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ABSTRACT Indoor Localization is gaining increased importance due to numerous location-based services
in healthcare, logistics, and security, to name few, that are expected to be provided by next-generation
wireless networks. Such services are characterized by stringent accuracy requirements, short response
time, and lower cost which makes the localization problem more challenging and deserving of attention.
A key element of the localization process is distance estimation (also known as ranging). In this paper,
we design and analyze an efficient decimeter-level two-way ranging scheme for ubiquitous WiFi networks
in the 5 GHz frequency band whose accuracy approaches ideal one-way ranging with no phase mismatches.
We investigate the idea of channel frequency response (CFR) stitching across non-contiguousWiFi channels
and how two-way CFR measurements help in achieving the CFR coherency necessary for accurate ranging.
In addition, we quantify the decrease in ranging accuracy of two-way compared to one-way ranging due
to SNR degradation, Line-of-Sight (LoS) component shrinkage, and doubling the multipath delay spread.
Furthermore, We design a novel scheme to bridge the performance gap between two-way ranging and ideal
one-way ranging which operates in three main steps: square-root of the two-way CFR, followed by phase
unwrapping, and finally deep fade detection and phase errors correction. Our proposed scheme achieves
significant performance gains over two-way ranging with only a slight performance gap from ideal one-way
ranging. Moreover, our proposed scheme enjoys robustness as it preserves the ranging accuracy gains in
various WiFi communication scenarios when operating at different SNR levels, different multipath channel
models, and different CFR bandwidths, as well as operating under system impairments such as Sample
Timing Offset (STO). The accuracy gains achieved by the proposed schemes are demonstrated using both
simulations and an in-houseWiFi testbed. Finally, we quantify the added complexity of our proposed scheme
and show it to be insignificant compared to that of theMUSIC super-resolution ranging steps which confirms
the practical viability of our proposed scheme.

INDEX TERMS Localization, WiFi, one-way ranging, two-way ranging, CFR Stitching, MUSIC super-
resolution, PLL phase mismatches, sampling time offset.

I. INTRODUCTION
Channel State Information (CSI)-based WiFi ranging has
received increased interest recently thanks to its performance

The associate editor coordinating the review of this manuscript and
approving it for publication was Li Zhang.

gains over received signal strength information (RSSI)-based
and time-stamp-based ranging, especially in multipath envi-
ronments [1], [2], [3]. However, CSI-based ranging has its
own challenges and limitations. One important factor that
limits ranging accuracy is the CSI bandwidth [4], [5]. It is
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well known that wider bandwidth of the estimated CSI results
in higher ranging accuracy since it facilitates resolving the
channel’s multipath components. Due to the scarce and typ-
ically discontiguous nature of the available radio frequency
(RF) WiFi spectrum, bandwidth limitation has always been
a key challenge for CSI-based WiFi ranging [6], [7]. Aside
from spectrum limitations, wide bandwidth operation is also
often not supported by many WiFi devices.

CSI stitching is a promising idea to address this band-
width limitation where WiFi CSI is acquired over multiple
WiFi channels, and for each channel, the Channel Frequency
Response (CFR) is estimated across a new set of frequencies.
Then, the individual CFR estimates are stitched together to
form a unified CFR estimate of a much wider bandwidth than
what can be supported in one WiFi transmission. Nonethe-
less, CSI stitching presents several challenges, the most
important of which is the Transmitter (Tx) and Receiver’s
(Rx) phase-locked loop (PLL) phase mismatches [8], [9].

The issue with mismatched PLL phases at the Tx and
Rx is not the mismatch itself as it only causes an overall
constant phase across the bandwidth of the CFR. Instead,
the problem arises from the changing phases of these PLLs
while switching to a different carrier frequency to collect CFR
estimates at a different set of frequencies (WiFi channel). This
problem will cause sudden phase jumps between individual
CFR estimates which will hinder the stitching process due to
the lack of phase coherence. This issue was initially mitigated
in the literature by using the two-way channel measurement
approach which, at that time, used to work only with carrier
phases; see e.g. [9]. In later works, it was extended to the
whole CFR including magnitude response as well [10].

Sub-Sample Timing Offset (STO) is another serious issue
that can degrade the ranging accuracy. This problem is caused
by the lack of sub-sample-level time synchronization between
two communicating devices. Although the receiver usually
performs some packet-level synchronization using packet
detection algorithms, a residual STO can still remain. This
non-zero STO causes an error signal in the estimated CFR
phase, hence, degrading the ranging accuracy. The signif-
icance of STO was highlighted in [11] and [12]. Another
great advantage of two-way channel measurements is that
they eliminate the STO problem [13].

The idea of two-way channel measurements is to estimate
the CFR at each of the two communicating wireless nodes.
Then, the two CFR estimates are multiplied together leading
to the cancellation of any mismatched phase components.
This idea is based on the fact that PLL phase mismatches
as well as STO effects reciprocate when measured at the
two devices of interest. The two-way channel measurement
approach will be discussed in detail in Section III to highlight
its pros and cons relative to one-way operation.

Unfortunately, multiplying the two CFR estimates (which
essentially squares the CFR estimate due to channel reci-
procity), doubles the multipath delay spread and degrades
ranging accuracy. To mitigate this ranging accuracy degra-
dation from two-way operation, we propose a novel

square-root-based algorithm to transform two-way CSI mea-
surements to one-way CSI. The main challenge in this
transformation is the positive/negative sign ambiguity due to
square-root operation. This causes extra π phase transitions
that ruin the estimated CSI quality and degrade the ranging
accuracy.With the aid of a special type of PLL that stays
locked to the same phase as carrier frequency changes, the
authors of [10] proposed a phase processing technique to
mitigate this sign ambiguity problem. They make the strong
assumption that by using those special PLLs, phase mis-
matches from one frequency band to the next one can be
calculated and compensated for. In this paper, we do not
assume any special type of PLL and therefore, we propose a
phase transition detection and correction algorithm that mit-
igates the positive/negative sign ambiguities. Additionally,
we propose an enhancement to our phase transition detection
and correction algorithm that offers additional performance
gain by dealing with the highly challenging cases of deep
fading channels. Hence, our proposed schemes are distinct
from state of the art techniques in the literature that either
stick with two-way operation or assume special type PLLs to
mitigate its issues. The main contributions of this paper are
summarized as follows:

• We provide a detailed analysis of the two-way channel
approach drawbacks including SNR degradation and its
negative impact on the line-of-sight (LoS) to non-LoS
components power ratio.

• We propose a novel square-root-based scheme for
two-way to one-way CFR transformation that can
bridge the ranging performance gap between the two
approaches.

• We enhance our two-way to one-way CFR transfor-
mation scheme by proposing a novel phase correction
algorithm capable of detecting phase errors resulting
from deep wireless channel fades.

• We analyze the complexity of our proposed scheme and
show the insignificance of its added complexity relative
to the MUSIC ranging algorithm complexity.

• We quantify the significant performance gains achieved
by our proposed approach using an accurate WiFi sys-
tem simulator that incorporates various realistic wireless
channel models adopted by WiFi standards.

• We develop a Universal Software Radio Peripheral
(USRP) based WiFi testbed and use it to demonstrate
the performance gains of our proposed scheme.

The rest of this paper is organized as follows. We start in
Section II by describing the ranging system model includ-
ing its two main steps: channel estimation and distance
estimation using estimated CSI. This is followed by ana-
lyzing the pros and cons of one-way versus two-way CSI
approaches in Section III. Section IV describes our proposed
schemes for two-way to one-way CSI transformation, while
Section V provides a detailed complexity analysis of those
schemes. In Section VI, we present an overall system per-
formance evaluation of our proposed schemes compared to
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TABLE 1. List of key variables used in the paper.

TABLE 2. List of key acronyms frequently used in the paper.

benchmark schemes using both computer simulations and a
USRP-based WiFi testbed. Finally, the paper is concluded in
Section VII.

The key variables and acronyms frequently used in this
paper are summarized in Tables 1 and 2, respectively.

II. SYSTEM MODEL AND RANGING TECHNIQUES
The ranging method we consider in this paper is CSI-based
where the Tx-Rx separation distance is inferred from CSI
information. For single-path LoS transmission, the distance
travelled by the transmitted signal introduces propagation
delay which is reflected in the channel phase response
as a linear phase increase. For a multi-path propagation
environment, the channel response is composed of multi-
ple delayed taps with different magnitudes. Therefore, the
Channel Impulse Response (CIR) of a multipath channel is

given by

h(t) =

L−1∑
l=0

αlδ(t − τl), (1)

where l is the channel tap index, αl represents channel tap
amplitude and is generally complex (αl ∈ C), while τl is
the channel tap delay. For a multipath channel, the CSI-based
ranging method’s objective is to calculate the Time of Flight
(ToF) by estimating τ0 which is used to calculate the distance.
In this paper, we consider an 802.11ax WiFi system, also

known as High Efficiency (HE)WiFi (orWiFi 6) which sends
a preamble sequence at the beginning of each data packet. The
preamble fields including training sequences known at the Rx
are used to enable data detection. The Physical Packet Data
Unit (PPDU) preamble is split into two parts. The first is the
legacy preamble part, which is added for backward compati-
bility and is used for time and frequency synchronization. The
second part is the HE preamble, which is added for channel
estimation and to share signaling information essential for
data decoding.

For ranging purposes, we only rely on the HE-Long
Training Field (HE-LTF) which is used for channel esti-
mation since our ranging method is CSI-based. The
frequency-domain signal model of the received preamble is
given by

YA[k] = Xp[k]H [k] + VA[k], (2)

where Xp ∈ {+1,−1} is the pilot sequence constituting the
HE-LTF, H ∈ C is the Channel Frequency Response (CFR),
V ∈ C is additive white Gaussian noise (AWGN), and the
index k = {0, 1, . . . ,N − 1} represents the frequency bin
index. The channel coefficients in H have a Rayleigh fading
magnitude since H ∼ CN (0, σ 2

h ) which leads to a non-zero
probability of experiencing deep fades at some frequency
subcarriers. The AWGN in (2) follows V ∼ CN (0, σv2).
Finally, the subscript A refers to communication node A
which receives the PPDU transmitted by node B.

For channel estimation, we apply a simple Least Squares
(LS) channel estimation technique to the received signal YA
in (2) and the estimated CFR is given by

ĤA[k] = Xp[k]−1YA[k] = H [k] + ṼA[k], (3)

where ṼA[k] = Xp[k]−1VA[k] is the new noise term which
has the same statistical characteristics as VA[k] since Xp[k] is
a Binary Phase Shift Keying (BPSK) sequence.

Once a CFR estimate is computed at the Rx, ranging
techniques can be applied. One of these techniques is the sim-
ple approach of applying an Inverse Fast Fourier Transform
(IFFT) to ĤA to estimate the CIR and compute the delay of
its first tap [14]. A direct conversion of the first tap delay to
distance can then be applied to get the distance; d̂ = cτ̂0.

Another common approach in the literature is the
subspace-based super-resolution MUltiple SIgnal Classifica-
tion (MUSIC) algorithm which was originally applied to the
problem ofmultiple signal Angle of Arrival (AoA) estimation
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using linear receive antenna arrays [15]. This problem is
analogous to the problem of channel tap delay estimation
from CFR estimated at equi-spaced frequencies. Therefore,
in this paper, the estimated CFR is the input to the MUSIC
algorithm to estimate the first channel tap delay and then is
converted to an equivalent distance estimate.

The MUSIC algorithm works by first estimating the CFR
covariance matrix which is calculated as

R̂ =
1
M

HHH , (4)

where H is an NSC × M matrix whose columns are the
CFR data estimated across NSC sub-carriers from M time
snapshots. To minimize the overhead of capturing multiple
signal snapshots, the covariance matrix estimate R̂ can be
realized using a Hankel matrix that is constructed from one
CFR snapshot and spectral smoothing is applied as explained
in [10] and [16]. To apply spectral smoothing, we replace (4)
by R̂ = H̄H̄H , where H̄ is the Hankel matrix given by

H̄ =


ĤA[0] ĤA[1] . . . ĤA[NSC − 1 − LS ]
ĤA[1] ĤA[2] . . . ĤA[NSC − LS ]
...

...
. . .

...

ĤA[LS − 1] ĤA[LS ] . . . ĤA[NSC − 1]

 , (5)

and LS is the smoothing length. An EigenValue Decom-
position (EVD) of R̂ follows, where the signal and noise
eigen-subspaces are separated as follows

R̂ = U3UH , (6)

U =
[
Us Un] ,3 =

[
3s 0
0 3n

]
. (7)

The columns of the matrix U represent the eigenvectors of R̂
and are denoted by ui, while the matrix3 is a diagonal matrix
with the eigenvalues λi placed along its diagonal elements.
The signal subspace dimension is needed to know the number
of signal eigenvalues and eigenvectors and separate them
from the noise eigenvalues and eigenvectors as shown in (7).
The signal subspace dimension is also equal to the number
of channel paths. Hence, we apply a simple threshold-based
algorithm to estimate the number of channel paths based on
the idea that the signal eigenvalues should exhibit higher
magnitudes than those of the noise.

Next, we compute the MUSIC pseudo spectrum J (τ )
where we exploit orthogonality between the signal and noise
subspaces, in addition to the fact that the signal steering
vector φ(τ ) =

[
1, e−j2π1f τ , e−j2π21f τ , . . . , e−j2π(N−1)1f τ

]
is in the signal subspace for any delay τ value that matches
the delay of any of the channel paths. Hence, we calculate the
steering vectors for all possible delays and substitute them in
the following MUSIC pseudo spectrum expression

J (τ ) =
1

φH (τ )UnUnHφ(τ )
. (8)

For the ease of implementation, φ(τ ) is calculated for differ-
ent τ values and concatenated in a unified matrix8 to get the

entire MUSIC pseudo spectrum vector in one step as follows:

J =
1

8HUnUnH8
=

1
||8HUn||2

. (9)

Finally, the largest peaks of J are identified, where the
first peak delay represents τ̂0. For a detailed explanation of
the MUSIC algorithm, the reader is referred to [17], [18],
[19], and [20].

III. TWO-WAY CHANNEL MEASUREMENTS
As mentioned in Section I, CFR bandwidth is the most
critical factor affecting ranging accuracy. Nevertheless, wide
bandwidth CFR estimates are not always achievable due to
several practical limitations, such as the inability of most
low-power IoT devices to support wide bandwidth operation.
To overcome the end device operation bandwidth limitation,
CFR estimates can be collected at different WiFi channels
each having a relatively smaller bandwidth. Individual CFR
estimates are then stitched together to form an aggregate
unified CFR estimate whose bandwidth is sufficiently large to
satisfy ranging accuracy requirements. In this paper, we focus
on operating in the WiFi 5 GHz frequency band where we
have access to a much wider bandwidth.

A. PHASE ERRORS
For individual CFR estimates (collected at WiFi channels
i = 0, 1, . . . ,B − 1) to be successfully stitched together,
they must have coherent phase. Unfortunately, due to the
PLL operation at both the Tx and the Rx, it settles on a
new random phase every time it switches frequency. This
ruins the phase coherency between CFR estimates collected
at different channels. Denote the PLL phase at the Tx (device
B) and Rx (device A) at WiFi channel i by θBi and θAi ,
respectively. Then, the overall phase offset of the CFR at
channel i will be θBi − θAi . Thus, the effect of these phase
mismatches on the estimated CFR in channel i is

Ĥ i
A[k] = H i[k]ej(θ

B
i −θAi ), (10)

where, H i, and Ĥ i
A are the clean and contaminated-phase

CFRs of channel i, respectively, k = 0, 1, . . . ,N − 1 is
the frequency index, and N is the total number of frequency
samples [8]. Note that noise is neglected in this model.

To restore coherence and thus enable CFR stitching,
the two-way approach can be applied [9]. This approach
involves two nodes; the initiator and the reflector nodes,
which exchange single-tone carrier signals and measure their
phases. By combining the measured phases at both nodes,
the PLL mismatched phase terms cancel out and yield coher-
ent measurements collected at different channels [14], [21],
[22]. This approach has been further extended to include the
channel magnitude response in addition to its phase to get
what we refer to as two-wayCSImeasurements. The two-way
CSI measurement approach is adopted in the literature for
mitigating CFR incoherence in Bluetooth [13] and WiFi [8]
systems. To match the two-way CSI measurement concept
with the notation used in Equations (2) and (3), we denote
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the reflector and initiator by nodes A, and B, respectively,
throughout the rest of this paper.

Unlike the phase-based two-way transmission approach
which only sends unmodulated carrier signals, the two-way
CSI-based approach executes the CFR estimation process
twice; once at node A and another time at node B. CFR esti-
mates collected at both nodes are then multiplied yielding the
two-way CFR estimate ˆ̃H . Thanks to the channel reciprocity
property, any carrier phase mismatch gets cancelled after this
CFR multiplication. We note that dealing with the two-way
CFR estimate ˆ̃H instead of the one-way CFR estimate Ĥ is
equivalent to convolving the CIR with itself ( ˆ̃h = ĥ ∗ ĥ)
which will double the multipath delay spread. Consequently,
it will double the delay of the first tap and therefore the final
distance estimate has to be divided by two.

Another issue that is not related to CFR stitching but affects
the estimated CFR phase quality is Sub-sample TimingOffset
(STO) which is present when there is no time synchronization
between nodes A and B on a sub-sample level. The term
sub-sample synchronization refers to a finer level of time
synchronization that aligns signal time samples taken at the
two communicating nodes, and not just packet-level synchro-
nization. STO, if not corrected, will add a linear phase signal
to the estimated CFR phase. By adding STO effects to PLL
phase mismatches included in (10), we get

Ĥ i
A[k] = H i[k]ej(θ

B
i −θAi )−j2πτ̃Ak/N , (11)

where τ̃A is the STO value normalized to the sample interval
and seen by node A. To cancel STO effects, the two-way
CFR approach can be applied which exploits the reciprocity
property. In other words, since τ̃B = 1 − τ̃A, the STO value
will be canceled out in the two-way CFR as follows:

Ĥ i
B[k] = H i[k]ej(θ

A
i −θBi )−j2π(1−τ̃A)k/N , (12)

ˆ̃H [k] = Ĥ i
A[k]Ĥ

i
B[k] = H i2[k]e−j2πk/N . (13)

We emphasize that τ̃B is not just equal to −τ̃A because
STO can not be negative. The resulting extra factor e−j2πk/N

in (13) is known and can be pre-compensated for at the
packet detection stage or later after the two-way CFR ˆ̃H is
calculated.

B. PERFORMANCE DRAWBACKS OF THE TWO-WAY
APPROACH
Although the two-way approach is effective in mitigating
PLL phase mismatches and STO linear phase, it yields an
effective CIR that is equal to the convolution of the actual CIR
with itself which has the following drawbacks on the ranging
performance

• CFR multiplication degrades the SNR level.
• The convolution operation doubles the width of each
channel tap which significantly increases the probability
of interference between consecutive taps.

• It weakens the first channel tap, which represents
the LoS path, relative to other channel paths. This

significantly complicates the first tap detection to esti-
mate its delay and degrades the ranging accuracy.

• It doubles the multipath effects as the convolution oper-
ation yields double the number of channel taps making
it more challenging to resolve these paths. Moreover,
distributing the channel power over more taps will affect
their magnitudes and some could be undetectable.

To demonstrate how two-way CFR measurements degrade
the SNR, we start from (3) which describes the one-way CFR
estimate at each node. To get the two-way CFR estimate,
the two one-way estimates collected at nodes A and B are
multiplied as follows

ˆ̃H [k] = ĤA[k]ĤB[k]

= (H [k]ejθBA + ṼA[k])(H [k]ejθAB + ṼB[k]), (14)

where the two phase parameters θAB and θBA represent the
overall phase mismatches between the two nodes seen by
nodes B and A, respectively. As explained before, θAB =

−θBA and will cancel out. The final two-way CFR estimate
is given by

ˆ̃H [k] = H2[k] + H [k]ejθBA ṼB[k]

+ H [k]ejθAB ṼA[k] + ṼA[k]ṼB[k], (15)

where it can be seen that the first term is the desired term and
the other three terms combined represent the new noise term
for the two-way CFR estimate.

Now, we derive the SNR expressions needed to compare
both approaches. The one-way SNR expression is straight-
forward to derive from (3) and is given by

SNR1way =
E[H∗H ]

E[Ṽ ∗Ṽ ]
=
σ 2
h

σ 2
ṽ

= ρ, (16)

where we also refer to the ratio σ 2
h /σ

2
ṽ as the input SNR and

denote it by ρ. On the other hand, (15) is used to derive the
two-way SNR expression as follows

SNR2way

=
E[H2∗

H2]

E[(HṼB + HṼA + ṼAṼB)∗(HṼB + HṼA + ṼAṼB)]
,

=
2σ 4

h

2σ 2
h σ

2
ṽ + σ 4

ṽ

=
2ρ2

2ρ + 1
, (17)

where the details of the second-order moment calculation
of H2 are included in Appendix A. In addition, to simplify
notation, the phase terms were dropped as they will not affect
the power of the noise terms. From the expressions in (16)
and (17), we have

SNR1way
SNR2Way

=
2ρ2 + ρ

2ρ2
= 1 +

1
2ρ
, (18)

It is clear that the SNRs of the two approaches will only
converge at high input SNR. Figure 1 demonstrates that the
SNR loss exhibited by the two-way approach keeps decreas-
ing with increasing input SNR until reaching a value of less
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FIGURE 1. One-way vs. two-way SNR.

than 1 dB when the input SNR exceeds 5 dB. On the other
hand, the SNR loss increases at lower input SNR.

The other three drawbacks of using two-way channel
measurements are demonstrated in Figure 2 which shows
different variants of the estimated CIR of a 3-tap multipath
channel that has tap delays of 10ns, 20ns, and 30ns. These
delays are equivalent to distances of 3m, 6m, and 9m, respec-
tively. The equivalent channel tapmagnitudes are 0 dB, -1 dB,
-3 dB, respectively. The three CIR estimates depicted in the
figure correspond to: one-way MUSIC estimate ĥ, two-way
MUSIC estimate ˆ̃h, and Genie-Aided (GA) two-way MUSIC
estimate ¯̃h which assumes knowledge of the correct number
of channel paths. The total CFR bandwidth assumed when
computing these MUSIC estimates is 160 MHz, and the
distance between the Tx and Rx is assumed to be 3 meters.

By comparing the three MUSIC CIR estimates in Figure 2,
it can be seen that one-way MUSIC estimation yields sharp
peaks located very close to the distances equivalent to the true
delays of the channel taps. Notice that all the impulse-like
peaks are shifted by 3 meters. On the other hand, two-way
MUSIC estimation, which assumes no prior knowledge of
the number of channel paths, failed to generate a number of
peaks that reflects the true number of channel paths. Recall
that for two-way channel measurements, the true number of
paths should be 5 while we see 3 peaks only because the
two-way operation weakened the power of some of the signal
eigenvalues to be below the detectable range. Therefore, the
two-way CIR estimate is not accurate and the first peak will
lead to an erroneous distance estimate.

In addition to one-way and two-way MUSIC estimation,
the GA two-way MUSIC is added to the comparison to
demonstrate the other two drawbacks without including the
effect of an incorrect number of CIR paths estimation. Hence,
by comparing the GA two-way MUSIC estimate of the CIR
and one-wayMUSIC estimation, we observe twomain differ-
ences. First, the width of each detected peak is much wider
than the width of those peaks in one-way estimation. This

FIGURE 2. One-way vs. two-way ideal CIR and their MUSIC estimates.

increases the probability of blending the first and second
peaks together. Second, the first peak is the second weakest
peak compared to being the strongest in one-way estima-
tion. This is analogous to transforming the LoS scenario
to a non-LoS one where the first path is not the strongest.
These two problems might not be very significant here in this
relaxed scenario where the channel paths are well separated
and the bandwidth is sufficiently large. However, in scenarios
where the channel paths are closer or the bandwidth is more
limited, the first peak can be indistinguishable from the sec-
ond one.

The reduction of the first channel tap power can be demon-
strated mathematically by considering a simple 2-tap channel
model. Denoting the one-way channel taps by h0 and h1, then
the equivalent two-way 3 channel taps will be h20, 2h0h1, and
h21. Hence, the first-to-second tap power ratio for both the
one-way and two-way channels are given by(

P0
P1

)
1way

=
|h0|2

|h1|2
, (19)(

P0
P1

)
2way

=
|h20|

2

4|h0h1|2
=

|h0|2

4|h1|2
, (20)

⇒

(
P0
P1

)
2way

=
1
4

(
P0
P1

)
1way

. (21)

This result demonstrates that correctly distinguishing the first
tap from the second one is much more challenging while
operating with two-way channels. In addition, the result in
(21) holds regardless of the number of channel taps since the
first and second taps of the two-way channel will always be
h20, and 2h0h1, respectively. Moreover, the first-to-second tap
power is most important since it affects the first tap location
estimation and, in turn, ranging accuracy.

C. ONE-WAY VS TWO-WAY RANGING ACCURACY
After gaining some insights on how MUSIC operates with
two-way channel measurements, it is also important to com-
pare the overall ranging accuracy using one-way and two-way
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FIGURE 3. One-way vs. two-way distance estimation error CDF curves.

channels under practical operating conditions. To do this,
we developed an 802.11ax WiFi simulator which mod-
els the PLL phase mismatches in addition to the WiFi
preamble transmission and channel estimation process. The
CFR estimates computed by the simulator are fed to the
MUSIC algorithm that also incorporates the spectral smooth-
ing method. For this one-way versus two-way comparison,
we use 8 of the 12 20-MHz channels available in the UNII-
2c sub-band of the 5GHz WiFi frequency band [23]. The
estimated CFR at the 8 20-MHz channels are then stitched
together to form a unified CFR estimate with 160 MHz total
bandwidth. This is done once using the two-way approach
where all phase errors are mitigated, and a second time using
the one-way approach where phase mismatches are not miti-
gated. In addition, we compare with the ideal case of 1-way
without phase mismatches which represents a performance
upper bound added to understand howmuch ranging accuracy
we lose when using the two-way approach. The operating
SNR is set to 5 dB and we use the TGax Type-B channel
model described in [24].

The distance estimation error cumulative distribution func-
tion (CDF) curves for the three approaches are plotted in
Figure 3, where the performance gap can be clearly seen
between the ideal one-way with no phase mismatches and
the two-way curves. This corroborates our earlier discussion
about the four drawbacks of two-way operation. On the other
hand, one-way operation which suffers from uncompensated
phase mismatches achieves the worst performance and is not
considered any further in this paper.

IV. TWO-WAY TO ONE-WAY CHANNEL
TRANSFORMATION
As we demonstrated in the previous section, despite the
benefits of two-way channel measurements in mitigating
phase mismatches, ranging accuracy is degraded signifi-
cantly compared to ideal one-way channels. Therefore, in this
section, we propose a novel scheme to estimate the one-way
channel from the two-way channel. Our scheme operates on

Algorithm 1 2-Way to 1-Way Channel Transformation

1: Input: ˆ̃H → (N tot
SC × 1), ĤA → (N ch

SC × B)

2: Output: Ĥ → (N tot
SC × 1), ˆ̂H → (N tot

SC × 1)
3: initialization:
4: signFlipMarker = zeros(N tot

SC )
5: φTh = π/2
6: procedure

7: Hsqrt =

√
ˆ̃H

8:
(
|Hsqrt | =

√
|
ˆ̃H |

)
9:

(̸
Hsqrt = ̸ ˆ̃H/2

)
10: φ = ̸ (Hsqrt )
11: Ĥ = Hsqrt
12: for iSC = 1 : N tot

SC − 1 do
13: if |φiSC − φiSC−1

| > φTh then
14: signFlipMarker(iSC ) = 1
15: end if
16: end for
17: for iSC = 1 : N tot

SC − 1 do
18: if signFlipMarker(iSC ) == 1 then
19: Ĥ [iSC : end] = −Ĥ [iSC : end]
20: end if
21: end for
22:

ˆ̂H = df _det_corr(Ĥ , ĤA)
23: end procedure
24: return Ĥ , ˆ̂H

the two-way channel measurements after mitigating phase
mismatches that hinder CSI stitching. Hence, there is no
compromise on the quality of CSI stitching because of our
proposed two-way to one-way channel transformation.

A. RESOLVING THE SIGN AMBIGUITY
For two-way to one-way channel transformation, a simple
idea that first comes to mind is to take the square root of
the two-way CFR. However, taking the square root results in
a sign ambiguity. More specifically, taking the square root
of a complex CFR sample transforms its phase from ranging
between −π to π to prematurely wrapping around between
−
π
2 to π

2 . This distorts the CFR and renders it useless for
ranging because of the extra phase transitions taking place
every time the phase hits −

π
2 or π2 .

The first step in our two-way to one-way channel transfor-
mation is to deal with the limited phase range resulting from
taking the square root. Hence, in Algorithm 1, we provide
our pseudo code to unwrap the phase and return it to its
natural−π to π range. Our idea is to approach the square root
channel in a differential manner, where we compare the phase
of each sample with that of the preceding sample. Whenever
we measure a phase change that is greater than π

2 , a phase
wrapping point is detected and a negative sign should be
applied starting from this sample to the end of the CFR vector.
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Algorithm 2 df _det_corr(Ĥ , ĤA) Funcion Logic

1: Input: Ĥ→ (N tot
SC × 1), ĤA → (N ch

SC × B)

2: Output: ˆ̂H → (N tot
SC × 1) (The enhanced version)

3: initialization:
4:

ˆ̂H = Ĥ
5: deepFadeTh = 0.20
6: Ndf = 0 (Number of detected deep fades)
7: dfGroups = φ (Deep fade indices grouped)
8: procedure
9: Hsqrt = Hsqrt /mean(|Hsqrt |)

10: dfScIndices = |Hsqrt | < deepFadeTh
11: [dfScGroups,Ndf ] = group(dfScIndices)
12: (Group adjacent indices into groups)
13:

14: for idf = 1 : Ndf do
15: if dfScGroups{idf } /∈ {gapScIndices} then
16: i = dfScGroups{idf } ∈ {chanistart : chaniend }

17: ψ = ̸ ( ˆ̂H [chanistart : chaniend ])
18: −̸ (ĤA[:, i])
19: ψ = ψ − ψ[0]
20: ifilpSign = 1ψ > π/2

21:
ˆ̂H [ifilpSign] = −

ˆ̂H [ifilpSign]
22: else
23: ψ = ̸

(
movAvg(ĤA,LFIR)

)
24: ψ ′

= 1ψ

25: i = dfScGroups{idf } ∈ {gapScIndices}
26: if ψ ′i[end] > 0 or ψ ′i+1[0] > 0 then
27: if ̸ ( ˆ̂H [chaniend ]) > ̸ ( ˆ̂H [chani+1

start ])then

28:
ˆ̂H [chani+1

start : end] = −
ˆ̂H [chani+1

start : end]
29: end if
30: else
31: if ̸ ( ˆ̂H [chaniend ]) < ̸ ( ˆ̂H [chani+1

start ])then

32:
ˆ̂H [chani+1

start : end] = −
ˆ̂H [chani+1

start : end]
33: end if
34: end if
35: end if
36: end for
37: return ˆ̂H

We chose the phase jump threshold to be π
2 as it represents

the midpoint in any −
π
2 to π

2 transition.
We emphasize that if a negative sign is applied once a phase

wrap is detected, it will have a vertical shifting effect on the
remaining CFR samples. This ruins the phase wrap detection
criterion by invalidating the threshold value applied for detec-
tion. Therefore, the phase wrap detection and correction steps
have to be separated as shown in Algorithm 1. The algorithm
ends by calling Alg. 2 which provides some enhancements to
be discussed in the next subsection.

B. DEEP FADE CASES
While testing our proposed phase unwrapping scheme,
we noticed that its accuracy decreases under severe multipath

FIGURE 4. Channel phase response at deep fade frequencies.

conditions due to more frequent deep fades. The significance
of these deep fades is that they are typically accompanied by
sharp transitions in the channel phase response. These phase
transitions can confuse our phase unwrapping algorithm since
it operates by detecting transitions to undo them. In addition,
at deep fade frequencies the CFR magnitude is so weak
and the CFR estimates are very noisy making the problem
even worse. In Appendix B, we demonstrate the relationship
between the CFR fading magnitude and its equivalent phase
response sudden changes.

The effect of deep fades on the estimated channel phase
response is illustrated in Figure 4. As depicted in the figure,
the steep drop of the ideal phase response taking place
around the deep fade went undetected in the unwrapped phase
response. This took place because the transition was too steep
and therefore, with [−π

2 ,
π
2 ] phase wrapping it appeared as if

the phase continued decreasing in an almost linear fashion.
It can also be seen from the figure how degraded the phase
estimate quality is around the deep fading frequency. The
end result of these inaccuracies is having a phase mismatch
of π between the ideal and estimated phases in all samples
succeeding the fading frequency. In some other cases, phase
transitions around fading frequencies can be misinterpreted
by the unwrapping algorithm and get mistakenly modified.
This takes place since the unwrapping algorithm cannot dif-
ferentiate between real phase transitions due to deep fades
and phase artifacts due to the square root operation.

C. ALGORITHM ENHANCEMENTS ADDRESSING DEEP
FADE PROBLEMS
The solution we propose to deal with the deep fade problem is
based on the availability of the initial one-wayCFR estimates.
Although this initial one-way CFR estimate suffers from
phase transitions between channel estimates over different
WiFi frequency channels (due to PLL phase mismatches)
and linear phase caused by STO, it can still be beneficial in
detecting and correcting the deep fade problem effects. Our
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idea is to locate the deep fade frequency and match it with the
overlapping WiFi channel. Since the initial one-way CFR is
coherent within each WiFi channel, it can be used as a phase
correction reference for the unwrapped phase. Nevertheless,
due to the linear phase imposed on the one-way CFR because
of STO, it cannot be directly used as a reference, but we solve
this problem by adding a differentiation step to get rid of that
linear function. The unwrapped phases of one-way CFR ĤA,
and the one-way CFR estimate Ĥ from Alg. 1, respectively,
are given by

ψĤA
[k] = f [k] + τ0k + τ̃Ak + n1, (22)

ψĤ [k] = f [k] + τ0k + e[k] + n2, (23)

where f [k] is a phase function depending on the channel
structure, e[k] is the phase error signal representing the erro-
neous phase transitions of value π , and n1 and n2 are two
noise terms. The term τ0k in both equations represents the
linear phase due to propagation delay, while τ̃A represents
the linear phase due to STO. By calculating the difference ψ
between the two phases in (22) and (23) and then calculating
the difference 1ψ , we can eliminate the STO linear phase
and locate the frequency bins where phase errors of π took
place. The steps of the proposed phase correction technique
are listed in Algorithm 2.

Unfortunately, the WiFi channel structure in the 5 GHz
band might render this proposed solution inapplicable in
some cases because of the non-overlapping nature of
the 5 GHz band WiFi channels which results in some CFR
gaps between each WiFi channel and the next one. Conse-
quently, whenever a deep fade lies within one of these gaps,
the phase correction algorithm cannot be applied. Therefore,
in Algorithm 2, we first identify the location of the deep fades.
If they are located within one of the available CFR ranges,
then we apply our idea of using one-way CFR as a correction
reference. However, phase correction when deep fades take
place within CFR gaps is much more challenging due to the
lack of any coherent reference.

To deal with this second challenging scenario, we propose
an approach based on phase slope estimation followed by
applying the logic in Algorithm 2. Our phase slope-based
technique is illustrated in Figures 5, and 6, where we differ-
entiate between two cases: deep fades resulting from zeros
inside or outside the unit circle. As depicted in the Figures,
the first case exhibits a phase increase, while we observe a
phase decrease in the second case. Therefore, by calculating
the derivative of the estimated CFR phase and determining
its sign around the gap, we can predict the phase trend within
the gap which aids us in determining the correct phase.
In Figure 5, it is clear that the phase slope is positive right
before and after the gap. Therefore, we decide that the phase
slope is positive within the gap. Consequently, observing any
phase values that belong to the ‘‘Mismatched Phase’’ group
shown in the figure will imply a phase error that should be
corrected. Similarly, negative phase slopes before and after
the gap can guide us to correct the phase as shown in Figure 6.

FIGURE 5. Phase errors of value π caused by channel deep fades taking
place within CFR gaps when the CIR zeros are inside the unit circle.

FIGURE 6. Phase errors of value π caused by channel deep fades taking
place within CFR gaps when the CIR zeros are outside the unit circle.

D. SIGNIFICANCE OF THE DEEP FADE PROBLEM
As shown in Alg. 2, we propose two techniques to deal with
CFR deep fades based on their locations. For deep fades
within the available CFR frequencies, we follow the simple
approach of comparing with one-way CFR. On the other
hand, the other case where deep fades take place within CFR
gaps is more challenging. To justify the extra processing
needed for the second case, we calculate its frequency of
occurrence. Therefore, we derive the probability of its occur-
rence in different channel environments. We consider three
channelmodels that belong to the TGax channelmodel family
described in the IEEE 802.11 standard documents [24]. The
description of these channel models is in Table 3.

After deciding on the channel models of interest and based
on our knowledge of the CFR gaps locations, we can now
calculate the probability of overlap betweenCFR gaps and the
channel deep fades. Depending on the total CFR bandwidth,
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the number of gaps and the total number of sub-carriers
will change. In all of our investigated scenarios, we assume
transmission of a number of 20MHzWiFi channels that are to
be stitched later. For instance, by sending 10 of these 20MHz
channels, we have a total bandwidth of 200 MHz, 2560 sub-
carriers (including gaps), and 9 CFR gaps each consisting
of 11 sub-carriers. Therefore, the probabilities of the first,
second, and the nth deep fade to overlap with a CFR gap are
given by

P(1stDF ∩ Gap) =
NG
SC (B− 1)

N tot
SCB

, (24)

P(2ndDF ∩ Gap|1stDF ∩ Gap = φ) =
NG
SC (B− 1)

N tot
SCB− S

, (25)

P
(
nthDF ∩ Gap|

(
1stDF ∩ Gap = φ

)
∩ . . .

∩
(
(n− 1)thDF ∩ Gap = φ

))
=

NG
SC (B− 1)

N tot
SCB− (n− 1)S

,

(26)

where, NG
SC , N

ch
SC , and B represent the number of sub-carriers

per CFR gap, the number of sub-carriers per channel, and
the number of channels, respectively. These three parameters
are system configuration parameters, while S is an algorithm
parameter and represents the assumed minimum separation
between consecutive deep fades in sub-carriers. Denoting
the probabilities in (24), (25), and (26) by p1, p2, and pn,
respectively, then the probability of at least one deep fade to
overlap with a CFR gap can be expressed as follows

P(anyDF ∩ Gap) =

NDF∑
n=1

pn, (27)

where NDF is the average total number of deep fades for a
specific channel model. Simulations were run for the three
TGax channel models under study and we found that the
average total number of deep fades for models Type-B, Type-
C, and Type-D is 3.25, 5.42, and 6.94, respectively, in a total
bandwidth of 240 MHz. By rounding these numbers to the
nearest integer and substituting back in (27), we get probabil-
ities of having an overlap between at least one deep fade and
a gap of 0.12, 0.2, and 0.29 for Type-B, Type-C, and Type-D
TGax channel models, respectively. This analysis confirms
the importance of executing the additional algorithm steps
that deal with cases where deep fades are located within CFR
gaps.

E. MULTIPLE SNAPSHOTS FOR SNR ENHANCEMENT
The success of our proposed schemes is dependent on the
quality of the estimated CFR. The schemes involve phase
comparisons with finely-tuned thresholds, unwrapped chan-
nel phase response comparison with the estimated one-way
channel phase response which acts as a reference, and also
phase response slope estimation. These are all intricate opera-
tions whose accuracy depends on the phase response estimate
quality. The lower the SNR operating level is, the lower the

TABLE 3. TGax channel models description [24].

FIGURE 7. Ranging algorithm steps.

quality of these phase estimates will be and therefore, the
worse the proposed schemes will perform.

To address this challenge, we propose an extension of our
scheme that utilizes multiple snapshots. Since this challenge
is limited to low operating SNR scenarios, we can mitigate it
by sending multiple HE-LTF fields within the WiFi PPDU so
that channel estimation can be done multiple times yielding
multiple CFR estimates that can be averaged to boost the
SNR level. This approach is fully compatible with the WiFi
802.11ax standard which allows up to 8 LTF fields in the HE
portion of the preamble [25], [26]. In Section IV, we will
present performance results for a low operating SNR scenario
where we exploit multiple HE-LTF fields to boost the SNR
and enhance the proposed schemes performance levels.

V. COMPLEXITY ANALYSIS
In this section, we study the computational complexity of our
proposed scheme in its two versions. The entire WiFi ranging
scheme is broken down into steps as depicted in the block
diagram in Figure 7. Steps 1 and 2 represent the first version
of our proposed scheme for one-way CFR estimation from
two-way CFR (Alg. 1). Adding the third step, we get the
second and more advanced version of the proposed scheme
(Alg. 1 plus Alg. 2). Steps 4 to 12 represent the smoothed
MUSIC CSI-based ranging technique, which can be applied
directly to the input two-way CFR estimate or to any of the
one-way CFR estimates we get at the outputs of Step 2 and 3.
The detailed explanation of the MUSIC Distance Estimation
Block operation (steps 5 to 12) was provided in Section II.
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To assess the added computational complexity of our pro-
posed schemes, we calculate the FLoating-point OPeration
(FLOP) count of each block. Although the MUSIC distance
estimation steps are common among all investigated schemes,
we still include it in our FLOP count. To get a FLOP count
estimate for any algorithm, some assumptions must be made
about the basic arithmetic operations cost. It is assumed
in [27] that addition, subtraction, multiplication, division, and
square-root can all be counted as one FLOP. The justification
provided for equating the division and square-root FLOP
count to that of addition, subtraction, and multiplication
despite of their extra complexity, is their rarity. However, our
proposed schemes heavily utilize the square-root operation
and such assumption does not hold. Moreover, in our pro-
posed schemes, we convert the CFR samples from Cartesian
to polar forms and back which requires estimating the com-
putational complexity of trignometric functions.

In our complexity analysis, we rely on the bench-marking
study in [28]. Flop count values of 1, 1, 1, 4, 6, 14, 14,
and 23 will be used for the addition, subtraction, multi-
plication, division, square-root, sin(.), cos(.), and arctan(.)
operations, respectively. In addition, to simplify the com-
plexity analysis for algorithms that involve complex number
arithmetic operations, it is suggested in [29] to use complex
FLOP counts instead of breaking them into real FLOP counts
which is the approach we will follow. We emphasize that any
computational complexity assessment should be viewed as
an approximate measure of complexity and interpreted in a
relative sense when comparing different algorithms due to
varying processor architectures and different memory han-
dling techniques [30].

In Table 4, we summarize the total FLOP counts of the
main ranging algorithm steps. The first entry shows the com-
bined FLOP count of Steps 1 and 2 shown in Figure 7.
Similarly, the second entry of the table shows the FLOP count
of Step 3 which represents the algorithms enhancements
of our proposed scheme for deep fade scenarios. It can be
seen that Step 3 entails more complexity than Steps 1 and
2 combined as it is of the orderO(NSC 2) compared toO(NSC )
for Steps 1 and 2. However, this quadratic complexity level
of the proposed scheme will diminish in comparison to the
complexity of Steps 4 to 12 that represent the conventional
MUSIC distance estimation algorithm. It is also worth noting
that the complexity of Steps 4 to 12 is dominated by that
of Steps 6, 7, and 10 which involve costly complex matrix
multiplications and EVD.1As shown in the table, Steps 4 to
12 have cubic complexity of O(N tot

SC
3), where NSC and N tot

SC
represent the total number of sub-carriers before and after
adding the gap sub-carriers, respectively. The two quantities
are proportional and therefore, the change of variables will
not affect the calculated complexity orders

N tot
SC = NSC + 11(B− 1). (28)

1The number of FLOPs used for the EVD step takes into consideration the
Hermitian structure of the estimated CFR covariance matrix.

TABLE 4. Complex FLOP count for the most significant Algorithm steps.

FIGURE 8. Ranging algorithm complexity with and without our proposed
schemes.

The number 11 above represents the fixed guard band size
between any two consecutive 20-MHz channels in the 5 GHz
WiFi band, while B is the number of 20-MHz channels used.

This is further clarified by referring to Figure 8 which
compares the total FLOP counts for the ranging algorithm
with and without utilizing our proposed scheme. As it can
be seen from the figure, there is no noticeable difference
between the two curves which highlights the fact that the
added complexity of our proposed algorithms is negligible
compared to the MUSIC distance estimation algorithm com-
plexity. Hence, performance gains reported in the next section
are achieved at negligible additional complexity.

VI. NUMERICAL RESULTS
In this section, we split our performance results into to two
parts: simulation-based results and Universal Software Radio
Peripheral (USRP) testbed results. However, before present-
ing the performance results, the following remarks related to
practical issues regarding Alg. 1 and 2 are in order.

• The Deep Fade Magnitude Threshold: First, it is
important to emphasize that the CFR estimate is normal-
ized with respect to its average magnitude and not the

2The variables γ , κ , LFIR, µ and Ms represent the size of deep fade
regions in sub-carriers, the ratio between the number of sub-carriers and the
number of deep fades taking place in that range, the length of the moving
average filter in Alg. 2, the reciprocal of the distance calculation resolution
in centimeters, and the number of estimated channel taps, respectively.

VOLUME 11, 2023 70033



S. Helwa et al.: Bridging the Performance Gap Between Two-Way and One-Way CSI

maximum. We found this choice to enhance robustness
since the maximum can dramatically change from one
channel realization to another. Second, the deep fade
magnitude threshold used in Algorithm 2 was chosen
to be 20% of the average CFR magnitude. This value
was chosen to achieve a good compromise between
deep fades miss detection and false alarms. In our prob-
lem, both are harmful to the ranging performance. Miss
detection simply means that phase transitions due to
deep fades will be overlooked causing phase errors.
On the other hand, false alarms mean that the correct
phase will be mistakenly modified which will leave us
with an erroneous phase response as well.

• Phase Slope Estimation: In Algorithm 2, there is a
phase slope estimation step where the estimated slope
is used to extrapolate the phase behavior within CFR
gaps. The accuracy of this phase slope estimate is highly
dependent on the CFR estimate quality. Therefore,
we apply moving average smoothing to the estimated
CFR to eliminate any high frequency variations that
might alter slope estimation around the gaps since
slope estimation is vulnerable to high frequency small
changes.

• CFR Interpolation: As highlighted in Section IV-C,
the 5 GHz WiFi channel structure leaves us with some
CFR gaps after CFR stitching. These gaps have to be
filled before the CFR is passed to the MUSIC distance
estimation algorithm. In our WiFi simulator, we apply
cubic spline interpolation to fill in the gaps after all the
phase correction steps are completed [31].

A. COMPUTER SIMULATION RESULTS
To evaluate the overall WiFi ranging performance, we use
distance estimation error CDF as our metric. In addition,
we report the median error value and the percentage of
time a 50 cm of distance error or less is achieved. Fig-
ures 9, 10, and 11 show these CDF curves for the three
TGax channel models B, C, and D, respectively. The figures
compare four approaches: square-root phase unwrapping,
square-root phase unwrapping with deep fade detection and
correction, in addition to the plain two-way and ideal one-way
approaches. Note that for the ideal one-way, the PLL and all
other phase mismatches are disabled to coherently stitch indi-
vidual CFR estimates collected from differentWiFi channels.
All of the results presented in this section are generated for a
total bandwidth of 240 MHz unless stated otherwise.

It can be seen from Figure 9 that the two proposed schemes
for square-root phase processing offer a significant gain over
the plain two-way approach. For this scenario, our enhanced
proposed algorithm achieves almost identical performance to
that of the ideal one-way approach. The median error values
achieved for the ideal one-way, square-root phase unwrap-
ping with deep fade detection and correction, square-root
phase unwrapping, and plain two-way approaches are 13 cm,
14 cm, 16 cm, and 30 cm, respectively. In addition, 50 cm of

TABLE 5. Ranging performance for three TGax channel model types.

distance error or less was achieved 85%, 83%, 78%, and 63%
of the time by the four approaches, respectively.

Switching to the TGax Type-C results presented in
Figure 10, it can be seen that the performance of our proposed
schemes is not as close to the ideal one-way approach as in the
previous case of the TGax Type-B. However, ranging accu-
racy gains over the plain two-way approach are still evident
and even more significant than in the previous case. In this
scenario, 19 cm, 23 cm, 31 cm, and 59 cmmedian errors were
achieved by the four schemes, respectively, while the 50 cm
mark was achieved 76%, 70%, 61%, and 45% of the time,
respectively. Similarly, as depicted in Figure 11, we observe
bigger gaps between the two proposed schemes and the ideal
one-way approach while still achieving significant gains over
the two-way approach. Finally, for this scenario, median error
values of 16 cm, 25 cm, 41 cm, and 84 cm were achieved by
the four approaches, respectively, while 50 cm of error or less
was achieved 82%, 66%, 54%, and 41% of the time, respec-
tively. The numerical results for these three channel model
scenarios are summarized in Table 5. The key conclusion
from these results is the robustness of the ranging accuracy
gains of our proposed schemes over plain 2-way transmission
across different channel models.

It is also interesting to observe how the one-way and two-
way performances vary across different channel models with
varying multipath severity. Specifically, for the ideal one-
way approach, the ranging accuracy degradation from the
Type-B to Type-C channel models, then to Type-D is much
less significant than the degradation experienced by the plain
two-way approach. This again corroborates the assertions we
made in Section III about the sensitivity of the plain two-way
approach to multipath.

In Figure 12, we showcase the resilience of our proposed
schemes to low operating SNR scenarios. Here, we com-
pare 4 sets of CDF curves, one representing each of the
4 approaches under test. Nevertheless, this time for each
approach, we consider a CFR estimate obtained by averag-
ing 1, 2, 4, and 8 CFR estimates obtained from multiple
HE-LTF fields. For the one-way and two-way approaches,
performance did not change using SNR-enhanced CFR
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FIGURE 9. Distance estimation error CDF curve for TGax Type-B channel
model.

FIGURE 10. Distance estimation error CDF curve for TGax Type-C channel
model.

estimates. This suggests that the assumed SNR of 5 dB is high
enough for ranging accuracy to be already multipath limited
and not noise limited. On the other hand, the ranging accuracy
gain of our proposed schemes from using SNR-enhanced
CFR estimates is evident. This gain is due to the enhanced
estimated channel phase response quality which enables us
to execute the proposed algorithms steps with better accuracy
leading to significant ranging accuracy gains as mentioned in
Subsection IV-E and seen in Figure 12. It is also worth men-
tioning that if multiple CFR estimates are not used to boost
the SNR, then the first version of our proposed scheme (only
square-root and phase unwrapping) will have a crossover with
the two-way approach as seen in the figure. This is due to
accuracy effects low SNR operation have on the proposed
schemes that are mitigated using multiple CFR estimates.

Finally, we investigate the ranging accuracy gains of
our proposed scheme with total bandwidth. In addition
to the 240 MHz case studied earlier, we consider a total

FIGURE 11. Distance estimation error CDF curve for TGax Type-D channel
model.

FIGURE 12. Distance estimation error CDF curves for TGax Type-B channel
model operating at SNR = 5 dB and using multiple messages.

bandwidth of 80 MHz and 160 MHz and the resulting CDF
curves are shown in Figure 13. To simplify the presentation,
only the enhanced version of our proposed algorithm is com-
pared to the plain two-way and ideal one-way approaches.
As depicted in the figure, the performance gap between our
proposed scheme and ideal one-way is negligible for both
bandwidths. The numerical results for these cases are sum-
marized in Table 6.

B. USRP TESTBED RESULTS
To demonstrate the performance enhancements our proposed
schemes can achieve in practical scenarios, we built a USRP
testbed that mimics 802.11ax Wi-Fi operation. This wire-
less system consists of two USRP devices acting as node
A and B (initiator and reflector). Each device is set up
with external amplifiers, switches, and calibrations required
for successful Wi-Fi transmission and reception to obtain
two-way CSI measurements for ranging. No external time
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FIGURE 13. Distance estimation error CDF curve for TGax Type-B channel
model at BW = 80 MHz and 160 MHz.

TABLE 6. Ranging performance for different total bandwidth.

FIGURE 14. Distance estimation error CDF curves for WiFi testbed data
collected in LoS scenarios.

or frequency synchronization is employed. With this testbed,
measurements are taken across 12 20-MHz channels in the
UNII-2c sub-band, and individual antenna pair measurements
are utilized for evaluation.

All of our laboratory tests are performed in a room
full of PCs, benches, and other miscellaneous hardware

FIGURE 15. Distance estimation error CDF curves for WiFi testbed data
collected in Non-LoS scenarios.

TABLE 7. Ranging performance for WiFi testbed data.

acting as signal scatterers and representing a multipath
rich environment. The testbed data was collected in two
main communication scenarios: i) Line-of-Sight (LoS), and
ii) mainly Non-LoS. The distance estimation error CDF
curves for these two scenarios are depicted in Figures 14 and
15, respectively. The results obtained for the two scenarios
highly resemble the simulated results we obtained for the
TGax Type-B and Type-D cases. This highlights the accuracy
of our simulationmodels and the accuracy of our assumptions
compared to realistic scenarios.

As seen in Figure 14 which represents the LoS scenario,
both versions of our proposed algorithm achieve a signifi-
cant gain over two-way operation. The median distance error
achieved is only 13 cm while error values smaller than or
equal to 50 cm were achieved 83% of the time. In addition,
the 90th percentile is achieved at a sub-meter error level.
On the other hand, the non-LoS data results depicted in
Figure 15 which shows, as expected, that the overall perfor-
mance is not as good as that achieved in a LoS scenario.
Nevertheless, our proposed schemes still exhibit a perfor-
mance gain that is even higher than that achieved in the
LoS case since there is more room for improvement. In this
non-LoS case, the median error achieved is 19 cm and the
percentage at which error values smaller than or equal to
50 cm were achieved dropped to 59%. It is important to
mention that the ideal one-way performance is not shown
in any of the testbed results since it cannot be practically
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achieved in the testbed and was only added to the simulation
results for comparison purposes (as a performance upper-
bound). The testbed results achieved for our two performance
metrics are summarized in Table 7.

VII. CONCLUSION
In this paper, we considered a practical WiFi ranging
scenario, where large bandwidth is crucial for achieving
decimeter-level ranging accuracy and is realized using CFR
stitching. This, in turn, requires mitigation of PLL phase
mismatches from one WiFi channel to the next, in addition
to eliminating STO both of which can be achieved using two-
way ranging. On the other hand, we also discussed in detail
the ranging accuracy degradation of the two-way approach
compared to the ideal one-way approach due to doubling
the multipath delay spread. Consequently, we proposed two
novel schemes addressing the two-way ranging accuracy
degradation. We applied the square-root to transform two-
way CFR measurements to their one-way form followed by
processing the phase errors at two levels. The first level dealt
with immature phase wrapping and yielded our first scheme
while the second level operates on top of the first one to
further enhance the performance by detecting and correcting
any phase errors that accompany deep channel fades.

The two proposed phase processing techniques were
shown to achieve significant performance gains over the
plain two-way approach by means of simulated data as
well as a USRP-based WiFi ranging testbed. This gain was
demonstrated under different channel models (with varying
multipath severity), SNR levels, and total bandwidth values.
For all of the scenarios tested using simulations, our proposed
algorithm achieved distance estimation errors that are less
than 10 cm higher than those achieved by the ideal one-way
performance bound. In some cases, differences of as low as
1 cm of median distance error were achieved. Additionally,
the WiFi testbed data confirms the gains achieved by our
proposed schemes over two-way operation. Not only does
our proposed algorithm achieve high ranging accuracy, but
its added complexity is negligible compared to the baseline
MUSIC ranging.

APPENDIX A
SECOND ORDER MOMENT OF A COMPLEX SQUARED RV
We start by considering the complex number z = x + jy,
where z ∼ CN (0, σ 2

z ). It follows that x and y ∼ N (0, σ 2
z /2),

where they are iid. Now assume that the Random Variable
(RV) q = z2 = x2 − y2 + j2xy. It is required to calculate the
first and second moments of the RV q. The expression for the
first moment is given by

E[q] = E[x2] − E[y2] + j2E[xy] = 0, (29)

because x and y are independent with zero mean, andE[x2] =

E[y2]. The second-order moment expression can be derived

as follows

E[qq∗] = E[z2z2∗
],

= E[x4] + 2E[x2]E[y2] + E[y4]. (30)

It is well-known that the fourth-ordermoment of a real normal
RV E[x4] = 3σ 4

x [32]. In our case, σ 2
x = σ 2

z /2 and therefore,

E[x4] =
3σ 4z
4 . We use this result to substitute back in (30) to

get

E[qq∗] = 2σ 2
z . (31)

This result is directly applied to the SNR expression deriva-
tion in (17).

APPENDIX B
PHASE RESPONSE AROUND DEEP FADE FREQUENCIES
Wireless multipath channels can be accurately modeled as
finite impulse response (FIR) filters. The connection between
the channel phase variations and deep fade locations can be
easily understood by examining the zeros locations of these
FIR filters. To understand the phase behavior around the
filter’s zeros, we consider a 2-tap FIR filter having a pair of
complex-conjugate zeros at π and −π . The filter response is
given by

H (z) = 1 + a2z−2, (32)

where a2 is the second tap used to control the location of the
filter zeros on the imaginary axis. In our analysis, we will
compare the filter response for two sets of zeros locations.
One set includes locations inside the unit circle and the other
including locations outside it. Within each set we will vary
the closeness of the filter zero to the unit circle to see how it
affects the phase response behavior for both cases.

For zero locations inside the unit circle, we use a value of
a2 = a, while for the outside locations we use a2 = 2 − a
to ensure that for every value of a the two locations are at
the same distance from the unit circle and will affect the
filter magnitude response equally at the frequency of the
zero. The value of the parameter a is varied in the range
[0.5, 1]. By varying the value of a in this range and calculating
equivalent values of a2, we get the filter phase responses
depicted in Figure 16.

It can be seen in the figure that the biggest change in
the filter phase response values take place around the filter
zeros. Depending on whether those zeros are located inside or
outside the unit circle, the phase response will either exhibit
positive or negative phase transitions, respectively. Also, the
closer the filter zeros are to the unit circle, the sharper their
equivalent phase transitions will be. Recall that the closer a
filter zero to the unit circle is, the deeper the fade will be.

Maximum phase changes taking place around the filter
zeros is a behavior that can be mathematically analyzed as
well. For a generic value of the filter coefficient a2, the filter
frequency response is given by [33]

H (ejω) = 1 + a2e−j2ω,

= 1 + a2cos(2ω) − ja2sin(2ω), (33)
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FIGURE 16. FIR filter phase response for different zeros locations.

where ω is the digital angular frequency. Hence, the phase
response of this filter is given by

̸ H (ejω) = −tan−1 a2sin(2ω)
1 + a2cos(2ω)

. (34)

To demonstrate that maximum phase changes take place at
the frequencies of the zeros, the first and second derivatives
of the phase expression in (34) are derived to get

d ̸ H (ejω)
dω

=
2a2

(
a2 + cos(2ω)

)
1 + a22 + 2a2cos(2ω)

, (35)

d2 ̸ H (ejω)
dω2

=
4a2sin(2ω)(1 − a22)

(1 + a22)
2 + 4a2(1 + a22)cos(2ω) + 4a22cos

2(2ω)
.

(36)

Using (35) and (36), it can be easily shown that the maximum
phase slope takes place at ω = π,−π which are the angular
frequencies of the filter zeros. It can also be shown that values
of a2 that are closer to 1 will yield higher slope values and
hence sharper phase transitions as depicted in Figure 16.
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