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ABSTRACT Segmenting brain tumors automatically using MR data is crucial for disease investigation
and monitoring. Due to the aggressive nature and diversity of gliomas, well-organized and exact segmen-
tation methods are used to classify tumors intra-tumorally. The proposed technique uses a Gray Level
Co-occurrence matrix extraction of features approach to strip out unwanted details from the images.
In comparison with the current state of the art, the accuracy of brain tumor segmentation was significantly
improved using Convolutional Neural Networks, which are frequently used in the field of biomedical
image segmentation. By merging the results of two separate segmentation networks, the proposed method
demonstrates a major but simple combinatorial strategy that, as a direct consequence, yields much more
precise and complete estimates. A U-Net and a Three-Dimensional Convolutional Neural Network. These
networks are used to break up images into their component parts. Following that, the prediction was
constructed using two distinct models that were combined in a number of ways. In comparison to existing
state-of-the-art designs, the proposed method achieves the mean accuracy (%) of 99.40, 98.46, 98.29,
precision (%) of 99.41, 98.51, 98.35, F-Score (%) of 99.4, 98.29, 98.46 and sensitivity (%) of 99.39, 98.41,
98.25 for the whole tumor, enhanced tumor, tumor core on the validation set, respectively.

INDEX TERMS Brain tumor, medical imaging, segmentation, three dimensional CNN, U-Net.

I. INTRODUCTION
Brain tumors are one of themost lethal types of cancer and the
most frequent worldwide, according to Global Cancer Statis-
tics data collected in 2020 [1]. A majority of primary CNS
tumors are found in the brain, accounting for about 90% of
all cases. Treatment costs for brain tumors might vary widely
depending on the imaging technology used [2]. A patient with

The associate editor coordinating the review of this manuscript and
approving it for publication was Vishal Srivastava.

a brain tumor may expect to pay $62,602 to increase their
life expectancy by 16.3 months [3] using current treatment
methods. Patients with brain tumors are dying at a higher
rate than ever before, and the five-year survival rate is just
72.5% [4]. CT does not produce as good picture of soft tissue
as MRI, but it may be used to characterize the tissue. A range
of MR imaging methods, including T1-weighted (T1ce), T1-
weighted, T2-weighted, post-contrast, and fluid-attenuated
inversion recovery, may be used to segment the brain tumor
and the tissues around it (FLAIR) [5]. There are three forms
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of tumor necrosis—enhanced necrosis, and edoema [6]—that
may be seen in the visual output of MRI modalities. Necrosis,
enhancement, and peritumoral edoema are the three tumor
areas employed in clinical practice.

According to the World Health Organization, brain tumors
are among the most lethal forms of cancer that may occur
anywhere in the world. Glial cell carcinogenesis in the
spinal cord and brain causes gliomas, the most frequent
primary brain tumor. According to the American Cancer
Society, the average survival duration for glioblastic cancer
patients is less than 14 months following diagnosis [7]. It is
possible. In each imaging modality, non-invasive Magnetic
Resonance Imaging (MRI), which has been widely used to
detect brain malignancies, presents a broad and diverse vari-
ety of tissue contrasts [8]. Because the method is tedious
and time-consuming, only skilled neuroradiologists can cur-
rently segment and analyze structural MRI images of brain
tumors [9], [10]. As a consequence of this, it may be chal-
lenging to monitor and quantify lesions using a large number
of scans and volumes due to the fact that the characteris-
tics of each patient’s tumour are unique. Artifacts [11] such
as abnormalities, pixel fluctuations, and inconsistencies in
homogeneity may also be seen in these photos, which were
taken with different scanners. That is why it is vital to have
an accurate and fast method of segmenting brain tumors in
order to cope with binary (high or low) and several types of
risk classes (e.g. low or mild, moderate or high) [12].

For the detection and monitoring of brain tumors,
MRI, a typical non-invasive imaging technique, produces
high-quality pictures of the brain that are free of skull damage
and artefacts [13]. Because of the wide range of variations in
size, form, and function across gliomas, it is very difficult
to accurately segment them by hand. More accurate and
easy diagnosis and therapy may be possible with automated
segmentation.

Brain cancer detection necessitates the use of artificial
intelligence (AI), which has become a standard strategy
for medical diagnostics. It displays tools for generational
segmentation. In the first generation of brain lesion seg-
mentation, the conventional technique predominates (BLS).
In the second and third generations, AI systems based on
machine learning (ML) [14], [15] and deep learning (DL)
predominated. ML and DL have different approaches to
extract characteristics from instances. Many machine learn-
ing (ML) categorization models are built as autonomous
analytical learning models that deliver precise predictions
based on data properties. Tissue characterization in medi-
cal imaging applications has been shown to benefit from
machine learning [16]. Radologists and researchers who use
ML approaches [17] are exclusively responsible for picking
the most convincing traits, which leads to biased methodolo-
gies.

In this study, the authors primarily suggested an MR brain
image segmentation model for automatically segmenting
brain tumors [18]. Convolutional neural network (CNN) tech-
niques, which are machine learning pipeline approaches that

focus on the biological processes of synapses and neurons,
have garnered a lot of attention (connections). Afterward,
they conducted a literature search to find an example pipeline
for categorizing brain tumors using CNNs. Using CNNs,
they go into the future to research radionics, a new area of
study. Treatment response and survival may be predicted by
looking at the quantitative properties of brain tumors such
as signal intensity, form, and texture. Structural multimodal
magnetic resonance imaging was used by Pei et al. [19] to
develop a deep learning system for classifying brain tumors
and predicting their long-term stability (MRIs). As a starting
point, they proposed using 3D context-aware deep learning
to analyze MRI image subzones for tumor categorization.
So to determine more about the subtype of tumor, they use a
standard 3D CNN.

Recent years have seen a rise in interest in network
architectures like FCN and U-net. Due to the excellent perfor-
mance it offers, it has become themost often used architecture
among them. Recently, the U-Net architecture has been
recognised as a genetic solution strategy for the difficulties
that are present in biomedical imaging data research [20].
In contrast, U-Net has a lower output resolution than its input
resolution since it does not use convolution with padding.
This results in a lower overall resolution. As a result, if we
need the output resolution to match the input resolution,
we can’t use U-Net. A further benefit of the U-Net design
is that it progressively recovers down sampled picture and
shares low-level characteristics from shallow layers with
deeper ones. As a consequence of the information distortion
generated by this direct information relationship, the final
prediction is warped. The capacity to better separate brain
tumors may be enhanced if an information bridge between
the shallow and deep levels works well. Unlike the U-Net
design,W-Net employs a two-stage U-Net for its architecture.
Although W-Net includes a lot of trainable parameters, it is
difficult to train the model because of this. MIRAU-Net,
or the Residual Attention U-Net.

The suggested Inception-Res block replaces the origi-
nal U-Net model’s encoder and decoder layers’ sequence
of two convolutional layers. New skip paths, such as the
Inception-Res skip link, are also introduced. Small-scale
tumors may be accurately segmented during the upsampling
phase by providing appropriate spatial information and situ-
ating low-level feature maps utilizing attention gates.

As a result of the loss of local information and the con-
solidation of finer contextual information at the decoder’s
sampling layer, a skip connection recaught the characteristics
previously collected in the related encoder. Eachmax-pooling
layer loses part of its information when it is down sampled.
When implementing the skip connection, the depth concate-
nation layer is used.

II. RELATED WORK
Apatch-based approach is detailed in the analyses of the brain
and the detection of tumors by neural networks with deep
convolutional layers in regard to identifying brain tumors
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in MRI scans. To begin, N patches are used to divide the
MRI image. The center pixel label of each patch is then
estimated using a trained CNN model. Finally, the forecasts
for all patches are merged to achieve the total results. The
classification system implements the idea of deep transfer
learning and takes use of a GoogLe net that has already been
trained to extract characteristics fromMRI scans of the brain.
In order to categorise the retrieved characteristics, tried-and-
true classifier models are included. An MRI dataset obtained
from figshare is used as the basis for the experiment, which
employs a patient-level five-fold cross-validation procedure.
This system achieves a mean accuracy of classification of
98%, which is superior than all other systems that are con-
sidered state-of-the-art [21].

One of the three pathogenic kinds of brain tumors,
Brain Tumor Classification using CNN (BTCCNN), has
been established using an accurate and automated classifi-
cation technique (glioma, pituitary tumor and meningioma).
To extract features from brain MRI images, a deep transfer
learning CNN model is used. Known classifiers are used
to sort the extracted characteristics into different groups.
Afterwards, the whole system is thoroughly inspected. The
suggested technique had the greatest classification perfor-
mance of all similar articles [22] when evaluated on the
publicly accessible dataset.

3D Incremental Deep Convolutional Neural Networkmod-
els were built for entirely automated segmentation of brain
tumors. Instead of following a predetermined path to identify
the optimal hyper parameters, these models use a trial-and-
error strategy to do so. Using ensemble learning, a more
efficient model may be built [23]. A novel training approach
for CNN models was proposed to address the challenge of
training CNN models by limiting and setting an upper limit
on the most critical hyper parameters.

In order to classify and segment the three distinct types
of brain tumors, which are pituitary tumors, meningiom’s,
and gliomas, it was not necessary to perform any data pre-
processing on the input images in order to delete vertebral or
skull column components prior to analyzing the MRI images.
This was the case because it was not necessary to do any
preprocessing on the input images. An MRI dataset from
230 patients, including 3064 slices, was used to evaluate
the method’s performance against previously published tra-
ditional machine learning and deep learning techniques [24].

III. AUTOMATED SEGMENTATION OF BRAIN TUMOR MRI
IMAGES USING DEEP LEARNING (ASBTCNN)
A. GREY LEVEL CO-OCCURANCE MATRIX (GLCM)
To better understand brain tumors, a Gray Level Co-
occurrence Matrix combined with a Convolutional Neural
Network may be used. In this research, TI1 data from brain
cancers such as glioma, meningioma, and pituitary tumor
will be used to test the accuracy of a convolutional neural
network. The information that is collected from the grey level
co-occurrence matrix will be fed into the network. According

FIGURE 1. GLCM’s direction distance.

to the practical application of this study, the results of a
Convolutional Neural Network classification show that the
contrasting characteristics of the Gray Level Co-occurrence
matrixmay improve the accuracy by up to 20% in comparison
to the other features. By using this extraction characteristic,
Convolutional Neural Networks (CNNs) may accelerate the
classification process.

In order to get statistical data on the texture of an image,
GLCM functions, which determine how often specific pairs
of pixels in an image have the same value and are in a
predetermined spatial relationship, may be utilized. Fig. 1
depicts an easy-to-understand depiction of direction and dis-
tance. Second-order statistical texture characteristics may be
extracted using the Level Co-occurrence Matrix (GLCM)
technique. For example, third- and higher-order textures look
at the interactions between three or more pixels in a scene.
As a result, it’s common to use fewer shades of grey.

Three-dimensional GLCM plots have been developed,
compared, and discussed for a variety of acquired pictures.
In addition, the GLCMs were used to compute and compare
statistical metrics (such as the matrix’s maximum occurrence,
location, and standard deviation) with the arithmetic average
roughness Ra. There’s also a brand-new parameter for mea-
suring surface roughness, termed the maximum width of the
matrix.

B. VANTAGE POINT TREE (VPT)
Rarely, but effectively, VP-trees have been employed in appli-
cations such as picture indexing [25] and music information
retrieval [26]. These algorithms have shown excellent picture
patch retrieval performance when using the L2 metric [27].
VP-Good Tree’s findings prompted us to look at additional
distortion measures, which may be better suited for multime-
dia aspects than the Euclidian metric. A significant portion
of these metrics is made up of Bregman divergences, which
are not measures in and of themselves and do not fulfil the
conditions of the triangle inequality.

This method can be used to find the closest neighbor of
an object x. Recursion is used in the search process. Nodes
in the tree have vantage points and threshold distances, and
we use these values to guide our decisions at each stage. The
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point of interest x will be a long distance away from where
you are. If the distance d is less than the threshold t, then the
algorithm should be used iteratively to search the sub tree of
the node, which includes the points that are near the point of
view. If the distance d is greater than the threshold t, then the
algorithm should be used recursively to search the sub tree
of the node, which includes the points that are further from
the point of view. It is impossible to search the other sub tree
of this node when the algorithm discovers a nearby point n
with a distance x smaller than |t, d|, hence the found node n is
returned. Recursive searching of the other sub tree is required
if the first search fails.

At first, the similarity matrix is presented in the form of the
symmetric matrix denoted by ‘‘D.’’ The following mathemat-
ical formulation explains how to determine the degree of the
kth data point in a high-dimensional dataset.

Mk =

∑n

k,l=1
Dk,l (1)

The similarity matrix between two (i.e., uk and Ul) data
points taken from highly populated high-dimensional data is
denoted by the letter Dk,l, which comes from equation (1).
The letter ‘Mk’ signifies the size of the ‘kth’ data point.

In spectral clustering, the Gaussian kernel function is the
method utilised to determine the similarity score between two
data points. The formula for this function is as follows:

D (k, l) = exp
− ∥Uk−UL∥2

2σ 2 if k ̸= l and Dk,k = 0 (2)

The Euclidean distance between two data points, Uk and
Ul, is represented by the value ∥Uk − Ul∥2 in equation (2).
A similarity matrix is built for each data point based on
this equation. In this case, the width of the neighborhood is
controlled by the parameter σ . The unnormalized Laplacian
matrix is produced using data points and is provided by the
diagonal matrix has been obtained.

L = DI − M (3)

Based on equation (3), ‘‘L’’ refers to the Laplacian matrix,
‘‘DI’’ stands for the diagonal matrix, and ‘‘M’’ stands for the
similarity matrix.

Fig. 2 depicts a two-dimensional vantage point tree. The
procedure is as follows: All points are given to the root node
first. Following that, a random vantage point (R) is chosen
(Figure 2a). By dividing the points into two equal halves (a =
5), the threshold is computed. All d points migrate to the left
sub tree (p, s q), while the remaining ones (u, t, v w) move
to the right (u, t, v w) (Figure 2b). The child node that is
most directly responsible for the problem is given priority.
A second VP is chosen at random (u = 4). Finally, all points
that are ‘‘d’’ shift to the left sub tree (t), while the remaining
points are moved right (v-p). This completes the process (v,
w) (Figure 2c). In the last step, the left node is dealt with. One
of the VPs is picked at random (p equals 6). As a result, for
all points where d (Poin; v, p) (Figure 2d), s will take over as
the left subtree and q will take over as the right subtree.

FIGURE 2. Vantage point tree construction.

C. D-CNN (CONVOLUTION NEURAL NETWORK)
Convolution filters, pooling layers, and a feed-forward neural
network are all part of this CNN classification system. The
suggested CNN classification algorithm’s internal architec-
ture is represented in this diagram. This suggested CNN
architecture contains two convolutional layers, two pooling
layers, and one preprocessed by data augmentation layer.
In this case, the right shift is A. B, reverse the image. C a shift
to the left fully connected neural networks are proposed in
the proposedCNNarchitecture for brain image categorization
as shown in Figure 3. The input brain picture is convolved
with the convolutional kernel of the first convolutional layer,
which includes 128 convolutional filters. In the first convolu-
tional layer, the kernel is 3 × 3.
It is not possible to directly apply the high-definition pixels

produced by each convolution filter to feed-forward neural
networks. As a consequence of this, the data that is produced
by the output of each convolution filter needs to be com-
pressed before it is fed into neural networks. Pooling layers
may be used to accomplish this. In the CNN architecture,
there are two kinds of pooling layers: average pooling and
max pooling.

Average pooling layers use the average value of the 2 ×

2 filter masks to choose an output response from a convolu-
tion filter. On the output response of the convolution filter, the
max-pooling layer additionally locates a 2× 2 pixel mask and
selects the maximum value. The suggested CNN architecture
employs a max-pooling layer since it has a high degree of
accuracy.

The following is a mathematical phrase that may be con-
structed to represent the output value γ at the location (x, y,
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FIGURE 3. Architecture 3 D-Convolution neural network.

z) on the jth feature map in the ith 3D convolutional layer:

γ ij,xyz = ReLU(b(i)j +

∑M (i−1)

m=1

∑U (i)−1

u=0

∑V (i)
−1

v=0

∑W−1

w=0

× w(i)
jm,pqrγ

(i−1)
m,(x+p)(y+q)(z)+r) (4)

where ReLU(·) represents elementwise ReLU function; b(i)j
is the shared bias for jth process region; w(i)

jm,uvw is the (u, v,
w) th data of the 3D filter for the jth process region at the ith
layer related with the mth process region in the (i-1)th layer.

Tensor operations may be used to explain simply the link
between two neighboring layers (in this case from (i-1)th to
ith, as given by.

γ (i)
= σ

(
W (i)γ (i−1)

+ b(i)
)

(5)

where γ (i) and γ (i−1) are the output and input for the ith layer;
σ (·) represents the activation function performing element
wise;

This is the loss function, which is defined as the mean
squared error between a 3D-prediction CNN’s and the ground
truth of the training dataset.

L
(
W , b

/
D

)
=

1
n

∑n

k=1

∑12

l=1

(
ytruthkl − ypredkl

)2
(6)

where D is the trained data set {xk , yk}, n represents the quan-
tity of samples, and l signifies the efficient property vector of
the component index. The optimal parameters {W ∗ and b∗}

may be derived by minimizing the loss function, which is the
inverse of the loss function,{

W ∗, b∗
}

= argmin{W ,b}
{
L

(
W , b

/
D

)}
(7)

In DNN-based techniques, a recurring problem is how to
limit the overfitting that occurs as a result of the DNN’s
exceptional approximation capacity.

1) CONVOLUTIONAL LAYER
In this layer, convolutional kernels or filters transform pic-
tures into feature map data. Kernels of data (height, length,
and depth) flow across three dimensions in a 3D CNN, creat-
ing 3D maps. It is essential to use a 3D CNN to analyze data
that has a temporal or volumetric context.

2) POOLING LAYER
On the convolution output, down-sampling or pooling is
done. As a filter passes over the convoluted output, it takes
the average value, weighted average, and/or the maximum
value. It is the purpose of the pooling the layer to gradually
lower the spatial size of the matrix in order to minimize the
number of parameters and to control over fitting of the model.

3) FULLY-CONNECTED LAYER
Convolution and pooling findings are used to categories the
picture into a label, the primary purpose of a fully connected
layer. To obtain probabilities, a softmax function is utilized
that pushes values between 0 and 1 in this layer. Batch nor-
malization is used to speed up training and limit the risk of
overfitting.

Chanel originally created the 3D CNNmodel, which is the
first model to be utilized in the ensemble. In order to provide a
feature representation at many different scales for volumetric
segmentation, weighted dilated convolutions are used in a
multitier unit.

a: PRE-PROCESSING
A number of techniques are used to augment the data in
order to ensure its accuracy before it is included in the train-
ing network (cropping, rotation, mirroring). During training,
we used 150 epochs of training time, a 128× 128 patch size,
and a modified loss function that included the generalized
dice and focused losses into one loss function. The hyper
parameters have been fine-tuned.

b: INFERENCE
We used zero-padding to reduce the voxels in the MRI data
from 240 240 155 to 240 240 160 a depth that can be divided
by the network. We make utilize the training network to
create probabilistic maps if the data are of a quality that
allows for inference to be drawn from them. Following that,
the ensemble relies its final prediction on the information
provided by these maps.

D. U-NET
Segmentation of meaning using U-Net is possible. As the
name suggests, it has two distinct paths. A convolutional
network’s contracting route follows the usual design. For
downsampling, a 2 × 2 max pooling operation with stride
two is used after each convolution, followed by a rectified
linear unit (ReLU), as shown in Fig. 4. Every time a sampling
step is taken, the number of feature channels increases by one.
In the expanding path of the algorithm, some of the processes
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FIGURE 4. Architecture of 3D U-Net.

include up-sampling the extracted features, concatenating it
with the cropped feature map that was generated by the
contracting route, and then performing convolution of two
3 × 3 feature channels each followed by a ReLU. Because
each iteration of the convolution algorithm results in the loss
of some border pixels, cropping is necessary. The last layer
of the neural network model consists of a 1 × 1 convolution,
which is used to translate each 64-component feature repre-
sentation to the desired number of classes. This network has
a maximum of 23 convolutional layers in its architecture.

In the second model of our ensemble, the ReLU activation
functions have been switched out for leaky ReLUs, and an
instance normalization has taken the place of batch normal-
ization. Both of these changes were made in order to improve
performance.

1) PRE-PROCESSING
Tominimize theMRI slice’s size, crop the data. Next, normal-
ize the z-scores after resampling the pictures and determining
the median voxel spaces in the otherwise diverse data.

2) TRAINING
In order to properly train the network, we use 128 × 128 x
128 voxels with a batch size of 2. Mirroring, rotation, and
gamma correction are performed on the data during runtime
in order to reduce overfitting and the accuracy of the model’s
segmentation should be improved. During training, the binary
cross-entropy as well as dice are combined in order to do the
calculation necessary to determine the loss function.

3) INFERENCE
During the inference process, greater importance is placed on
the voxels that are located closer to the centre, which is based

on a patch-based approach. Additional data augmentation is
provided by mirroring along the patch axes while conducting
tests. For each ensemble, a probability map is generated as a
result.

The posterior probability of a voxel i being labelled with a
certain value l may be computed as follows for each image:

p
(
yi = l

/
(Mi)

)
=

efyl (Mi)∑K
k ′=1 e

fyk′ (Mi)
(8)

where fyi (·) is the CNN computation function,Mi is the patch
of the voxel i and k’ is the class number. The following is the
stated form of the weighted cross-entropy loss function.

Loss = −

∑
i
log

(
p

(
yi = groundtruth

/
X (Mi)

))
(9)

Given the fact that the cross-entropy between the pre-
dicted distribution p and the real distribution q is -∑

i q (yi) log
(
p

(
yi

/
X (Mi)

))
n and the actual distribution

q(yi) is 1 for ground truth and 0 otherwise.

IV. RESULTS AND DISCUSSION
The first stage in the classification procedure was to extract
the picture components. It was a dim-level co-event grid sur-
face element extraction approach called Gray Level Co-event
Matrix surface element extraction that was used for the
extraction of the element. Relationship, divergence, homo-
geneity, differentiation, and energy on points were all GLCM
features that were used (0, 45, 90, and 135).

Fig. 5 depicts four original MRI images that were sent to
the GLCM and VPT for processing. Then, using the training
picture, the brain tumor is segmented. Dice scores of 3.92,
18.80, and 23.80 are achieved by the suggested technique for
enhanced tumor, tumor core, and whole tumor, respectively.

Using VPTs, we are able to locate the files of the test
highlight vectors that are closest to our own and extract
their names from their markings. This information is used
to calculate the likelihood of each mark appearing at each
point in the framework based on the available data. It follows
that a straight line of marked probability is interspersed all
across the whole image. CNN seems to be more successful
in segmenting tumors in experiments involving tumor aug-
mentation, according to both qualitative and quantitative data.
On the other hand, the U-Net is more precise than other meth-
ods in regard to the segmentation of tumor cores. Although
both networks do equallywell in regard to detecting thewhole
tumor segmentation on their own, the expectations are taken
into account. The most current ensemble projections for the
following three areas were generated only using U-output net
models, for the purposes of the enhanced tumor, tumor core,
and whole tumor, we observed the output.

Fig. 6 and Fig. 7 shows the proposed method ASBTCNN
was compared with the existing methods Brain Tumor Anal-
ysis and Detection Deep Convolutional Neural Networks
(BTADCNN), Brain Tumor ClassificationUsing CNN (BTC-
CNN), and Brain Tumor Classification and Segmentation
Using a Multiscale CNN (BTCSMCNN) for F-Score and
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FIGURE 5. GLCM and VPT feature selection and segmentation of the Brain
Tumor.

Sensitivity in percentage of Enhanced Tumor. The suggested
technique has an F-Score of 98.46 % for enhanced tumors,

FIGURE 6. F-Score for enhanced tumor in percentage.

FIGURE 7. Sensitivity for enhanced tumor in percentage.

which is much greater than the prior existing methods of
95.97 %, 96.79 %, and 95.96 %. Similarly, the sensitivity
of 98.41 % for Enhanced Tumors in the proposed method is
greater than the existing methods of 95.99 % (BTADCNN),
96.81 % (BTCCNN) and 95.49 % (BTCSMCNN).

Fig. 8 and Fig. 9 show the F-Score and Sensitivity in per-
centage of tumor core for the proposed method ASBTCNN
was compared to the existing methods ‘‘Brain Tumor Anal-
ysis and Detection Deep Convolutional Neural Networks
(BTADCNN), Brain Tumor ClassificationUsing CNN (BTC-
CNN), and Brain Tumor Classification and Segmentation
Using a Multiscale CNN (BTCSMCNN). The proposed
method has an F-Score of 98.29 % for tumor core, which is
much greater than the preceding methods, which had F-Score
of 92.74 %, 94.83 %, and 97.99 %. Similarly, the sensitivity
of 98.25 % for Tumor Core in the proposed method is greater
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FIGURE 8. F-Score (%) for Tumor core.

FIGURE 9. Sensitivity (%) for Tumor core.

than the existing methods of 92.91 % (BTADCNN), 94.98 %
(BTCCNN), and 98.15 % (BTCSMCNN).

Fig. 10 and Fig. 11 show the F-Score and Sensitivity in
the percentage of whole tumor for the proposed method
ASBTCNN was compared to the existing methods Brain
Tumor Analysis and Detection Deep Convolutional Neural
Networks (BTADCNN), Brain Tumor Classification Using
CNN (BTCCNN), and Brain Tumor Classification and Seg-
mentation Using a Multiscale CNN (BTCSMCNN). The new
technique has an F-Score of 99.40 percent for Whole tumors,
which is much greater than the preceding methods, that had
F-Score of 93.42%, 97.72%, and 99.03%. Similarly, the sen-
sitivity of 99.39 % for Whole Tumor in the proposed method

FIGURE 10. F-Score (%) for Whole Tumor.

FIGURE 11. Sensitivity (%) for Whole Tumor.

FIGURE 12. Dice score (%) for Enhanced Tumor.

is greater than the existing methods of 93.27% (BTADCNN),
97.54 % (BTCCNN) and 99.31 % (BTCSMCNN).

Fig. 12, Fig. 13 and Fig. 14 shows the proposed method
ASBTCNN was compared with the existing methods Brain
Tumor Analysis and Detection Deep Convolutional Neural

VOLUME 11, 2023 64765



S. Rajendran et al.: Automated Segmentation of Brain Tumor MRI Images Using Deep Learning

FIGURE 13. Dice score (%) for Tumor Core.

FIGURE 14. Dice score (%) for Whole Tumor.

Networks (BTADCNN), Brain Tumor Classification Using
CNN (BTCCNN), and Brain Tumor Classification and Seg-
mentation Using a Multiscale CNN (BTCSMCNN) for Dice
Score in percentage of Enhanced Tumor, Tumor Core and
Whole Tumor. The suggested technique has the Dice Score of
98.46 % for enhanced tumors, 98.29 % for enhanced tumors,
99.40 percent for Whole tumors, which is much greater than
the prior existing methods.

In this proposed method, the performance of our strategy
has been compared to all other techniques that were previ-
ously available when trying to categorize brain tumors. Our
solution outperforms every other method presently in use,
according to the comparison. This is to show how successful
our technique is despite the fact that we only have a small
amount of training data compared to past research. The table
only shows the accuracy as a performance criterion since
it is used in all other studies. All indicators pointing to the
proposed work being better than what is currently being done

V. CONCLUSION
The proposed approach specifies the feature extraction tech-
niques implemented by the GLCM and VPT networks, and a
combination of the two networks referred to as the ‘‘ensemble
of two networks.’’ The problem of segmentation in biological
images is often addressed by each of these networks sepa-

rately, which is a difficult problem to begin with and requires
a solution that is capable of handling its complexity. When
used in conjunction with an MRI image, the brain tumour
ensemble effectively detects brain tumours from normal brain
tissue with high accuracy, exceeding predictions from a broad
variety of other sophisticated algorithms. We aggregate the
model’s outputs in order to produce the best potential out-
comes, which is accomplished via the use of a process called
variable assembly. For disease management and patient care,
the proposed ensemble provides a method that is therapeu-
tically favorable and automated for creating brain tumor
segmentation. In the proposed method, F-score and sensi-
tivity of 98.29% and 98.25% of Tumor core was achieved.
With 99.40 % F-Score and 99.39% Sensitivity, the proposed
approach delivered the greatest results for the Whole tumor.
This method is both efficient and effective in terms of both
the efficiency and efficacy of treatment. Because of this, most
state-of-the-art models were able to outperform these three
models in terms of F-Score and sensitivity.
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