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ABSTRACT This paper studies the expectile regression with error-in-variables to reduce the data error
and describe the overall data distribution. Specifically, the asymptotic normality of the proposed estimator is
thoroughly investigated, and an IRWLS algorithm based on orthogonal distance expectile regression (ODER)
is proposed to estimate the parameters. Extensive simulation studies and real data applications evaluate
our method’s capabilities in reducing the measurement error bias, demonstrating our model’s parameter
estimation effectiveness, and its capability in reducing the simulation error compared with linear and quantile
regression schemes.

INDEX TERMS Errors-in-variables, expectile regression, IRWLS algorithm, orthogonal distance regression.

I. INTRODUCTION
The errors-in-variables model was proposed by Deaton [6],
aiming to solve the problem when the covariates cannot be
measured accurately. The measurement error originates from
the instruments used to measure the variables of interest or
the inadequacy of the measurements taken over the short term
used as proxies for long-term variables. The linear errors-in-
variables model is typically defined as

Y = XTβ + ϵ, W = X + U , (1)

where {Xi} is a sequence of p-dimensional regression vec-
tors with first component Xi1 = 1, i = 1, 2, · · · n, Y
is the response, β = (β1, β2, · · · , βp+1)T is a vector of
p+ 1-dimensional unknown parameters, ϵ is the error. Since
the covariate X is measured with errors, we cannot observe
X, but we can observe W. Besides, U is the measurement
error, which is independent of X , ϵ. We also assume that
Cov(U ) =

∑
U , where

∑
U is known and (ϵ,UT )T ∈ Rp+n

are independent with a common error distribution that is
spherically symmetric. From LUDWIG (1991), it is known
that the A (p + 1) × 1 random vector is said to have a
spherically symmetric distribution ifX andHX have the same
distribution for all (p+ 1) × (p+ 1) orthogonal matrices.
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It is known that regressing Yi on the Wi using traditional
methods leads to an inconsistent and biased estimate of β
Carroll et al. [3]. Thus, current literature mostly focused on
describing the relationship between the true covariates and
the variables of interest accurately, by adjusting the mea-
surement error Fuller [7], Cui and Li [5], Jiang et al. [12],
Shen [1], Nghiem et al. [16].

Quantile regression, proposed by Koenker and Bassett
[14], has become a popular paradigm to describe the com-
plete conditional distribution information hidden in variables.
Besides, He and Liang [8] considered the regression quantile
estimates when the error variables for both the response
and the manifest variables have a joint distribution that is
spherically symmetric but is otherwise unknown. Wei and
Carrol [27] proposed a new method to correct measurement
errors by constructing joint estimating equations. Moreover,
the regression quantile has also attracted attention Shim [13],
Jiang [11], and Yang and Yang [28].

Expectile regression, proposed by Newey and Powell [20],
is an alternative way to observe the tail of a distribution,
which states that expectile regression is prior over quantile
regression in some folds. Due to the asymmetric least squares
loss function, the regression expectiles are easy to obtain via
standard gradient optimization algorithms, with the related
estimators providing a convenient and relatively efficient
way to summarize the condition distribution of a dependent
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variable under various repressor values. Additionally, Wal-
trup et al. [24] proposed that expectile regression tends toward
less crossing and more robustness for heavy-tailed distribu-
tions than quantile regression. The θ -expectile of the random
variable Y is defined as follows

eθ (Y ) = argminνE[φθ (Y − ν)], (2)

where φθ is the asymmetric least squares loss function of the
form

φθ (u) = θu2I[u≥0] + (1 − θ )u2I[u<0], (3)

and I[·] denotes the indicator function. Since there is no
direct and explicit explanation of the expectile, the regression
expectile estimator has some good properties, such as trans-
lation invariance and homogeneity monotonicity with respect
to the level θ (See Pan and Liu.(2021)).
The expectile regression properties have been thoroughly

investigated Jones [12], Schnabel and Eilers [21], Sobotka
and Kneib [22]; Kook-Lyeol et al. [4], Waltrup and Kauer-
mann [25], with lly, Sobotka et al. [23] establishing the
asymptotic normal properties of a geo-additive expectile
regression estimator and introduced confidence intervals
based on the asymptotic normal distribution results. For
specific data, Zhao et al. [9] developed the expectile regres-
sion for ultrahigh-dimensional data, while Mohammedi et al.
[18] obtained the consistency and asymptotic normality of
the kernel-type expectile regression estimator for functional
data. Pan et al. [29] developed a weighted expectile regres-
sion approach for estimating the conditional expectile when
covariates are missing at random (MAR). Moreover, they
obtained the asymptotic normality of the proposed weighted
estimators.

This paper focuses on an expectile regression model for
the errors-in-variables. Specifically, we propose a new class
of estimators using the idea of ODR (Orthogonal Distance
Regression, see Boggs and Rogers [2], Shim [13] and estab-
lish the asymptotic normality of the estimator.

The remainder of this paper is organized as follows.
Section II proposes expectile regression with ODR when
the covariates suffer from measurement errors. Besides, this
section establishes the asymptotic normality of the estima-
tor. Section III proposes an IRWLS algorithm to calculate
the estimator in the error-in-variables model, and evaluates
the proposed method’s performance on simulation scenarios.
Section IV applies our model to the ACTG315 dataset to
study the relationship between HIV viral load and the number
of CD4+T cells in AIDS patients. Then, the obtained results
are analyzed. Finally, Section V concludes this paper.

II. METHODOLOGY AND MAIN RESULTS
Let {Xi,Yi}ni=1 be an independent and identically distributed
sample from themodel. The true parameter vector β0 satisfies
that

β0 = argminβE

[
φθ

(
Y − βTW√
1 + ∥β∥2

)]
. (4)

where φθ (u) is defined in equation (3).
The measurement error correction factor

√
1 + ∥β∥2 is

widely used in linear models See Lindley [15], He and Liang
[8], Ma and Yin [19]. Similar to He and Liang [8], we propose
the empirical loss function as follows

β0 = argminβ

n∑
i=1

[
φθ

(
Yi − βTWi√
1 + ∥β∥2

)]
. (5)

Let the following assumptions hold:
(A1: The distribution function F of ε is absolutely contin-

uous with uniform continuous densities f and bounded away
from 0 and ∞ at the points Cθ , and Eε2 < ∞.
(A2: Let EX = 0, 60 = EXXT is positive definite.
Theorem 1: Under conditions (A1) and (A2), we have

√
n(β̂ − β0) →

L N (0, (g(θ ))−2(1 + ∥β0∥
2)6−1

1 S6−1
1 ) (6)

where g(θ ) = 2(1 − θ )F(0) + 2θ (1 − F(0)),

S = θ (1 − θ)60 + Cov

(
ψθ

(
ϵ − βT0 U√
1 + ∥β0∥2

)
(U+

(ϵ − βT0 U )β0
1 + ∥β0∥2

))
, (7)

and 61 =

∑
0

1+∥β0∥2
.

Proof: Denote

Qn(β) =

n∑
i=1

[
φθ

(
Yi −W T

i β√
1 + ∥β∥2

)
− φθ

(
Yi −W T

i β0√
1 + ∥β0∥2

)]
,

Q1i(β) = φθ

(
ϵi − UT

i β√
1 + ∥β∥2

−
XTi (β − β0√
1 + ∥β∥2

)

−φθ

(
ϵi − UT

i β0√
1 + ∥β0∥2

)

−ψθ

(
ϵi − UT

i β0√
1 + ∥β0∥2

)(
ϵi − UT

i β√
1 + ∥β∥2

−
ϵi − UT

i β0√
1 + ∥β0∥2

−
XTi (β − β0)√
1 + ∥β∥2

)
,

Q2i(β) = ψθ

(
ϵi − UT

i β0√
1+∥β0∥2

)(
ϵi − UT

i β√
1+∥β∥2

−
ϵi − UT

i β0√
1+∥β0∥2

−
XTi (β − β0√
1 + ∥β∥2

)
, (8)

where ψθ (u) = 2|θ − I[u<0]|u is the gradient function of
φθ (u). Then we have Qn(β) =

∑n
i=1Q1i(β) +

∑n
i=1Q2i(β),

and EQn(β) =
∑n

i=1[Q1i(β) − EQ1i(β)] +
∑n

i=1[Q2i(β) −

EQ2i(β)].
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On the other hand,

n∑
i=1

E

[
φθ

(
Yi −W T

i β√
1 + ∥β∥2

)
− φθ

(
Yi −W T

i β0√
1 + ∥β0∥2

)]

=

n∑
i=1

E

[
φθ

(
ϵi −

XTi (β − β0)√
1 + ∥β∥2

)
− φθ (ϵi)

]

≡

n∑
i=1

E

[
M

(
XTi (β − β0)√
1 + ∥β∥2

)]
,

where M (t) ≡ E[φθ (ϵi − t) − φθ (ϵi)]. From condition
(A2), M (t) has a unique minimizer at zero, and from the
Taylor expansion at zero Pan et al. [29], we have M ′(0) =

−E[ψθ (ϵi)] = 0,M ′′(0) = 2g(θ ), thenM (t) = g(θ )t2+o(t2).
For a large enough n,

n∑
i=1

E

[
M

(
XTi (β − β0)√
1 + ∥β∥2

)]

=

n∑
i=1

g(θ )(XTi (β − β0)√
1 + ∥β∥2

)2

+ o

(
XTi (β − β0)√
1 + ∥β∥2

)]
→ g(θ )(

√
n(β − β0)))T61(β − β0))).

According to Jiang [11] and Cui and Li [5]

n∑
i=1

[Q1i(β) − EQ1i(β)]

= oP(
√
n(β − β0)),

n∑
i=1

Q2i(β)

= −ψθ

(
ϵi − UT

i β0√
1 + ∥β0∥2

)
1√

1 + ∥β0∥2
(Xi

+Ui +
(ϵi − UT

i β0)β0
1 + ∥β0∥2

)T (β − β0) + R,

n∑
i=1

[Q2i(β) − EQ2i(β)]

= −ψθ

(
ϵi − UT

i β0√
1 + ∥β0∥2

)
1√

1 + ∥β0∥2
(Xi

+Ui +
(ϵi − UT

i β0)β0
1 + ∥β0∥2

)T (β − β0)

+ oP(
√
n(β − β0)).

It is easy to verify that

n∑
i=1

[R− ER] = oP(
√
n(β − β0)).

Thus, it follows that

Qn(β) → Q0(β) = g(θ )(
√
n(β − β0)))T61(

√
n(β − β0)))

−
1

√
n
ψθ

(
ϵi − UT

i β0√
1 + ∥β0∥2

)
1√

1 + ∥β0∥2
(Xi

+Ui +
(ϵi − UT

i β0)β0
1 + ∥β0∥2

)T
√
n(β − β0).

From the convexity of the limiting objective function,
we have that
√
n(β − β0)

=
6−1

1

√
1 + ∥β0∥2

√
ng(θ )

ψθ

(
ϵi − UT

i β0√
1 + ∥β0∥2

)
1√

1 + ∥β0∥2
(Xi

+Ui +
(ϵi − UT

i β0)β0
1 + ∥β0∥2

)+ oP(1).

The proof is completed.

III. IRWLS ALGORITHM BASED ON ODER
Since β0 lacks a convex, the standard optimal algorithm can
not be adopted. Therefore, we extend the IRWLS algorithm
proposed by Shim [13] to ODER (Orthogonal distance expec-
tile regression). Specifically, by applying the orthogonal
distance regression (ODR) principle Boggs and Rogers [2],
we propose the error-in-variables objective function for
expectile regression

L =

n∑
i=1

ui(θ )

(Yi − βTXi)2 +

p∑
j=1

(Wij − Xij)2

 , (9)

where ui(θ ) = θ I[Yi≤W T
i β]

+(1−θ)I[Yi>W T
i β]

,Wij, andXij, j =
1, 2, · · · , p are the components ofWi,Xi respectively.

Our aim is to minimize L. Hence, we obtain the expectile
regression in EIV models using (7), as it has the advantage
over (5) because it not only affords estimating β but also
Xi, i = 1, 2, · · · , n. This is important, as such a strategy leads
to the βTX estimate, whereX was not observed in the training
data. Given ui(θ ), taking the partial derivatives of (7) with
regard to (β,Xij) leads to the optimal values of (β,Xij) to be
the solution of

∂L
∂β

= XTU (θ )(Y − βTX ) = 0p,

∂L
∂Xij

= ui(θ )[(Yi − βTXi)βj + (Wij − Xij)] = 0,

i = 0, 1, 2, · · · , n, j = 1, 2, · · · , p,

where U (θ ) is a n × n diagonal matrix composed of ui(θ ),
XT = (X1,X2, · · · ,Xn), and Y T = (y1, y2, · · · , yn)T .

Note that the solutions of equations (8) and (9) cannot be
obtained in a single step since ui(θ ) contains (β,Xij), which
is unknown. Thus we apply the iteratively reweighted least
squares (IRWLS) procedure as follows: For small enough
γ1, γ2:

63118 VOLUME 11, 2023



X. He et al.: Expectile Regression With Errors-in-Variables

Step 1. Random initialization of β(0),X (0).
step 1.1. Find U (0) with β(0),X (0).
step 1.2. Find β(k) from β(k) = ((X (0))TU (k−1)(X (0))T )−1

((X (0))TU (k−1)Y ).
step 1.3. Reiterate the above steps until convergence, such

that ∥β(k+1)
− β(k)∥ < γ1.

Step 2. Find new estimates of Xij from X (k)
i = (Y (β(k)) +

W )((β(k))T (β(k)) + I )−1.

with β.
Step 3. Reiterate Steps 1 and 2 until convergence such that

∥X (k+1)
− X (k)

∥ < γ2.
From the (β,Xij) estimates obtained by the IRWLS pro-

cedure, we obtain as follows the estimator of the expectile
regression function given the input vector Xi, which is not
observed, whileW is observed in the training data,

e(Y | Xi) = βTXi.

A. SIMULATION STUDIES
This section conducts some experiments to verify the
efficiency of the proposed expectile regression using the
errors-in-variables model. First, we describe our experi-
mental setup, which relies on MATLAB R2019a. Next,
we compare the proposed expectile regressionwith the errors-
in-variables model, the quantile regression with errors in
variables (ODQR), the linear regression(LR), and the θ th
quantile regression model (QR). The simulation results of the
proposed expectile regression using the errors-in-variables
model have been obtained using the iterative reweighted least
squares (IRWLS) algorithm.

B. PERFORMANCE CRITERIA
The following evaluation criteria are used to evaluate the
efficiency of the proposed expectile regression algorithm
employing the errors-in-variables model. Let êθ (Yi), β̂, and
Ŷi be generated by the proposed expectile regression with the
errors-in-variables model, where eθ (Yi), β, and Yi are all from
true data. Given that Xi is the unobserved value of the input
vector, eθ (Yi) is the θ th quantile of Yi conditional on Xi, and
Yi is the response variable under the condition of Xi, we list
the evaluation criteria as follows

MSEe =
1
n

n∑
i=1

(êθ (Yi) − eθ (Yi))2,

RMSEβ =

√√√√1
n

n∑
i=1

(β̂ − β)2,

SSE =

n∑
i=1

(Ŷi − Yi)2.

C. SIMULATED DATASETS
First, we prove our model’s efficiency by observing the role
of θ in expectile regression with an errors-in-variables model.
For this trial, We consider simulated datasets under various
noise types. In the following examples, xi, i = 1, 2, · · · , n

TABLE 1. The true β0(θ) in Example 1.

TABLE 2. True β0(θ) in Example 2.

TABLE 3. True β0(θ) in Example 3.

TABLE 4. MSEe of 100 experiments of eθ (Yi ) for θ = i/10, i = 1, 2, · · · , 9.

are unobservable input variables, wi, i = 1, 2, · · · , n are the
observable input variables, and yi, , i = 1, 2, · · · , n are the
observable response variables. In the above data, we consider
the homogeneity of the random error term in the classical
hypothesis and the existence of heteroscedasticity. The model
is as follows

Y = Xβ + ϵ

W = X + U
E(ϵ) = 0
Var(ϵ) = 6 = diag(σ 2

1 , σ
2
2 , · · · , σ

2
n )

Example 1: xi is from the uniform distribution U (0, 1), wi
is from the normal distribution N (xi, 0.1), and yi is from the
normal distribution N (1 + 2xi, 0.1). Additionally, we con-
sider the existence of heteroscedasticity and that the error
originates from the normal distribution N (0, xi2). The true
β0(θ ) values are reported in Table 1, and the true θ th expectile
regression function is

eθ (xi) = β0(θ ) + 2xi.

Example 2: (x1, x2), w1, w2, and Yi come from the uni-
formly distribution U (0, 1), normal distribution N (X1, 0.1),
normal distribution N (X2, 0.1), and normal distribution
N (1+ x1 − 2x2, 0.1), respectively. Additionally, we consider
the existence of heteroscedasticity and make the error come
from the normal distributionN (0, xi2). Table 2 reports the true
β0(θ ), and the true θ th expectile regression function is

eθ (x1, x2) = β0(θ ) + x1 − 2x2.

Example 3: xi, wi, and yi are from uniform distribution
U (0, 1), the normal distribution N (xi, 0.1), and the normal
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distribution N (1+ 0.5xi + x2i , 0.25), respectively. Moreover,
we consider the existence of heteroscedasticity, and the error
originates from the normal distribution N (0, xi2). Table 3
reports the true β0(θ ), and the true θ th expectile regression
function is given as

eθ (xi) = β0(θ ) + 0.5xi + x2i .

Since the expectile regression is practically useful even
when heterogeneity is present, we investigate the perfor-
mance of the proposed method in the following Examples.

D. SIMULATED RESULTS
We conduct a small simulation study with n=100, where data
are generated from Examples 1∼3. We refer to Tables 1∼3
to observe the influence of different θ values on the ODER
model. It can be found that as θ increases from 0.1 to 0.9, the
MSEe of the ODER model first decreases and then increases
by observing Table 4. So MSEe is the smallest for θ = 0.5.
This simulation adopts the settings from Shim [13].

Table 4 highlights that the MSEe of the ODER model is
the smallest when θ = 0.5. Therefore, we first study the
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)

parameter estimation results of different methods and the
corresponding RMSE when θ = 0.5. Table III-C compares
LR,QR, andODER, and Table III-C compares LR andODER
when heteroscedasticity is present. Then we investigate the
various calculation results caused by the measurement error.
Besides, Table III-D reports the relevant results using QR,
ODQR (orthogonal distance quantile regression), and ODER
when θ = 0.1, 0.5, 0.9.When the data has heteroscedasticity,
the relevant results are presented in Table III-D. Note that in
all tables, bold-faced values indicate the result closest to the
real value per expectile level.

Table III-C reveals that the estimated parameter using the
ODER model is closer to the coefficients obtained through
TRUE when compared with LR and ODQR. Moreover, the
error of parameter estimates obtained with the ODER model
is more diminutive. This infers that ODER has a better calcu-
lation effect than traditional calculation methods. Table III-C
presents the experimental results when heteroscedasticity is
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present (boldfaced values represent the data closest to the
real value), revealing that the results of different experi-
ments are consistent with the above conclusions as a whole.
Moreover, we find that even if heteroscedasticity is present,
the calculated ODER result is still the closest to the true
value providing the best effect. Under the same experiment,
the ODER estimation error is significantly smaller than
LR and QR.

Nevertheless, solely challenging the proposed scheme
against LR and QR is inadequate. Thus, to verify this con-
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clusion further, we select θ = 0.1, 0.5, and 0.9, and present
in Table III-D the experimental results of ODQR and QR.
Given that in Table 4, the MSEe of the ODER model is the
smallest when θ = 0.5, as θ increases, the calculation error
first decreases and then increases. Therefore, representative θ
values are 0.1, 0.5, and 0.9. In Table III-D, we compare QR,
ODQR, ODER, and TRUE and conclude that the parameter
estimation result of ODER is closer to TRUE most times
under different θ values (boldfaced values indicate the best
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FIGURE 1. Box-plot of β0 when θ = 0.5 in Example 1.

FIGURE 2. Box-plot of β1 when θ = 0.5 in Example 1.

results obtained between the different methods). The param-
eter estimation result of ODQR is twice as good as ODER,
with the ODQR and ODER results under these two experi-
ments being very close. Therefore, we conclude that ODER
performs best in this experiment. In Table III-D, we present
the experimental results with heteroscedasticity and reveal a
similarity against Table III-D. Thus, we arrive at the same
conclusion.

Overall, the ODER model has the best parameter esti-
mation effect and effectively reduces the experimental error
presented in Tables III-C∼III-D.

Figures 1∼8 are the Box-plot of the experimental param-
eter estimation results of the three methods when θ = 0.5.
Box-plot generally comprises a box with upper, middle, and
lower lines. Themiddle line represents themedian of the data,
and the lower and upper lines correspond to the first and third-
quartile values, respectively. Thus, the box plot represents the
data point distribution in a data set, and the small black circles
are the outliers.

Figures 1∼2 illustrate the results of Example 1, revealing
that the LR and QR results in the box plot have a wide range,
inferring that the LR and QR have poor stability and cannot
guarantee the model’s reliability. Moreover, the box range of
ODER is the smallest among the three methods, indicating
that the data is relatively centralized, and the median is the
closest to TRUE. Figures 3∼5 depict the results of Example 2,
suggesting that ODER is more accurate and demonstrating
its superiority. Accordingly, Figures 6∼8 illustrate the results
of Example 3. Observing the vertical coordinates of the box
plot of the three experiments reveals that the unit distance

FIGURE 3. Box-plot of β0 when θ = 0.5 in Example 2.

FIGURE 4. Box-plot of β1 when θ = 0.5 in Example 2.

of the third experiment is the shortest, and thus the range
of the boxes in the third experiment is the smallest. This
is because of the special data structure of Example 3. For
Example 3, the error between Ŷi and Yi is smaller and we
calculated that SSEExample1 = 5.6004, SSEExample2 = 7.9725,
SSEExample3 = 3.8895.
In order to more intuitively explore our model, we counted

the 100 experimental results of Example 1∼3 without the
existence of heteroscedasticity. The corresponding mean
value of MSEe per ten experiments (as a group), pro-
vided ten values, with the corresponding results depicted
in Figures 9∼17. Since the experimental error is too small,
to facilitate data visualization we enlarge the result of
Example 1 by a factor of 100, and the experimental result
of Example 2∼3 is expanded to 10 times. The results
reveal that as the number of iterations increases, the MSEe
of the experiment tends to stabilize, indicating that the
gap between the experimental results and the real value
reduces.

IV. REAL DATA ANALYSIS
Acquired immunodeficiency syndrome is caused by the
human immunodeficiency virus (HIV), which has always
been a significant research problem in medicine. HIV enters
cells through the receptors on the surface of susceptible
cells, directly or indirectly destroying the human immune
system. The damage to the CD4+T cells is the most seri-
ous, and CD4+T lymphocytes are crucial immune cells in
the human immune system. When the number of CD4+T
cells in patients is small, cellular immunity is almost entirely
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FIGURE 5. Box-plot of β2 when θ = 0.5 in Example 2.

FIGURE 6. Box-plot of β0 when θ = 0.5 in Example 3.

FIGURE 7. Box-plot of β1 when θ = 0.5 in Example 3.

FIGURE 8. Box-plot of β2 when θ = 0.5 in Example 3.

lost, significantly increasing the risk of malignancies due to
virus invasion, i.e., AIDS. However, antiviral treatment can
effectively reduce the incidence and mortality of AIDS. Since
the viral load and CD4+ cell number are two key indicators
for the AIDS treatment effect, it is necessary to study their

FIGURE 9. The MSEe of 100 estimates when θ = 0.1 in Example 1.

FIGURE 10. The MSEe of 100 estimates when θ = 0.5 in Example 1.

FIGURE 11. The MSEe of 100 estimates when θ = 0.9 in Example 1.

FIGURE 12. The MSEe of 100 estimates when θ = 0.1 in Example 2.

relationship during AIDS treatment. The data in this paper are
from ACTG315, which is clinical trial data of HIV-infected
adults receiving antiretroviral therapy. The experiment lasted
for 28 weeks and involved 46 adults with AIDS. The HIV
viral load and CD4+T cell count of the subjects were spot

VOLUME 11, 2023 63123



X. He et al.: Expectile Regression With Errors-in-Variables

FIGURE 13. The MSEe of 100 estimates when θ = 0.5 in Example 2.

FIGURE 14. The MSEe of 100 estimates when θ = 0.9 in Example 2.

FIGURE 15. The MSEe of 100 estimates when θ = 0.1 in Example 3.

FIGURE 16. The MSEe of 100 estimates when θ = 0.5 in Example 3.

checked on a particular date during the experiment. Hence,
the data label included the specific date, patient identifier, and
CD4+T cell count.

This paper selects the measurement data of the second
day, involving 35 groups of data with HIV viral load as the

FIGURE 17. The MSEe of 100 estimates when θ = 0.9 in Example 3.

input variable and CD4+T cell count as the input response
variable. The parameter estimation results obtained by our
method are β0 = −0.0022 and β1 = 184.6520, for
θ = 0.5. The standard deviation of β0 is 0.0020, the 95%
confidence interval is [−0.0031,−0.0024], and the standard
deviation of β1 is 28.5198, and the 95% confidence interval
is [179.0872, 190.2663].

V. CONCLUSION
This paper proposes an expectile regression model with error-
in-variables. A further extension to quantile regression is
possible by adopting Shim [13]. However, there are two main
difficulties in correcting the bias in QR caused by errors-in-
variables Wang et al. [26]. One is that QR cannot entirely
specify the parameter regression error, and the other is that the
quantile of the sum of two random variables is not necessarily
the sum of the two marginal quantiles. The same properties
are also true for the expectile. Therefore, we transform the
expectile regression model with error-in-variables to ODER
to overcome the difficulties and establish our estimator’s
asymptotic normality. The simulation studies reveal that the
proposed method is efficient for finite sample sizes and
eliminates the estimation bias caused by measurement errors.
Real data examples demonstrate the ease of implementing the
proposed method.

FURTHER OUTLOOK
The proposed expectile regression with errors-in-variables
model can be further studied to evaluate whether variable
selection can be realized. It can also be combined with the
latest machine learning methods to improve the algorithm’s
speed and accuracy.
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