing an input data, BN, activation and a
pooling layer for widthwise reducing a data.

B. OVERALL PROCEDURE OF THE PROPOSED DIAGNOSIS
SYSTEM
Fig. 4 shows the general framework for using the suggested
automatically optimized 1D-CNN architecture for fault diag-
nosis of a hydraulic piston pump. The proposed diagnosis

TABLE 1. The best hyperparameters obtained by GA.

approach for fault detection of a hydraulic piston pump
consists of three main parts, as illustrated in the overall
framework. First, sensors are utilized to gather information
about important parts of a piston pump, such as sound signals
under normal and failure modes. The collected signals are
separated into several samples. These samples are divided
into train and test samples. The model is directly fed to
the raw sound data. There is no requirement for manually
created signal processing features like skewness, kurtosis, etc.
Second, a neural network architecture based the 1D-CNN
blocks and its hyperparameters are optimized simultaneously
using GA. The hyperparameters of the neural network, their
ranges and optimal results are listed in Table 1. The objec-
tive function of GA is the classification accuracy which is
expressed in Eq. 6 on the test dataset.

Test error =
truevalue − predictedvalue

totalpredictions
(6)

As described above, automatically constructing a 1D-CNN
architecture with the ideal number of CNN layers and other
hyperparameters for fault diagnosis is the major goal of this
paper. The following parameters are used in the GA: the
maximum number of generations is 20 and the probabilities
of crossover and mutation are 0.4 and 0.2, respectively. A cat-
egorical cross entropy function is used as a loss function of the
proposed neural network. The prediction and classification
are finished using the softmax regression tool. These terms
are expressed as follows:

Categorical cross entropy:

LCE = −

∑N

i=1
ti · log (yi), (7)
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FIGURE 5. (a) overall experimental set up, (b) tested pump.

FIGURE 6. Damaged components of the hydraulic piston pump.

Softmax:

f (y)i =
eyi∑N
j e

yj
, (8)

where N denotes a number of classes, ti is the truth label,
yi represents the softmax probability for ith class, yj is the
score inferred by the network for each class in N. Finally, fault
classification is performed using the automatically optimized
1D-CNN model and feature visualization is performed using
the t-SNE method.

FIGURE 7. Row acoustic signals, (a) normal, (b) cavitation erosion on port
plate, (c) loose slipper, (d) worn piston, (e) worn slipper, (f) worn port
plate, (g) central spring wear.

IV. EXPERIMENTAL SET UP AND DATA COLLECTION
Experimental testing performed in the mechanical engineer-
ing department’s lab at Inha University served as the basis for
the research effort. Table 2 lists the pump’s specifications.
The sound signals of the piston pump are acquired by an
acoustic sensor while working conditions. Pumps are not
used in the same conditions in real environments, they can
be operated at different rotation speeds or under different
pressure. Therefore, the test pump is operated in several
conditions which are listed in Table 3 and the sound signals
are collected. By this, enough datasets can be collected for
feeding the proposed DLmodel andmore complex and differ-
ent enriched datasets can be established. The tested hydraulic
piston pump (a) and overall experimental set up (b) are
represented in Fig. 5. If the sensor is not enough positioned
to the sound signal source, the desired sound data might be
masked by environmental noise or mechanical transmission
sound. In order to obtain a signal with a greater signal-to-
noise ratio, the near sound field measurement approach is
used. The acoustic sensor (Model: Bruel & Kjaer Type 2671)
is mounted on a stationary base near to the hydraulic piston
pump as shown in Fig. 5. The distance between the sensor
and the body of the pump is 0.15 meters. The measured
signals while operating is collected on a laptop via DAQ
(NI cDAQ-9174) module. The signals are recorded at 20 kHz
sampling rate during 10 seconds for each condition.

Acoustic signals from the pump in various health condi-
tions are collected for fault diagnosis. Four common faults
of hydraulic piston pumps including worn port plate, cavi-
tation erosion, worn slipper and damaged cylinder block are
investigated in the reference [37]. The references [18], [19]
also focus four types of failure modes. In this study, six very
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TABLE 2. Specification of the tested hydraulic piston pump.

TABLE 3. Operating conditions of the hydraulic piston pump for data
acquisition.

TABLE 4. The health conditions of a piston pump.

common failure modes which are listed in Table 4 of a piston
pump are analyzed. Damaged components of the pump are
illustrated in Fig. 6.
As mentioned above, the proposed diagnosis system

receives 1D time series data. Therefore, obtained acoustic sig-
nals can be fed directly to 1D-CNN model. The row acoustic
signals of 2minutes time duration for each mode of the pump
are shown in Fig. 7.

V. RESULTS AND DISCUSSION
A. INPUT DATA DESCRIBPTION
The collected sound signals are divided into the same length
of pieces. In other words, one sample of the dataset makes up
512 data points (L) of the row sound signal. And the next data
sample makes up another 512 data points by moving next to
256 data points (M) as shown in Fig. 8.
Acoustic signals are pieced 6860 data samples overall,

980 samples for each of the seven modes. The dataset is arbi-
trarily divided into a training dataset and a test dataset with
an 8:2 sample ratio, giving the training dataset 5488 samples
and the test dataset 1800 samples. 840 training samples and
1372 test samples are utilized to train and test the model,

FIGURE 8. Sampling process of the row sound signal.

FIGURE 9. Diagnosis performances of selected DL models and the
proposed model.

FIGURE 10. Number of trainable parameters of the models.

respectively, for each mode. Please take note that no training
was done using the test data. To extract more helpful features,
the training data is randomly flipped horizontally.

B. ANALYSIS OF THE EXPERIMENTAL RESULTS
Aforementioned above, DNN, SSAE and CNN DL models
are commonly employed on a fault diagnosis and health
monitoring. Therefore, these DL models have been selected
for comparative study. The models are implemented using
one of DL toolkits called Tensorflow 2.0 version. Hardware
settings used in this study are as follows. Central Processing
Unit (CPU) is an AMD Ryzen 9 5900X 12-Core Processor
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FIGURE 11. Confusion matrix of DL and proposed models.

FIGURE 12. Feature representations of the last layer of models via t-SNE.
(a) SSAE, (b) DNN, (c) CNN and (d) proposed model.

3.70 GHz (RAM: 64 GB), Graphics Processing Unite (GPU)
is NVIDIA GeForce RTX 3060 (12 GB memory). The result
of comparative study is represented in Fig. 9. The accuracy
of the models in this figure is an average value of ten times
repetition of training. Fig. 9 shows that the automatically
optimized CNN architecture has performed the highest accu-
racy among the other compared models. If it is looked the
graph, SSAE and DNN has shown relatively poor diagnosis
performance. Therefore, it can be said that convolutional
layers can help solve domain knowledge dependency issues.

Dimension reduction module is used in 1D-CNN block to
lower the number of parameters required to build effective

DL models. The results of the suggested fault diagnosis
method are evaluated in this research, and the number of
trainable parameters for DL-based methods is examined. The
best diagnostic performance with the fewest parameters is
achieved using our proposed method, as shown in Fig. 10.
Although the proposed model is the deepest model, the num-
ber of trainable parameters is fewer than that of the rest
models. The dimension reduction module in the 1D-CNN
block is responsible for this benefit, which can be verified
by counting the parameters in both the standard and reduced-
size versions. Numerous parameters might be eliminated if
only the dimension reduction module is used in the 1D-CNN
block. Thus, the benefits of 1D-CNN blocks-based methods
allow for the efficient construction of diagnosis models with
deep architectures, which in turn improves the diagnostic
performance.

Classification accuracy is a parameter that can only be
used to measure the algorithm’s overall performance and not
to draw attention to the most pressing problems with data
classification. To tackle these problems, the confusion matrix
is commonly used. Accuracy in statistical categorization can
be shown using the confusion matrix. The rows of the matrix
represent the actual values, while the columns represent the
predicted category. The confusion matrix for a classifier with
N categories is a N×N square matrix.

Fig. 11 demonstrates the classifiers that enable accurate
classification of the pump’s state of health. The confusion
matrix, in particular, enables detailed observation of which
fault scenarios are appropriately categorized. Considerable
things can be done based on the matrices’ analysis. Looking
at the figure, SSAE and DNN models fail in detection of all
classes while CNNmodel has only failed in predicting label 2
(F2), label 4 (F4) and label 5 (F5) one time. All faults are
successfully classified by the proposed method. It can be said
that the proposed method is reliable.

The visualization of the results is crucial and useful to
reveal high-dimensional feature representations in order to
further leverage the internal CNN model process for the
automatic learning of hidden features. t-distributed Stochas-
tic Neighbor Embedding (t-SNE) method is a popular and
useful technique in DL for addressing the issue of non-linear
dimension reduction [38]. For SNE, a probability distribution
is constructed in high-dimensional space to describe the simi-
larity between the points by translating the Euclidean distance
into conditional probability. The likelihood of choosing sim-
ilar objects is higher than the likelihood of choosing objects
that are not similar. TheGaussian distribution is used to estab-
lish the probability distribution in low-dimensional space.
The two probability distributions mentioned above have been
tuned for the best approximation. As a result, SNE frequently
keeps data’s regional characteristics. Symmetric SNE cost
function is used in t-SNE as opposed to conventional SNE.
It is clear that SNE and t-SNE differ from one other in
two ways. One is that the joint probability distribution in
high-dimensional space takes the role of the conditional prob-
ability distribution, and the gradient calculation procedure
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FIGURE 13. Diagnostic performances of DL-based approaches when
subjected to varying degrees of additive noise.

is made simpler. The second is that t-distribution, which
emphasizes a long-tail distribution, is used in place of Gaus-
sian distribution. This avoids the issues of optimization and
crowding by allowing the medium and low distances in the
high dimension to display a bigger distance after mapping.
Therefore, t-SNE is better for acquiring overall properties.
For instance, the features in one layer of a neural network are
reduced to 2D or 3D using a principal component analysis
(PCA), and reduced features can then be transferred to 2D,
or 3D space for display.

It is possible to map the extracted feature data points to
probability distributions. Both 2D and 3D matching distri-
butions are possible. In this study, the 2D visualization of
characteristics is chosen. The extracted features in the last
layer of all models is shown in Fig. 12. From the figure,
SSAE, DNN and CNN models have a few errors in learned
features while the proposed model learns the successful fea-
tures from row signal data points. Consequently, it can be
said from the learnt feature visualization above that the pro-
posed model can learn better features more quickly than other
techniques.

The gathered acoustic signals in actual industrial contexts
are invariably accompanied by background noises. Therefore,
the effectiveness of the suggested model in a noisy environ-
ment must be confirmed. In this experiment, acoustic signals
with varying signal-to-noise ratios (SNRs) in the range of -5
to 10 dB are combined with Gaussian white noise [39]. The
SNR can be expressed a following equation:

SNRdb = 10log10

(
Psignal
Pnoise

)
= Psignal, db − Pnoise, db (9)

where Psignal denotes the power of the signal while Pnoise
denotes the power of the additive white Gaussian noise.

The comparative results under different noisy datasets are
shown in Fig. 13. The result shows that adding more noise
to the mix alters the distributions and properties of the test
data, which leads to a decline in diagnosis performance across
the board. In addition, the proposed optimized 1D-CNN
architecture outperforms alternative DL-based models across

the board in terms of signal-to-noise ratio (SNR). The pro-
posed model also shows high diagnosis performance when
noise is added, while the other models quickly degrade with
the addition of noise.

VI. CONCLUSION
This study proposes an automatic optimization approach for
fault diagnosis of hydraulic piston pumps using a 1D-CNN
architecture and genetic algorithm. This approach introduces
essential features and advantages that set it apart from other
reviews. Firstly, our automated optimization process with the
genetic algorithm eliminates manual tuning, making the fault
diagnosis more efficient and reliable. Secondly, by incorpo-
rating direct connections and a dimension reduction model
within the 1D-CNN block, we enhance gradient information
flow and effectively manage trainable parameters, improving
model performance and reducing overfitting risks. Further-
more, our use of raw acoustic signals without preprocessing
or statistical feature extraction simplifies the data processing
pipeline and potentially captures more relevant information
for accurate fault diagnosis. Comprehensive comparisons
with popular DL models demonstrate the superiority of our
proposed system, achieving 99.99% accuracy with fewer
parameters.

However, our study has limitations. Further validation on
diverse datasets from different hydraulic piston pump sys-
tems is necessary for generalizability. Additionally, exploring
unsupervised or transfer learning schemes can overcome
the dependency on labeled data and enhance real-world
applicability.
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