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ABSTRACT With the continuous improvement and development of wireless sensor network, it have been
enriched to a great extent. Monitoring, processing and transmitting all kinds of sensing data is its main
function, so their coverage issues have received widespread attention. Among them, the WSN coverage
based on DV-Hop node positioning technology has low cost and power consumption with high scalability,
and is extremely widely used. However, the current error control and WSN coverage of DV-Hop node
positioning are not enough for practical applications. This research innovatively adopts an improved sparrow
search pattern to optimise the DV-Hop localisation algorithm. The study introduces a deviation correction
factor to adjust the minimum number of node hops and uses the minimum mean squared error criterion to
correct the calculation error to reduce error. In addition, the study improved the sparrow search algorithm
by means of a GPS optimisation population initialisation. In the algorithm performance comparison, GSSA
showed the best convergence efficiency compared to other algorithms. The average error of the GSSADV-
Hop localisation constructed in the study is 0.72 m, which is 77.71% less than the traditional DV-Hop error.
The study provides a reference idea for the application of DV-Hop in WSN coverage, and offers a novel

solution for the optimization of DV-Hop.

INDEX TERMS DV-Hop, node positioning, sparrow search algorithm.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are distributed sensor net-
works that transmit communication information wirelessly
and therefore have the advantage of being flexible and con-
venient, and are widely used in the Internet of Things [1].
The process of urban intelligence has gradually accelerated,
so the deployment of WSNs in urban environments has
faced more challenges [2]. Many studies have addressed the
deployment of WSNs at this stage, but WSN coverage is
still one of the challenges that plague scholars [3]. In order
to make data information transmission more efficient and
stable, WSN coverage urgently needs to be improved, and the
current WSN coverage based on DV-Hop node localization
technique can no longer meet the practical needs [4]. WSN
coverage needs to consider various factors such as node cov-
erage, network connectivity, energy efficiency and minimum
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number of hops, and use various coverage techniques and
strategies for optimization, so the DV-Hop optimization
adopts bionic search with its unique performance [5]. This
study uses an improved Sparrow Search Algorithm (SSA).
The study ensures the initial distribution of the population
is as uniform as possible by continuously optimizing the
initialisation of the SSA population, thus reducing the search
time and improving the search accuracy. Based on the opti-
mised SSA, the study proposed the GSSADV-Hop model.
To confirm the application of GSSADV-Hop in WSN cov-
erage, the study selected several types of more mainstream
bionic algorithm models for comparison tests. This study
innovatively optimized the SSA algorithm from two aspects:
population initialization and early warning position update,
providing a novel solution for SSA algorithm optimization.
More importantly, the research improves the positioning
accuracy of DV Hop nodes, shortens the positioning time, and
provides a valuable solution for the application of DV Hop in
wireless sensor network coverage.
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Il. RELATED WORK

As WSNs have matured over time, they have also become
one of the most popular research subjects, and Kumar M and
Ali J found that sensor nodes in wireless sensor networks
are widely distributed and exposed to various risks. This
study therefore proposes a new model for securing node
communication and predicting various attacks. The model
involves two panels: black hole attack checking and base
station routing. The model outperformed other models in pre-
dicting risks [6]. A hierarchical data collection scheme was
completed by lin C et al. for implementing a UAV-assisted
industrial WSN. The study improved the linear programming
formulation using an energy optimal formulation. By cluster-
ing nodes at different levels and using UAVs to collect data.
The results show that the method is able to plan UAV paths
at a lower cost [7]. Prabha M et al. found that energy limits
the application of WSNs in their study of WSN overlays.
The study therefore proposed an architecture incorporating
compressed sensing to provide a more accurate and efficient
data processing solution for clustered WSNs. The results
showed that the system designed in the study provided a
cost-effective solution with an energy efficiency of 70% and
a prediction rate of 93% [8]. Lahane S R proposed WSNs
lifetime extending model by extending the life cycle of mes-
sage routing. The model was shown to outperform existing
models [9]. Pedrycz W et al. noticed the lack of accuracy
in the DV-Hop localization and proposed a new algorithm.
The algorithm was improved on the evolution of differential
simulated annealing. Recognising the importance of calcu-
lating jump distances, the study innovatively classified jump
distances into three types, namely global monotonic mean
jump distance, corrected mean jump distance between anchor
nodes and corrected mean jump distance. Finally, experimen-
tal results indicated reduced error [10]. Liu J et al. created
an involved DV-Hop founded by neural dynamics. The study
constructed distance and coordinate variation with time using
a model set in simulation experiments and constructed alge-
braic equations. In the experimental results, the algorithm
possesses good accuracy and robustness in the localisation
problem [11].

In WSN, the DV-Hop localization algorithm has been
optimized by different algorithms. Among them, various
biomimetic optimization algorithms are most widely used.
As one of the biomimetic optimization algorithms, SSA
algorithm has been widely used in various fields due to its
good search ability. Zhang L et al. noticed the phenomenon
of homochromatic metamerism during color reproduction.
In order to reconstruct spectral reflectance and reduce color
reproduction errors, a backpropagation neural network was
studied for optimization. In addition, in order to reduce
the influence of initial values on the neural network and
improve search accuracy. A new SSA algorithm has been
proposed for research. Firstly, initialize the backpropagation
neural network using the SSA algorithm, and then use sine
chaotic mapping. In the final results, it was found that this
method not only has more stable performance compared to
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other methods, but also can reconstruct spectral reflectance
on small datasets [12]. Zhang S et al. found that the imag-
ing performance of patterns is affected by the distortion
of projection optical devices. Therefore, based on the SSA
algorithm, a method for improving the distribution of aber-
ration coefficients was proposed. The study first utilized the
SSA algorithm’s independence from initial values to obtain
an improved aberration distribution, and then compared the
simulated results with the algorithm. The experimental results
show that the aberration improved by SSA is even better
than the results under ideal conditions [13]. Hui X et al.
used an SSA algorithm that is insensitive to initial values
to constrain hypersonic reentry trajectory. By optimizing the
SSA algorithm, the sensitivity of the initial values of con-
trol parameters was reduced and better initial values were
obtained. The experimental results show that this calculation
method has fast convergence speed and high robustness [14].
Liu T et al. proposed a new auxiliary system in the field of
brain tumor detection. The system can be used for automatic
diagnosis of brain tumor. The system consists of four steps,
namely preprocessing, classification, extraction, and diagno-
sis. In addition, the study utilized SSA to optimize the search
capability of the system. The results indicate that compared
to the latest technology, this method is more efficient [15].

As mentioned in the review, research on WSN coverage
has achieved certain results at this stage, and a large number
of scholars have optimized WSN from aspects such as hard-
ware security, node energy conservation, signal processing,
and node positioning. However, in node localization, most
research focuses on a relatively broad range of influencing
factors such as distance and position, neglecting some details
such as the impact of the minimum hop count of nodes on
localization accuracy. In addition, it was discovered during
the SSA method’s optimization research that the algorithm
has strong search performance and can lessen the sensitiv-
ity of initial values. The optimization capability and search
mechanism of SSA can be used to limit the effect of DV-Hop
on the initial distance measurement values between nodes,
while ensuring stability and enhancing positioning accuracy,
if node localization is changed into an optimization problem.
The study optimized the initialization of the SSA population
through a set of good points to ensure that the initial distri-
bution of the population is as uniform as possible, thereby
reducing search time and improving search accuracy. On the
basis of optimizing SSA, DV-Hop was optimized and the
GSSADV-Hop model was proposed.

IlIl. RESEARCH ON THE DV-HOP OPTIMIZATION OF FOR
WSNS LOCALIZATION METHOD

A. OPTIMIZED DV-HOP IN WSNS COVERAGE

WSNs coverage is a key technology in wireless sensor net-
works, which includes the location information of nodes [16].
The positioning of node directly affects the quality of data
in the WSN coverage area. WSN coverage can be divided
into three categories depending on the application scenario,
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FIGURE 1. Schematic diagram of different types of WSN coverage.

as shown in Fig. Figure 2(a) shows a fence overlay, which
identifies a path within the WSN coverage area and places
sensors to ensure that moving target points are monitored.
The fence overlay is used to monitor the area for trespass,
where the curve indicates the path to be covered and the hol-
low circle indicates the sensor. Figure 2(b) shows the target
coverage, where the sensor only needs to cover the target
point. The solid black circle indicates the sensor and the
diamond indicates the target point. Figure 2(c) shows area
coverage, where area coverage is used for dead-end monitor-
ing of the deployment area, where the black circle indicates
the sensor and the disk indicates the sensing range. In WSNss,
the nodes’ locationis indispensable. DV-Hop is commonly
used as a node localisation technique, which is widely adopt-
edfor the low costand high scalability [17]. Although the
current DV-Hop has a number of advantages, there is still
room for improvement in the error in WSN node localization.
Therefore, this study investigates the optimization method of
it with the main objective of reducing the localization error
of WSN nodes, which is a distributed localization algorithm
that divides the nodes in a WSN into two categories, namely
anchor nodes (AN) and unknown nodes (UN). The AN have
the ability to locate themselves, while the UN do not have the
ability to locate themselves. In the localisation process of DV-
Hop, it is first necessary to make all nodes get the minimum
hops (MH) with the AN. When a neighbour node receives the
data, it will record the AN information and plus the hop count
by 1 bit, and then continue to propagate. If that neighbour
node receives data from the same anchor node again, it will
compare this time the tuning number with the stored hop
count. The MHD of the AN is in equation (1).

é\/(oi — 0%+ (zi — z)?

. i#]

HopSize; Sy @))]

i#]

In equation (1), (0;, z;) and (o;, zj) denote the coordinates of
AN i and j respectively, HopSize; denotes the MHD of AN
i, and h; j denotes the MH. The MHD of the UN is acquired
from the data of the first AN and the distance of the AN. The

expression for the AN distance is shown in equation (2).

dy,; = HopSize, X hy j 2)
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In equation (2), HopSize, denotes the mean hop gap of the
UN u and #,, ; denotes the MH between the undirected node u
and the AN i. After the estimated distances between different
nodes are obtained by the above calculation, the UN can be
assessed. The principles of the assessment methods are shown
in Figure 1.

In the DV-Hop, there are two types of error sources, the
MH count error and the mean hop gap error. The MH count
error arises because in the calculation, the DV-Hop records
the hop counts of neighbouring nodes as integers. However,
in practice, the distances between nodes are not the same,
thus reducing the accuracy of node localisation. To minimise
the MH error between nodes, some studies have used the
dual communication radius algorithm to refine the minimum
hop count [18]. However, this method still cannot avoid the
MH count’s influence between AN. Therefore this study
introduces a deviation correction factor to make a secondary
correction to the hop count between AN in WSNs. In the
quadratic correction, the ideal hop count H;; of WSN AN i
and j needs to be defined first, and its expression is shown in
equation (3).

d. .
H;; = % 3)
In equation (3), R denotes the node communication radius,
d;j denotes the Euclidean distance between AN d;; and j,
and h;; denotes the minimum hop estimated by the dual
communication radius, at which point the expression for the
deviation correction factor is shown in equation (4).

h,’_j—H,'J

i @

Qjj =
In equation (4), «;; is the deviation correction factor and
the magnitude of «;; reflects the deviation error between
the actual number of hops and the target number of hops;
a larger value of «;; indicates a larger positioning error.
The correction factor is obtained from the correction factor,
as shown in equation (5).

2

In equation (5), «;; denotes the correction factor. The cor-
rected minimum hop for the AN is therefore shown in
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FIGURE 2. Two unknown node estimation methods.

equation (6).

h: .= Wij X /’ll"j (6)

-
i.j
The MHD is calculated from the Euclidean distance of two
nodes, and there is also a significant error between the
Euclidean distance and the hop distance in the actual network,
thus generating an mean distance error. Therefore the mean
hop distance (MHD) in WSN also needs to be corrected. This
study uses the minimum mean squared error for substitution,
and the mean squared error is shown in equation (7).

f= Z (87 — hij x HopSize;)* @)
i#j
On the basis of equation (7), the mean jump distance of the
AN can be acquired by deriving #fs% = 0. The expression
is shown in equation (8).

=<7 ®

In equation (8), HopSize; is the MHD of AN i, on the basis
of which the estimated distance between AN and the average
error per hop can be calculated, as shown in equation (9).

~

d;j = HopSize; x h; j
> (dij—d;j)
5 — i#j )
’ 2 hij
i#]

In equation (9), d; ; denotes the Euclidean distance between
ANiand of j. d; ; denotes the estimated distance between AN
i and j, and &; denotes the average per-hop error of AN B.
Thus the new MHD expression for the anchor node is shown
in equation (10).

HopSizeinew = HopSize; — &; (10)

This study introduces a normalised weighting factor to obtain
more information about the AN for the MHD of the UN. The
influence of distant AN on the positioning of UN is weakened
by reassigning the weights of the MHD of each anchor node.
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The normalised weighting factor proposed in the study is
shown in equation (11).

1/hi
W= M

= (1D
2. 1/h
j=1

In equation (11), h; denotes the number of hops between AN i

and the UN, and i denotes the number of hops between all AN

and UN. Therefore, the final per-hop distance of the unknown

node u is shown in Equation. (12)

k
HopSize, = »_ W; x HopSizeinew (12)

i=1

B. RESEARCH ON OPTIMIZED DV-HOP LOCALIZATION
WITH IMPROVED SPARROW SEARCH ALGORITHM

In the previous section, the study optimised the applica-
tion of the DV-Hop localisation to WSN overlays. Although
the effects of errors in node localisation were optimised,
the over-reliance on the initial value of inter-node ranging
could still not be avoided. This resulted in the accuracy
of the optimised DV-Hop localisation algorithm not being
significantly improved. To address this problem, this research
transforms node localisation into an optimisation problem.
In the optimization problem, the SSA has a good search
ability, is insensitive to the inter-node distance, and is able
to improve the localization accuracy while maintaining good
stability [15]. Therefore, this study uses SSA to optimise the
DV-Hop localisation algorithm so as to localise the UN. The
SSA process is shown in Figure 3.

As shown in Figure 3, the SSA algorithm first initializes
population parameters to determine the number of individuals
in the population. Update the positions of discoverers and
joiners, and then randomly select sparrow individuals who are
aware of danger to update their positions. Finally, obtain the
current population position and record the best fitness value,
and judge whether the termination condition is met. If the
termination condition is met, the current population position
and the best fitness value will be output; If not satisfied,
return to step 2 of the process. SSA is a probability-based
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FIGURE 3. Sparrow search algorithm flow chart.

stochastic search method that is mainly applied to solve unre-
stricted optimal problems. The method employs a method
that mimics population habits by randomly selecting a best
population in the existing ones and adding the corresponding
information to the existing population to guide the popu-
lation search [19]. The population in SSA mainly consists
of discoverers and joiners, with the discoverers and joiners
in an adversarial relationship. The joiners monitor the dis-
coverers and will compete to become new discoverers. SSA
improves the exploitation of the search space and, with the
help of early warners, the local search space is well exploited.
However, SSA still suffers from slow convergence and insuf-
ficient accuracy. So for further improving the localisation
accuracy, the study improves SSA in terms of both population
initialisation and early-warning agent position update, and
the improved algorithm is named GSSA. when executing
SSA, the population position needs to be initialised. As the
distribution of the population is random and may not cover all
solutions, which affects the accuracy and time of the search,
it is necessary to ensure that the initial distribution is as
uniform as possible. The study uses a GPS to optimise the
initialisation of the population. In the good point set (GPS),
G, is assumed to be a cube in a s-dimensional Euclidean
space, the point set is denoted as r = {ry, 72, ..., 7}, and
the set has element r;, = {2 cos 27;71‘, 1<k< s}. If the table

of p is the smallest prime satisfying @ > s, then r is a good

point at this point. The expression of the GPS is equation (13).

pn() ={{r xi},{rnxi},....{ryxi},i=1,2,...,n}
(13)

The deviation equation for the GPS is shown in equation (14).

d(n) = C(r, e)n~ 118 (14)

In equation (14), € denotes an arbitrarily small constant and
C(r, ) denotes a constant associated with r, &, at which point
pn(i) is the best set. The upper limit of the spatial dimension
of the solution is set to BB and the lower limit is set to u.
The set of good points can be mapped to the search space by
equation (15).

X () = e + Pp(Dic(uge — I) (15)
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The value of the first sparrow in the first dimension can be
obtained by using equation (15). The sparrow population size
setting is 16 and is distributed in a square area with upper and
lower limits of 50m and Om. The random distribution with a
good set of points to initialise the population distribution is
shown in Figure 4.

Figure 4(a) and Figure 4(b) show the random distribution
and the GPS initialised population distribution respectively.
The figures make it obvious that the initialized population
distribution for favorable points is more uniform and covers
a larger area. Therefore, GPSs can be used to improve the
quality of the traversal and settlement. GSSA algorithm’s
objective function also needs to be established when using
GSSA to estimate the position of UN in the third stage of
the DV-Hop localisation. At this point the distance error of
the UN and AN needs to be obtained, which is calculated as
shown in equation (16).

e=3 (Ja—xP -2 —d

In equation (16), (x, y) denotes the true coordinates of the UN,
(x;, yi) denotes the true coordinates of the AN, d; denotes the
estimated distance between them, and N denotes the total AN
number. When the error and the gap between the UN and all
AN is minimized, the fitness function of GSSA is obtained,
as equation (17).

(16)

fitness(x,y) = Zivzl (\/(x —x)?+ @ —y)?—=dy| A7)

The fitness function in equation (17) converts the localisation
phase of the DV-Hop localisationinto an optimisation prob-
lem. The study solves the GSSA by solving for the minimum
of the fitness function. Based on the above analysis, the flow
of the GSSA improved with optimised DV-Hop localisation
algorithm (GSSADV-Hop) is shown in Figure 5.

As shown in Figure 5, in the workflow of GSSADV-Hop,
the sensors are first expanded and the estimated distance
between the anchor node and the unknown node is calculated.
Then initialize the SSA parameters and calculate the fitness
value. The position of searcher, joiner and alerter in the pop-
ulation is updated by the fitness value. Finally, recalculate the
fitness value and determine whether the maximum number of
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FIGURE 4. Random distribution and GPS initialization population distribution.
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FIGURE 5. Flowchart of GSSADV-Hop.

iterations is met. If it is met, the global optimal position will
be output. If not, the position update step will be returned.

IV. EXPERIMENTAL RESULTS OF GSSADV-HOP
LOCALIZATION ALGORITHM IN WSN OVERLAY

In order to verify the performance of GSSA, two benchmark
functions were selected for simulation experiments, namely
the unimodal benchmark and the multimodal benchmark. The
GSSA was compared with the basic SSA, the Improved Grey
Wolf Optimization Algorithm (IGWOA), and the Improved
Whale Optimization Algorithm (IWOA). To ensure that
the computer equipment does not generate errors, the same
computer equipment was used for the simulations. The infor-
mation on the computer equipment used is Table 1.

For the simulated optimisation algorithms involved in the
comparison, it was set with the same population and itera-
tions, and each algorithm was run individually. The average
convergence curve over 100 iterations was obtained as shown
in Figure 6.

Figure 6(a) shows the convergence curve of the single
mode benchmark test function. In 100 iterations, GSSA
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showed the best convergence performance compared to other
algorithms. In the first 20 iterations, only the optimal values
of IGWOA and GSSA were close. After 20 iterations, the
GSSA iteration results are significantly better than other
algorithms and have more stable performance. The aver-
age convergence value of GSSA after stabilization is 0.002;
The average convergence value of IGWOA is 0.012; The
average convergence value of IWOA is 0.017; The average
convergence value of SSA is 0.041. The experimental results
validate the superiority of the GSSA algorithm. Figure 6(b)
shows the convergence curve of the multimodal benchmark
test function. The multimodal benchmark test function is gen-
erally used to evaluate the exploration ability of algorithms.
From the graph, it can be seen that the optimal value of
GSSA is significantly better than the other three types of
algorithms. In 100 iterations, the optimal value of GSSA
is —1.22 x 10™*; The optimal value of IWOA is —1.09 x
10~%; The optimal SSA value is —0.61 x 10~%; The opti-
mal value of IGWOA is —1.02 x 10™*. The experimental
results demonstrate that the study improves SSA from two
aspects: population initialization and early warning position
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TABLE 1. Computer equipment.

Item Configuration
Video card GTX 1080ti
CPU Inter Xeon ES
Gpu-accelerated library CUDA 10.0
Memory 64 GB
Operating system Windows 10

Deep learning framework

TensorFlow 1.8

—+—GSSA —@ -IGWOA

) \' B—SSA IWOA
20.05 .
3
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2
[}
£0.03 |-
(5]
>
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=
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Number of iterations
(a) Single-mode benchmark function

FIGURE 6. The average convergence curve.

update, promoting GSSA to move towards global optimiza-
tion, thereby improving search accuracy and reducing time
spent, verifying GSSA’s excellent exploration ability.

For confirming the optimization effect of the GSSA
algorithm on WSN coverage, the study conducted a coverage
comparison experiment with a 100m x 100m monitoring area
as an example. The pixels in the area was 100 x 100, and
nodes was 40. The communication radius was 20 m, and
radius of sensing was 10m. The average coverage curve was
obtained as shown in Figure 7.

From Figure 7, the evaluation coverage obtained by GSSA
increased and gradually approached the optimal value with
increasing iterations. the best average coverage of GSSA
over 500 iterations reached 98.23%. the best average cov-
erage of SSA over 500 iterations reached 86.67%. The best
average coverage of IGWOA over 500 iterations reached
IWOA achieved a best average coverage rate of 88.76%
over 500 iterations. Although IGWOA outperformed GSSA
in terms of maximum coverage in the first 50 iterations,
GSSA still outperformed the other algorithms in terms of
overall coverage. This is because the initialization of the
optimal point set has a more uniform population distribution,
more comprehensive coverage of the space, and improves the
ergodicity and quality of the search space. The experimental
results verify that GSSA has higher application value in WSN
coverage.

To verify the GSSADV-Hop localisation algorithm, the
study compared DV-Hop, IPSODV-Hop and IGWODV-Hop.
Firstly, for the optimisation of GSSADV-Hop on the localisa-
tion error, the study set the deployment area as a S0m x 50m
square. Figure 8 is the localisation error.

62354

Mean convergence curve
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Figure 8(a) shows the localisation effect of DV-Hop, while
Figure 8(b) is the localisation effect using the GSSADV-
Hop. The yellow line indicates the connection between the
algorithm and real actual position of the UN. Its length
indicates the size of the positioning error, with longer lines
indicating larger positioning errors. Figure 8(a) shows that
the yellow lines are all present, indicating that most of the UN
have a large error in their location. The error of GSSADV-
Hop node positioning is reduced by 77.71%. The results
validated that the GSSADV-Hop can significantly reduce
the node localisation error and improve the accuracy of
unknown node localisation. For further verifying the local-
isation effect of GSSADV-Hop under different parameters,
a total of 100 total nodes and 20 AN were set up for this
experiment. 20 to 50m is the communication radius. The
effect of communication radius on localisation error was first
obtained, as shown in Figure 9.

The variation of the positioning error of each algorithm
with increasing communication radius can be seen in
Figure 9. Overall, the average error value of each algorithm
goes downwithincreasing radius. The average positioning
error of GSSADV-Hop is 0.87m, IPSODV-Hop is 2.11m,
IGWODV-Hop is 2.08m, and DV-Hop is 3.62m. When the
communication radius of the node is 50m, the positioning
error of GSSADV-Hop is 0.62m; The positioning error of
IPSODV-Hop is 2.61m; The positioning error of IGWODV-
Hop is 2.37m; The positioning error of DV-Hop is 3.17m.
Compared to IPSODV-Hop, GSSADV-Hop reduces position-
ing error by 58.17%; Compared to GWODYV Hop, GSSADV
Hop reduces positioning error by 58.77%; Compared to DV
Hop, GSSADV Hop reduces positioning error by 75.97%.
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FIGURE 9. Positioning error influenced by communication radius.

The results validated that there was a significant improve- of nodes’ effect on the localisation error was obtained exper-
ment in GSSADV-Hop positioning accuracy. Total number imentally and is shown in Figure 10.
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FIGURE 11. CDF of the total positioning error of each algorithm.

From Figure 10, the average positioning error of each
algorithm reduced as thenodes goes up. When the total num-
ber of nodes is 300, the positioning error of GSSADV-Hop
is 0.44m; The positioning error of IPSODV-Hop is 1.32m;
The positioning error of IGWODV-Hop is 1.64m; The posi-
tioning error of DV-Hop is 3.27m. The average positioning
error of GSSADV-Hop is the lowest, only 0.87m; The aver-
age positioning error of [IPSODV-Hop is 1.84m; The average
positioning error of IGWODV-Hop is 1.89m; The average
positioning error of DV-Hop is 3.41m. Compared to the other
three algorithms, the GSSADV-Hop positioning error has
decreased by 52.72%, 53.97%, and 74.49%, respectively. The
experiments validate that the GSSADV-Hop can effectively
reduce the node errors in different environments.

To further verify the superiority of GSSADV-Hop, the
study evaluates the performance of GSSADV-Hop by the
Cumulative Distribution Function (CDF) of the node-
normalized localization error. As can be seen in Figure 11,
when the CDF is 0.1, 60.04% of the nodes of GSSADV-
Hop are in range, while 19.94%, 16.34% and 15.12% of
the nodes of the other algorithms are in range at this time,
respectively. When the CDF was 0.2, GSSADV-Hop had
96.19% nodes in range, at which time the other algorithms
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had 60.09%, 45.21% and 34.07% nodes in range, respec-
tively. The experimental results showed that the vast majority
of node localisation errors of GSSADV-Hop were smaller
than those of the other algorithms, and the overall robustness
was superior.

V. CONCLUSION

In wireless sensor networks, both node localisation and cov-
erage are key issues to improve the effectiveness of network
usage. With the various optimization algorithms proposed,
the DV-Hop can no longer meet the needs of practical applica-
tions. The majority of the present node localization research
concentrates on elements like distance and position, while
ignoring some aspects like the effect of the minimum hop
count of nodes on localization accuracy. In addition, it was
discovered during the SSA method’s optimization research
that the algorithm has strong search performance and can
lessen the sensitivity of initial values. The optimization capa-
bility and search mechanism of SSA can be used to limit
the effect of DV-Hop on the initial distance measurement
values between nodes, while ensuring stability and enhancing
positioning accuracy, if node localization is changed into
an optimization problem. Therefore, this research uses an
GSSA to optimise DV-Hop and proposes the GSSADV-Hop
node localisation algorithm in WSN coverage technology.
The results showed that in the experiment on the impact
of communication radius on positioning error, compared to
IPSODV Top, IGWODV Top, and DV Top, GSSADV Top
reduced positioning error by 58.17%, 58.77%, and 75.97%,
respectively. In the experiment on the impact of total num-
ber of nodes on positioning error, compared to IPSODV
Top, IGWODV Top, and DV Top, GSSADV Top reduced
positioning error by 52.72%, 53.97%, and 74.49%, respec-
tively. From the evaluation of GSSADV Hop performance
by CDF, it can be seen that when CDF is 0.1, 60.04%
of GSSADV Hop nodes are within the range, while other
algorithms are 19.94%, 16.34%, and 15.12%, respectively.
When the CDF is 0.2, 96.19% of nodes in GSSADV-Hop
are within the range, while other algorithms are 60.09%,
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45.21%, and 34.07%, respectively. It has been verified that
the positioning error of GSSADV-Hop is smaller than other
algorithms, and the overall robustness is better. Although this
study has achieved certain results, due to limited experimen-
tal conditions, no comparative experiments were conducted
under more influencing factors. In addition, in the improved
method, research is conducted to weaken the influence of
distant anchor nodes on the localization of unknown nodes
by redistributing the weight of the average hop distance of
each anchor node. But this impact has not been completely
eliminated. The above issues will become the main research
directions in the future.
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