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ABSTRACT Epilepsy is the unstable state caused by excessive discharge of brain cells. In more than
30 percent of epilepsy cases, seizures cannot be controlled with medication or surgery. Refractory epilepsy
seriously affects the health of patients and brings great economic burden to families. Therefore, this requires
an effective seizure classification and prediction method to reduce risk in epilepsy patients. Researchers
proposed machine learning or deep learning methods to predict seizures. However, automatic screening of
electrode channels and improvement of predictive accuracy remain a challenge. A multi-channel feature
fusion model CNN-Bi-LSTM. This method only requires simple preprocessing. CNN is responsible for
extracting spatial features, Bi-LSTM is responsible for extracting temporal features, and finally, two channel
weights are allocated through the attention mechanism to filter out the results of the more weighted electrode
channel output classification. The performance of themodel is tested on the CHB-MIT dataset, and the output
is divided into three categories, including normal, pre-seizure and mid-seizure. The ten-fold cross-validation
average accuracy is 94.83%, the precision is 94.84%, the recall is 94.84%, the F1-score is 94.83%, and the
MCC is 92.26% across CHB-MIT EEG. The ten-fold cross-validation average accuracy of UCI data set is
77.62%, the precision is 77.66%, the recall is 77.62%, the F1-score is 77.60%, and the MCC is 72.03%. The
results showed that this method is superior to existing methods and can predict the EEG signals of epilepsy
in advance. This work will be extended to design a removable epilepsy predictive device for real-time use.

INDEX TERMS Convolutional neural network (CNN), electroencephalogram (EEG), bi-directional long
short-term memory (Bi-LSTM), attention mechanism, epilepsy.

I. INTRODUCTION
According to the World Health Organization (WHO),
epilepsy is one of the most common neurological diseases
characterized by seizures and the second most common neu-
rological disease after stroke. It is an abnormal electrical
discharge of neurons in the brain affecting the health of
newborns and adults seriously [1]. Epilepsy sufferers are
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vulnerable to sudden and unexpected discharge of neurons
during which they are unable to protect themselves and are
prone to suffocation, injury even to death [2]. To date, the
disease has been treated mainly through drugs and surgery.
There is no cure or anticonvulsant therapy which can be
completely effective for all types of epilepsy [3]. Therefore,
early detection and timely treatment of epilepsy is of great
significance.

At present, the most commonly used method to diag-
nose epilepsy is to record brain voltage fluctuations through
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noninvasive electroencephalography (EEG) [4]. EEG can
identify ongoing brain activity based on voltage fluctua-
tions by placing multiple electrodes at different locations in
the brain [5], [6]. The pathogenesis of epilepsy is mainly
caused by abnormal discharge of neurons in the cerebral
cortex, which can be transmitted to other neurons andmuscles
through nerve fibers, resulting in clinical symptoms such
as muscle twitches. Pathological changes in brain activity
causing seizures can be identified by EEG recording [7].
In addition, EEG recording has high time resolution, and
the sampling rate ranges from hundreds to thousands of Hz,
which can ensure timely capture of seizures. Moreover, EEG
is non-invasive and economical, so EEG has been explored as
an effective biomarker and diagnostic tool [8], [9], [10]. But
neurologists have to examine EEG records for a long time
before they can finally tell a seizure from a normal EEG,
which takes a lot of time and effort. So it is important to
automatically detect epileptic seizures from EEG.

In the past few years, a great deal of research has been done
and a number of techniques have been developed to predict
seizures given the magnitude of the problem. If seizures were
identified and controlled in timely, 70% of epilepsy patients
would be able to lead almost normal lives [11]. Traditional
machine learning has been proposed for EEGprocessing [12],
[13]. In Rincon et al.’s work, EEG was classified by using a
linear classifier of generalized Gaussian distributive parame-
ter estimates [14]. Tiwari et al. extracted features using filter
bank common space pattern algorithms and then classified
signals using extreme gradient elevation (XG Boost) [15],
which performs well in low-dimensional data but has limi-
tations in high-dimensional data. Chen et al. proposed chaos
theory combining decision trees for seizure detection [16],
which tends to ignore the relevance of properties in data.
Tapani et al. proposed a new method for detecting neonatal
epilepsy by extracting non-stationary periodic features in the
time and frequency domains [17]. Moreover, deep learn-
ing epilepsy detection methods have advanced rapidly [18].
Hossain et al. used short-time Fourier transform to extract
time and frequency domain information and used convolution
neural networks (CNN) for feature extraction and classifica-
tion [19]. Mandhouj B et al. Combined CNNwith the spectral
spectrum to detect and classify epilepsy [20]. Deep learning
can avoid the limitations of manual design features com-
pared to traditional machine learning, automatically generate
effective features and enables better performance.

Despite advances in automated epilepsy testing, the exist-
ing solutions still have limitations. In fact, EEG signals are
nonlinear time series. The CNN-based method is good at
extracting local features. It has good feature extraction per-
formance for non-stationary and noisy signals [21], but there
are some difficulties in capturing the global relevance of time
series data. Long short-term memory (LSTM) is a variant of
a recursive neural network that is often used to deal with
nonlinear features of time series, such as EEG. It consid-
ers the long-term dependencies of time series but ignores
local spatial information. CNN and LSTM are considered

end-to-end models in most of the literature [22], [23], [24].
However, because not all brain regions produce abnormal
discharges, EEG signals in different pathways have different
manifestations. If an algorithm can be designed to screen for
EEG channels that best respond to epilepsy in patients, it will
not only reduce the computational and hardware costs of the
model but also improve the efficiency of epilepsy prediction.
Therefore, it is necessary to design an effective EEG channel
selection algorithm before completing the seizure prediction
task. At the same time, most researchers focus on the classi-
fication of epilepsy and normal EEG prediction, but there is
little research on the prediction of epilepsy.

Aiming at the existing problems, a multi-channel feature
fusionmodel CNN-Bi-LSTM is proposed in this paper for the
automatic detection of epilepsy. The CNN module extracts
local features, the Bi-LSTM module captures time-series
information features of the multi-channel EEG, and the two
modules are merged in parallel and stores these features into
flatten layer. Then all the features are merged into a fully
connected layer, and finally, the weight of the two-channel
features is selected through the attention-mechanismmodule.
The ability to predict fusion features is demonstrated by
performing epilepsy detection tasks on CHB-MIT datasets.
In summary, the main contributions and innovations of this
paper can be summarized as follows.

Firstly, the proposed novel multi-channel feature fusion
neural network provides a new way for researchers and
doctors to classify EEG signals. Compared with the single-
branch structure, the EEG classification accuracy is greatly
improved due to the different feature extraction of the input
signals.

Secondly, to make the most of the fusion feature informa-
tion, an attention-mechanismmodule is added after the fusion
of EEG features, weight each module’s extracted feature, and
filter out the information in important electrode channels,
thus solving the problem of classification accuracy decreased
due to information redundancy.

Thirdly, the epilepsy dataset is divided into three cate-
gories, including normal EEG, normal EEG seconds prior to
onset of epilepsy, and seconds prior to onset of epilepsy. The
result is very positive for the prediction and timely treatment
of epilepsy.

The organizational structure of this article is shown below.
The first section reviews previous work on epilepsy detec-
tion. The second section describes our proposed methods,
including datasets, data preprocessing, experimental models
and evaluation indicators. The third section focuses on the
experimental results. The last part is the conclusion.

II. MATERIALS AND METHODS
A. DATASET
The database used in this study is the open-source EEG
database from CHB-MIT [25], [26]. The records were col-
lected from 22 epileptic children using scalp electrodes,
with EEG data provided by the Massachusetts Institute of
Technology. This study included 5 males, ages 3-22 and
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FIGURE 1. CNN-Bi-LSTM multi-channel fusion model based on attention mechanism.

17 females, ages 1.5-19. All participants were asked to stop
treatment one week before data collection. The EEG signals
were sampled at 256 Hz, 16-bit resolution. Most files con-
tained 23 channels of EEG signals, in a few cases 24 or
26 channels. These records were made using the Interna-
tional 10-20 EEG Electrode Location and Naming System.
The start and end time of seizures are marked based on
expert judgment, and the number and duration of seizures
varies from subject to subject. To ensure the reliability of
the experiment and the balance of the sample, a dataset with
the same 23 EEG channels was selected and divided into
three categories. Neurologists can easily detect normal EEG
and epileptic seizures from the original signals. The third
category is the EEG signals a few milliseconds before the
seizure, which has a positive impact on preventing seizures
and taking measures to treat seizures. In this study, the EEG
signals of each patient were collected twice, each time for
5 seconds, and data that did not meet the time requirement
was also screened out. All these data sets were collected
together, and more than 40,000 data were obtained.An open
UCI epilepsy identification dataset are also used [27]. There
was a 23.6 second record of brain activity in each file. After
visual examination of the artifacts, such as muscle or eye
movements, the segments were selected and cut from a con-
tinuous multichannel EEG signal. The corresponding time
series was sampled at 4,097 data points. Each data point is an
EEG recorded value at a different point in time. Therefore,
there are 23 × 500 = 11,500 consecutive EEG samples,
each containing 178 data points lasting 1 second (column),
with the last column representing the label Y {1, 2, 3, 4, 5}.
The raw dataset has been pre-processed by the UCI, which
created the data in CSV file format. There are five status cate-
gories (a) Recording EEG signals when healthy subjects open
their eyes. (b) Recording EEG signals when healthy subjects
closed their eyes. (c) Recording healthy inter-hippocampal
EEG signals in epilepsy patients. (d) Recording intermit-
tent EEG signals at brain tumor sites in epilepsy patients.
(e) Recording EEG signals of epilepsy activity in epilepsy
patients.

B. DATA PRE-PROCESSING
In deep learning, the data was typically pre-normalized before
entering the network, clipping the data to a certain extent
to ensure that the data from different samples are of the
same order of magnitude, which can speed up training and
improve the generalization of the training model. To test the
superiority of our model and promote the implantability of
the brain-computer interface, raw EEG data was normalized
only by dividing the data for each sampling point by the
maximum value of the same electrode channel. In addi-
tion, since computer cannot understand non-digital data, data
labels Y {1, 2, 3, 4, 5} were converted to binary hot encoding
with 0, 1 combination. After pre-processing, the training and
test set can be divided and put into a deep learning model.

C. CNN-BI-LSTM MULTI-CHANNEL FUSION BASED ON
ATTENTION MECHANISM
In this paper, a CNN-Bi-LSTM model based on the
attention-mechanism is proposed for feature extraction, fea-
ture selection, and classification of epileptic EEG, as shown
in Figure 1. The feature extraction of proposed model is
composed of two channels. The normalized EEG signals with
hot-encoding labels are put into two channels simultaneously.
CNN with a ReLU activation function is used in channel 1 to
extract the spatial feature of EEG data, which can achieve
better accuracy with its excellent spatial feature extraction
ability. However, EEG data are often significantly correlated
in time dimensions. In order to make up for the shortage
of CNN, channel 2 uses Bi-LSTM which is responsible for
extracting the temporal features of the original data, because
Bi-LSTM is good at processing data with sequential char-
acteristics. Since the extracted feature size of each module
is different, there is a Flatten layer at the end of each mod-
ule that converts the dimensions of space-time features into
one dimension. Then, the extracted spatial-temporal features
are concatenated into a complete sequence. Considering the
importance of different feature, the concatenated feature is
put into the attention mechanism module and the weight of
the each feature is automatically fitted by using the point
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FIGURE 2. 1D CNN convolution process.

product. Finally, through two fully connected layers, three
classifications are obtained through Softmax function. Next,
the main modules in this model are described.

1) CONVOLUTIONAL NEURAL NETWORK (CNN)
Because the EEG signal of each person is unique, classi-
fying EEG information in different states is a challenging
task. The deep learning model including complex neural
networks has achieved excellent results in many applications,
such as image classification, face recognition, and speech
recognition. CNN can also be used to classify the status of
EEG signals effectively. Unlike traditional machine learning
algorithms, CNN does not need to design features manu-
ally. It simply uses the local sensory fields generated by
convolutions nuclei to automatically learn abstract features
from raw data to categorize, thus avoiding the loss of useful
information. CNN can extract different levels (low, medium
and high) of features from raw EEG data by using multiple
convolution and merge operations. In contrast to classical
frameworks, CNN typically has two separate steps, including
feature learning and classification, which it can learn in one
go through multiple layers of neural networks.

(1) Convolutional layer. The main purpose of the convolu-
tion layer is to extract features. Different types of features are
extracted from input data using many convolution cores. The
convolution process in this paper is shown in Figure 2.

Where, a is the EEG data,W1 · · · · · ·W32 is the convolution
kernel, m is the number of electrode channels, n is the maxi-
mum number of sampling points per channel and the output
vector is f .

(2) Activation layer. The activation function is used to
solve the problem of linear indivisibility. In the early days
of neural network development, the Sigmoid function was

FIGURE 3. LSTM and Bi-LSTM structure.

usedmore. However, the Sigmoid function tends to cause gra-
dient attenuation during back-propagation. Thus the ReLU
activation function is used in channel 1, which is shown in
Equation (1).

y =

{
0 x < 0
x x ≥ 0

(1)

When x < 0, the derivation equals to 0. When x ≥ 0, the
derivation equals to 1. It is possible to pass the gradient of y
to x in its entirety without causing the gradient to disappear.

(3) Flatten layer. The purpose of the flatten layer is to com-
press high-dimensional data into vectors for classification by
subsequent fully connected layers. The flatten layer follows
convolutional layer and before the attention-mechanism layer
and fully connected layer, which does not affect the size of the
batch.

2) BI-DIRECTIONAL LONG SHORT-TERM MEMORY
(BI-LSTM)
Although convoluted neural networks show great advantages
in feature extraction, they cannot retain the memory of pre-
vious time series patterns. A Circulating Neural Network
(RNN) is a kind of neural network used to process sequence
data, which preserves information through circulation. How-
ever, in some cases, we need more contextual information.
As the distance increased, the RNN became unable to connect
the information. These results in the RNN not being able to
learn well about the long-term dependencies of time-series
data. Compared with convolution neural networks, LSTM
networks are more successful in processing time data. LSTM
networks learn the long-term and short-term relevance of
serial data through storage unit C, which has a self-connection
to store the network’s temporal state. LSTM and Bi-LSTM
networks are shown in Figure 3.
Bi-LSTM consists of two LSTM blocks that can better

capture this information in both positive and negative direc-
tions to simultaneously process EEG signals in the opposite
direction. Bi-LSTMnot only has the ability to process context
but also to process future context content to improve model
accuracy. Therefore, we propose the use of Bi-LSTM for
feature recognition in the local domain of EEG feature space.
Bidirectional LSTM calculates the entire output ht based on
Equation (2).

ht = σ (Wh × [
→

ht ,
←

ht ]+ bh) (2)

There are three main phases within the LSTM unit.

62858 VOLUME 11, 2023



Y. Ma et al.: Multi-Channel Feature Fusion CNN-Bi-LSTM Epilepsy EEG Classification and Prediction Model

(1) Forget the stage. This phase consists mainly of selective
forgetting of inputs from the previous node. Remember the
important information and forget the unimportant. The layer
reads the current input x and foreneuron information h, and
the ft determines the previous state of Ct−1 and chooses to
forget certain information.

(2) Choose the memory stage. This phase is mostly selec-
tive memory of input Xt . What is important is highlighted and
what is not important is remembered less. This step consists
of two layers. The sigmoid layer acts as the input gate layer,
determining the value i we will update. Tanh layer creates a
new candidate value vector C̃t to join the state.

(3) Output phase. This phase determines what information
will be treated as an output of the current state. The Ct
obtained in the previous stage is scaled down by the tan
function. Similar to a normal RNN, the output yt is ultimately
obtained by ht transformation.

The mathematical expression of the LSTM unit is defined
as follows in the Equation (3-8):

ft = σ (wf × [ht−1, xt ]+ bf ) (3)

it = σ (wi × [ht−1, xt ]+ bi) (4)

C̃t = tanh(wc × [ht−1, xt ]+ bc) (5)

Ct = ft × Ct−1 + it × C̃t (6)

ot = σ (wo × [ht−1, xt ]+ bo) (7)

ht = ot × tanh(Ct ) (8)

3) ATTENTION MECHANISM
The attention mechanism is a kind of resource allocation
mechanism that simulates attention in the human brain.When
the human brain processes things, it focuses on areas that
need to be focused, reducing or even ignoring attention to
other areas in order to get more detailed information that
needs attention. As discussed in previous sections, ordinary
RNN or LSTM structures use the time-dynamic properties of
input data and map them to sequential output data. However,
there are still correlations between the output produced by a
given time step and the input sequence used to produce that
output. Even if LSTM reduces the effects of long sequences
of disappearing gradients and explosive gradients, it does
not completely eliminate them. In addition, neural network
architectures such as RNN, LSTM, or CNN may not be able
to handle highly complex feature representations to produce
accurate outputs. Attention mechanisms are an effective way
to deal with long-term dependencies, especially for very
long sequences. Attention mechanisms can be combined with
neural network models such as CNN or LSTM to obtain
important information.

This paper uses a dot-product attention mechanism that
performs weighted summation of hidden layer vector expres-
sions from CNN and Bi-LSTM outputs, in which weights
represent the importance of the characteristics of each spatial
and temporal point. Note that this mechanism can replace the
original method of randomly assigning weights by assign-
ing probabilities. Assuming an input of m eigenvector hi,,

i = 1, 2, . . . , k . The model can get an environmental vector
ci based on hi. These environmental vectors can be predicted
together with the current hidden state. Environmental vector
ci can be calculated by weighted averages of previous states,
as shown in Equation (9).

ci =
k∑
i=1

aihi (9)

Since the weight of the added state is the attention
weight ai, in order to obtain ai, we train a fully connected net-
work whose input is the hidden vector of CNN and BI-LSTM
output. The influence on the output is evaluated by calcu-
lating the score si of each hidden layer vector, as shown in
Equation (10).

si = tanh(wT hi + bi) (10)

where, si represents the degree of correlation between hi and
ci. ci is the output value of the ith node, j is the total number of
nodes that must always be counted, that is, the total number
of nodes output. Then, Softmax function is used to normalize
the score si to obtain the final weight factor ai, as shown in
Equation (11).

ai = softmax(si) =
esi∑
jesj

(11)

After applying the attention mechanism to LSTM and
CNN, we can pay attention to the features that have a great
influence on the output variables and improve the accuracy of
the method.

4) FULL CONNECTION LAYER
Convolution and pool sequences extract the most important
features from the data. Finally, feature classification is needed
to predict the actual types of input data. Therefore, apply one
or more fully connected layers at the end of the network. The
number of neurons in the last fully connected layer should be
equal to the number of predicted output classes.

5) CLASSIFIER
In the output layer, we used the Softmax function. Softmax
is as shown in Equation (12). Here, n represents the number
of target classes and xi represents the input value of i target
class.

soft max(xi) =
exi∑n
j=1 e

xj
(12)

D. EVALUATION INDEXES
Since epilepsy prediction is a three-category issue, we used
evaluation criteria commonly used in classification to mea-
sure the validity and robustness of our models from different
perspectives, including accuracy, precision, recall, F1-score,
and Matthews correlation coefficient (MCC). They are
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TABLE 1. Parameters of the CNN-Bi-LSTM-Attention architecture.

defined as formulas (13-17).

accuracy =
TP+ TN

TP+ TN + FP+ FN
(13)

precision =
TP

TP+ FP
(14)

recall =
TP

TP+ FN
(15)

F1-score =
2

1
precision +

1
recall

(16)

MCC =
TP× TN − FP× FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(17)

Here TP and TN are symbols of the correct positive sample
number and the correct negative sample number predicted by
themodel, respectively. FP and FN are symbols of the number
of false positive and false negative samples predicted by the
model, respectively.MCC is essentially a correlation between
observed and predicted binary classifications. It returns a
value between −1 and +1. A coefficient of +1 indicates
perfect prediction, 0 indicates no better than random pre-
diction, and −1 indicates a complete inconsistency between
prediction and observation.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
In this experiment, the number of training rounds is 100 and
the batch is set to 1024. The Adam optimizer combines the
advantages of both AdaGrad and RMS Prop optimization
algorithms. The model’s loss function is used using categor-
ical cross entropy. In order to ensure the same distribution of
data between the training set and the test set, the pre-training
model data were all set to the same random seed, randomly
scrambled, and transmitted to the network model. Multi-
channel CNN-Bi-LSTM-Attention and other paired network
models were implemented and modeled using Python 3.7 on
GeForce RTX 2080Ti, all using the same parameter set-
tings. Table 1 shows the CNN-Bi-LSTM-Attention model
parameter Settings in this paper.

B. CROSS VALIDATION
We use the average value of K-fold cross-validation as the
model evaluation standard, and K-fold cross-validation is

FIGURE 4. The accuracy of model based on five-fold cross-validation
three classification task.

FIGURE 5. The accuracy of model based on five-fold cross-validation five
classification task.

FIGURE 6. The accuracy of model based on ten-fold cross-validation
three classification task.

often used in model training. K-fold cross-validation began
by randomly dividing dataset into k mutually exclusive sub-
sets of the same size, that is, each random selection of k-1
as a training set and the remaining 1 as a test set. When
this round is complete, re-select k at random to train the
data. After several rounds, the average value of the evaluation
index is finally selected for evaluation. The model proposed
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FIGURE 7. The accuracy of model based on ten-fold cross-validation five
classification task.

in this paper was cross-validated with five and ten-fold
cross-verification on two data sets, respectively, as shown in
Figure 4 to Figure 7. The model proposed in this paper uses
five-fold cross-validation, and the average accuracy of the
two data sets is 92.90% and 73.06%, the average Precision
is 92.96% and 73.23%, the average recall is 92.90% and
73.07%, the average F1-score is 92.90% and 73.12%, and
the average MCC is 89.38% and 66.33%. Using ten-fold
cross-validation, the average accuracy of the two data sets
is 94.83% and 77.62%, the average Precision is 94.84% and
77.66%, the average recall is 94.84% and 77.62%, the aver-
age F1-score is 94.83% and 77.60%, and the average MCC is
92.26% and 72.03%. Since the model proposed in this paper
performs well in 10-fold cross-validation, subsequent com-
parison models are all compared by 10-fold cross-validation.

C. COMPARED WITH OTHER MODELS
To validate the taxonomic performance of our proposed mul-
tichannel CNN-BI-LSTM-Attention model for EEG detec-
tion, our model was compared with deep neural networks
(DNN), convoluted neural networks (CNN), long and short
term memory networks (LSTM) and bidirectional long
short term memory networks (Bi-LSTM), as well as their
combination models. To demonstrate the superiority of
multichannel model predictions, we also compared CNN-BI-
LSTM-Attention and CNN-BI-LSTM network models used
End-To-End. And their combined models CNN-RNN, CNN-
LSTM, CNN-Bi-LSTM, DSCNN-RNN, DSCNN-LSTM and
DSCNN-Bi-LSTM. 1DConvolutional Auto-Encode(CAE) is
composed of two convolutional layers replacing the fully con-
nected layers, and the symbols of the input are down-sampled
to provide a potential representation of smaller dimen-
sions. 1D InceptionV1 is compared. 1D InceptionV1 is the
replacement of InceptionV1 two-dimensional convolution
nuclei with one-dimensional convolution nuclei. The results
of the three-category experiment are shown in Table 2,
where the three classification labels represent normal EEG
data, pre-epileptic EEG data, and initial epilepsy EEG
data. Of all the models compared, CNN-BILSTM-Attention

TABLE 2. Comparison between multi-channel CNN-BI-LSTM-Attention
and other deep learning models in three classified tasks through ten-fold
cross-validation method.

(Multi-Channel) performed best, with 94.83% for Accu-
racy, 94.84% for Precision, 94.84% for Recall, 94.83% for
F1-score, and 92.26% for MCC. Bi-LSTM-Attention was
second only to CNN-Bi-LSTM-Attention (90.10%), Preci-
sion (90.14%), Recall (90.10%), F1-Score (90.10%) and,
MCC (85.16%) on five evaluation metrics. The experimental
results of the five categories are shown in Table 3. Among
all the models, CNN-BILSTM-Attention (Multi-Channel)
still has the best performance, with an accuracy is 77.62%,
an accuracy rate is 77.66%, a recall is 77.62%, an F1-score
is 77.60% and an MCC is 72.03%. The results show that
the superiority of our method is proved by the parallel
structure and fusion characteristics. When using the CNN-
BI-LSTM-Attention parallel structure, both networks can
simultaneously extract the characteristics of the input signal,
making both temporal and spatial features rich in primitive
features. Serial structures that use CNN features as input to
Bi-LSTM can only extract features layer by layer, during
which feature loss occurs, resulting in a decrease in final
accuracy. The Bi-LSTM model performed best in a single
model, suggesting that the Bi-LSTM model is well suited for
classifying and predicting time-series features such as EEG.

D. COMPARED WITH TRADITIONAL MACHINE LEARNING
MODELS
Traditional machine learning methods have been widely used
in many computer fields. Traditional machine learning fea-
ture extraction relies on manual methods, which can be
simple and effective for particularly simple tasks, and can
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TABLE 3. Comparison between multi-channel CNN-BI-LSTM-Attention
and other deep learning models in five classified tasks through ten-fold
cross-validation method.

TABLE 4. Comparison between multi-channel CNN-BI-LSTM-Attention
and other traditional machine learning models in three classified tasks
through ten-fold cross-validation method.

be interpreted, but it is not universal. Feature extraction for
deep learning is not manual, but machine generated. In addi-
tion to comparing the model to other deep learning models,
we will also propose a comparison of themodel with themore
popular seven types of communication machine learning:
Adaboost, Bayes, Decision Tree, KNN, Random Forest, Sup-
port Vector Machine and XGBoost. Similarly, we evaluated
the model by means of a 10 fold cross-validation of the mean
values, the results of which are shown in Table 4 and Table 5.
In the tripartite task, KNN is second only to our proposed
model, with Accuracy is 91.44%, Precision is 91.75%, Recall
is 91.45%, F1-score is 91.46% andMCC is 87.29%. SVMhad
the worst performance with 40.62% for Accuracy, 41.06%
for Precision, 40.63% for Recall, 40.33% for F1-score and
11.08% forMCC. In the five categories of tasks, RandomFor-
est is second only to our proposed model, with an Accuracy
is 70.34%, Precision is 69.99%, Recall is 70.37%, F1-score

TABLE 5. Comparison between multi-channel CNN-BI-LSTM-Attention
and other traditional machine learning models in five classified tasks
through ten-fold cross-validation method.

is 70.01% and MCC is 62.99%. SVM had the worst per-
formance with 28.26% for Accuracy, 36.18% for Precision,
28.41% for Recall, 28.39% for F1-score, and 10.77% for
MCC. Comparisons show that classification using machine
learning classifiers is still significantly less effective than
CNN-Bi-LSTM-Attention (Multi-Channel).

IV. CONCLUSION
Seizure prediction is useful for controlling seizures that are
not treatable withmedication or surgery. In this paper, we pro-
pose an effectivemethod to predict epileptic seizures by using
primitive EEG signals, which can alert epileptic patients to
take necessary protective measures to avoid unnecessary life
risks. The method requires only normalization to preprocess
the raw data without additional pretreatment, which facil-
itates brain-computer interface transplantation. The data is
then fed into a Multi-Channel CNN-Bi-LSTM-Attention net-
work model. Our proposed model can automatically extract
features from raw EEG signals. For the three classifications,
the average cross-validation accuracy of this method was
94.83%. For five categories, the average cross-validation
accuracy of this method is 77.62%. Compared with the
End-To-End network of the same model, the performance
of the model is significantly improved. The experimental
results show that the feature can be extracted automati-
cally from EEG signals by deep learning rather than by
hand, and the weighted electrode channels can be selected
automatically by the attention mechanism. However, the
model proposed in this paper can only be applied to EEG
signals. It is difficult to guarantee the stability of predic-
tion with one kind of data input. In the future, we plan
to use a multi-data fusion model. For example, combining
signals such as Electrocardiograph(ECG) and Electromyo-
graphy(EMG) with electroencephalogram (EEG) recordings
could further improve methods for predicting seizures.

DATA AVAILABILITY STATEMENT
This study is an experimental analysis of a publicly avail-
able data set. The data can be found in this web page:
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https://physionet.org/content/chbmit/1.0.0/ and https://archive.
ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition.
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